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Marker-assisted recurrent selection (MARS) is a breeding method used to accumulate
favorable alleles that for example confer tolerance to drought in inbred lines from
several genomic regions within a single population. A bi-parental cross formed from
two parents that combine resistance to Striga hermonthica with drought tolerance,
which was improved through MARS, was used to assess changes in the frequency
of favorable alleles and its impact on inbred line improvement. A total of 200 testcrosses
of randomly selected S1 lines derived from the original (C0) and advanced selection
cycles of this bi-parental population, were evaluated under drought stress (DS) and
well-watered (WW) conditions at Ikenne and under artificial Striga infestation at Abuja
and Mokwa in Nigeria in 2014 and 2015. Also, 60 randomly selected S1 lines each
derived from the four cycles (C0, C1, C2, C3) were genotyped with 233 SNP markers
using KASP assay. The results showed that the frequency of favorable alleles increased
with MARS in the bi-parental population with none of the markers showing fixation. The
gain in grain yield was not significant under DS condition due to the combined effect of
DS and armyworm infestation in 2015. Because the parents used for developing the bi-
parental cross combined tolerance to drought with resistance to Striga, improvement in
grain yield under DS did not result in undesirable changes in resistance to the parasite in
the bi-parental maize population improved through MARS. MARS increased the mean
number of combinations of favorable alleles in S1 lines from 114 in C0 to 124 in C3.
The level of heterozygosity decreased by 15%, while homozygosity increased by 13%
due to the loss of some genotypes in the population. This study demonstrated the
effectiveness of MARS in increasing the frequency of favorable alleles for tolerance to
drought without disrupting the level of resistance to Striga in a bi-parental population
targeted as a source of improved maize inbred lines.
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INTRODUCTION

Maize (Zea mays L.) is an important food security and income-
generating crop for millions of people in West and Central
Africa (Adetimirin et al., 2008). Its production is limited by
several biotic and abiotic factors including Striga hermonthica
(Del) Benth, drought, declining soil fertility and susceptibility
to pests and diseases (Odendo et al., 2001). Globally, about 160
million hectares of maize is grown under rain-fed conditions
and annual yield losses attributed to drought are estimated at
about 25% (Edmeades, 2008). The losses are expected to be
greater in tropical countries that rely on unpredictable and erratic
rainfall (Mhike et al., 2012). The gap between potential yield
and yield under drought stress (DS) is often large, but 20–
25% of this gap could be eliminated by genetic improvement
in drought tolerance and a further 20–25% by application of
water-conserving agronomic practices (Edmeades, 2013). The
remaining 50–60% can only be met by irrigation, when available
and affordable (Edmeades et al., 2006). Drought alone causes
an average yield loss of about 17–60% (Edmeades et al., 1999),
while Striga causes an estimated yield loss of about 10–100%
under severe infestation (Lagoke et al., 1991; Odhiambo and
Woomer, 2005). Armyworm (Spodoptera spp.) infestation occurs
in maize from plant emergence to tasseling and silking. Losses
due to the fall armyworm attack can reduce grain yield up to 34%
(Cruz et al., 1999; Lima et al., 2010). Marker-assisted recurrent
selection (MARS) in combination with high-throughput and
precise phenotyping and year round nurseries can significantly
accelerate the development of climate resilient maize germplasm
and have been used to improve tolerance to drought (Xu et al.,
2012; Prasanna et al., 2013).

Marker-assisted recurrent selection for quantitative traits has
relied on identifying markers linked to quantitative trait loci
(QTL). It involves improvement of an F2 population by one
cycle of selection based on phenotypic data and marker scores
followed by two to three cycles of marker based scores only
(Johnson, 2001, 2004). Improving bi-parental maize populations
for tolerance to stress through MARS is of major importance
because it harnesses several QTLs carrying the most desirable
combinations of favorable alleles using only significant markers
to predict performance of the population (Meuwissen et al.,
2001; Bohra, 2013). This procedure has been effective and
superior to phenotypic selection (PS) by accumulating favorable
alleles for multiple trait improvement in maize and other crops
(Edwards and Johnson, 1994; Van Berloo and Stam, 1998, 2001;
Charmet et al., 1999; Johnson, 2001, 2004; Yousef and Juvik,
2001; Eathington et al., 2007; Crossa et al., 2013, Massman et al.,
2013).

Assessment of the changes in the frequency of favorable
alleles within a bi-parental population improved by MARS
would provide information on specific genomic regions that have
responded to selection (Frascaroli and Landi, 1998). In addition,
assessment of genetic gains in breeding program provides an
opportunity to critically analyze efficiency and plan new actions
and strategies. Realized progress with any breeding scheme,
however, depends largely upon the ability of the breeders to
identify superior genotypes and the precision of experimentation

(Khalil et al., 2010). Xu et al. (2012) proposed MARS as an
effective tool to breed for complex traits because it enables the
harnessing of those genes or QTL exhibiting minor effects on the
phenotype. Edwards and Johnson (1994) studied the changes in
frequency of favorable alleles in sweet corn F2 MARS population
and observed an increase in the frequency of the favorable alleles
from 0.50 to ≥0.80 at 11 out of 35 markers used and one
marker locus in the population became fixed for the favorable
allele. Bernardo and Mayor (2009) observed an increase in the
frequency of favorable alleles for grain yield from C0 (0.50)
to C2 (0.65) in a double haploid (DH) population improved
by MARS. Recent studies (Semagn et al., 2015; Beyene et al.,
2016a) have highlighted improved genetic gains in grain yield of
tropical maize populations using MARS under DS. Semagn et al.
(2015) reported an average gain of 184 kg ha−1 cycle−1 under
WW and 45 kg ha−1 under DS conditions in bi-parental maize
populations, whereas Beyene et al. (2016a) reported an average
gain of 105 kg ha−1 year−1 under well-watered (WW) and 51 kg
ha−1 year−1 under DS.

Maize breeders at the International Institute of Tropical
Agriculture (IITA) developed a bi-parental maize population
from elite inbred parents with combined tolerance to drought
and resistance to S. hermonthica. The focus of the breeding
activities was to improve the population for tolerance to
drought in order to extract superior inbred lines with enhanced
recombination of favorable alleles originating from both parents.
The bi-parental population was improved through three cycles
of marker assisted recurrent selection under DS condition.
However, studies have not been conducted to assess genetic
gains in tolerance to drought and changes in the frequency of
favorable alleles that accrued under drought stressed conditions
in this population. Also, assessment of the performance of
progenies derived from improved cycles of this population
under S. hermonthica infestation as a non-target environment is
important to determine the effect of parental selection on grain
yield and resistance to the parasite. This study was therefore,
conducted to assess (i) genetic gains in grain yield under DS and
WW conditions, (ii) the potential impact of parental selection on
non-target traits under Striga infested condition in a bi-parental
population improved with MARS, and (iii) the associated changes
in the frequency and number of favorable alleles using SNP
markers.

MATERIALS AND METHODS

Development of MARS Population,
Phenotyping and Genotyping of F2:3
The population targeted for MARS in the study was derived from
a cross between two elite Striga resistant inbred lines (Acr.Syn-
W-S2-173-B∗4) and (TZLComp.1C4-S1-37-5-B∗3), that are also
tolerant to drought and resistant to the major lowland foliar
diseases. The F1 was selfed to generate F2 bulk seeds, which
were grown in 50 rows of 5 m length spaced 0.75 m apart to
generate 300 F2:3 lines (F2 derived populations in F3). A total of
250 F2:3 lines from this population were planted each in a row
and crossed to an inbred tester from an opposite heterotic group.
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The testcrosses were evaluated under DS and WW conditions at
Ikenne during the dry season (Supplementary Figure S1).

Marker effects of the genotyped 250 F2:3 lines were calculated
using the best linear unbiased prediction (BLUP) model
(Meuwissen et al., 2001), which permitted predicting genomic
estimated breeding value (GEBV) (Henderson, 1975; Gianola and
Fernando, 1986). The GEBV was calculated per marker across
all the lines derived from C0 using the BLUP values. Each line
was scored 0 or 1 based on the presence or absence of parental
allele. The BLUP value per marker was multiplied by the marker
score of each line and the resultant values per line were the
GEBVs. Significant markers on each chromosome were identified
by backward elimination. A relaxed significance level (P = 0.10),
which has been found desirable to maximize the response to
MARS (Hospital et al., 1997; Johnson, 2001) was used. Selection
at C1 was based on marker used to calculate GEBV which is the
sum of all marker effects included in the model for an individual.
The selected C0 lines were ranked according to their GEBV and
10% of the S1 lines with the highest GEBV were planted ear-to-
row and inter-crossed. Bulk pollen collected from 10 plants in
each line was used for inter-crossing with other lines. Four ears
were harvested in each row and shelled to obtain more than 100
seeds per ear. Equal amounts of seed were taken at random from
each ear to form a bulk of the new cycle (C1) for planting. Leaf
samples were collected from each of the plants for genotyping
at LGC Genomics using the full complement of SNPs originally
used for genotyping the C0 populations. The top 10% of the
C1 individuals were selected based on GEBV and intermated
to form C2 as described above and repeated to form C3. All
recombination were conducted at IITA, Ibadan in Nigeria.

Formation of Testcrosses for Phenotypic
Evaluation
In 2013, the original (C0) and advanced selection cycles (C1, C2,
and C3) of the MARS population were planted at Ibadan each
in 60 rows of 5 m length spaced 0.75 m apart. Several plants
were self-pollinated and 120 to 150 S1 lines were harvested from
each selection cycle and retained. Amongst these, 60 S1 lines were
randomly selected and were planted along with parental lines
of the bi-parental cross and an inbred tester (TZISTR1138) at
Ibadan in 2013 to generate testcrosses. The S1 lines were used as
female parents, whereas the inbred tester was used as the male
parent. Bulk pollen collected from the male parent was used to
pollinate the emerged silks of several plants in each S1 lines.
The ears from each testcross were harvested and dried to 15%
moisture content and shelled.

Selection of Markers
A final set of 275 SNPs were selected after rigorous screening
of 1250 KASP assays developed by LGC Genomics (United
Kingdom) by converting 1536 Illumina Golden Gate Array
(Semagn et al., 2013). Two separate bulks of leaf from eight
plants of each parent and one bulk of F1 was genotyped with
all 1247 SNP markers at LGC Genomics (formerly KBiosciences,
United Kingdom). Of the 1247 markers run by LGC Genomics
markers over a 1000 SNPs provided successful calling in one or

both bulks of each parent. However, SNPs that were not uniform
between the two bulks (one bulk homozygous and the other
heterozygous; one has allele call and the other has no allele call)
of the same parent or that gave no call in one or the other parent
were eliminated. Likewise, SNPs that were heterozygous in either
parent or homozygous in the F1s were also excluded. Finally,
233 markers that are uniform and homozygous in the parents as
well as polymorphic between the parents were used for genotypic
selection in the MARS population (Supplementary Data 1).

DNA Extraction and Genotyping
Sixty randomly selected maize sample from each MARS cycles
were used for DNA extraction. Leaf samples from each of the
randomly selected 60 S1 lines planted to generate testcrosses
and the two parents were collected 2 weeks after planting and
transported to IITA Biosciences laboratory in Ibadan, Nigeria
for DNA extraction. The samples were lyophilized to dry for
about 3 days, then two tiny steel grinding balls (2.4 mm) were
inserted into each extraction tubes. About 15–20 small leaf disk
of each sample was punctured into extraction tubes, covered up
and grounded into fine powder using the Geno Grinder–2000.
Genomic DNA was extracted using a CTAB extraction protocol
of Azmach et al. (2013). The clean pellets were dried by leaving
the tubes open for at least an hour to get rid of all drops of
ethanol. The dried DNA (pellet) in each tube was dissolved in
100 µl solution of Rnase–DNase free water to get rid of all traces
of RNA in the pellet. The purified genomic DNA was quantified in
ng/ųl on a Nanodrop spectrophotometer and ran on 1% agarose
gel to double check the DNA quality. Genomic DNA samples
were lyophilized to dry powder and sent to LGC genomics
(United Kingdom) for single nucleotide polymorphism (SNP)
genotyping on Kbiosciences’ KASP assay platform (KBioscence-
LGC Genomics)1. The SNP data obtained from this assay was
used to assign genotype score to the population.

Phenotypic Evaluation of Testcrosses
An experiment consisting of 50 randomly selected testcrosses of
S1 lines from each of the four cycles of selection, along with
testcrosses of each of the parental line of the bi-parental cross
to the same tester (P1 × T, P2 × T), a cross of the two parental
lines (P1 × P2) and standard hybrid checks 9022-13 and 8338-1
were evaluated under DS and WW conditions at Ikenne (6◦53′ N,
30◦42′ E, 60 m asl, 1200 mm annual rainfall) during the 2014
and 2015 dry seasons. The testcrosses were arranged in a 41 × 5
alpha lattice design with two replications and were planted in
single rows of 5 m long with 0.75 m space between rows and
0.25 m spacing between plants within a row (Abdulmalik et al.,
2016). In the DS trial, DS was imposed by withdrawing irrigation
water from 5 weeks after planting through harvest, whereas the
WW trial received irrigation until physiological maturity. NPK
15:15:15 fertilizer was applied at the rate of 60 kg N ha−1, 60 kg
P ha−1, and 60 kg K ha−1, at planting and an additional 60 kg
N ha−1 was applied 4 weeks later. In each trial, gramoxone and
atrazine were applied as pre-emergence herbicides at 5.0 l ha−1.

1http://www.kbioscience.co.uk/
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Subsequently, manual weeding was done to keep the experiments
weed-free.

The testcrosses were also evaluated under Striga infestation at
Abuja (9◦16′ N, 7◦20′ E, 300 m asl, 1500 mm annual rainfall)
and Mokwa (9◦18′ N, 5◦04′ E, 457 m asl, 1100 mm annual
rainfall) for 2 years. The S. hermonthica seeds for infestation
were mixed with fine sand in the ratio of 1:99 by weight and
about 5,000 germinable Striga seeds were placed in each planting
hills as described by Kim (1991). NPK 15:15:15 fertilizer was
applied at the rate of 30 kg N ha−1 at planting, and an additional
30 kg N ha−1 was applied 4 weeks after planting. The N rate,
which was only half the recommended rate for maize in the
savannas of Nigeria, was used to ensure optimal development
of S. hermonthica that allowed differentiation among testcrosses
for Striga damage rating (SDR) and ensured a minimum of 50%
yield reduction under infestation. Weeds other than Striga were
removed by hand throughout the planting season.

Data Collection
Data was collected for grain yield, days to silking, anthesis-silking
interval (ASI), plant height, ear aspect (EASP), plant aspect
(PASP), and leaf senescence (SEN), SDR at 8 and 10 weeks after
planting and number of emerged Striga plants (ESP). Days to
silking was recorded as the number of days from planting to when
50% of the plants showed emerged silks. ASI was computed as
the interval in days between silking and anthesis. Plant height
was measured as the distance from the base of the plant to the
height of the first tassel branch. EASP was also visually rated
on a scale of 1 to 5, where 1 = clean, uniform, large, and well-
filled ears and 5= rotten, variable, small, and partially filled ears.
PASP was rated on a scale of 1 to 5, where 1 = excellent overall
phenotypic appeal and 5 = poor overall phenotypic appeal. SEN
was scored on a scale of 1 to 9, where 1 = almost all leaves
green and 9 = virtually all leaves dead. SDR was recorded on a
scale of 1–9 (Kim, 1991) at 8 and 10 weeks after planting, where
1 = no damage (highly resistant), 9 = severe damage (highly
susceptible). Number of ESP was counted at 8 and 10 weeks
after planting. All ears harvested from each plot were shelled to
determine percentage moisture and grain yield adjusted to 15%
moisture was computed from the shelled grain weight.

Percentage yield loss = yield of (WW − DS)/WW ∗ 100

Statistical Analysis
Analysis of variance (ANOVA) combined over years for all traits
measured was conducted with PROC GLM in SAS using a
RANDOM statement with the TEST option (SAS Institute, 2009).
Independent ANOVA were conducted for data collected under
DS, WW, and Striga infested conditions. Years, environments,
replications, and incomplete blocks were considered as random
effects whereas selection cycles and testcross within cycles were
considered as a fixed effect. The significance of mean squares for
the main and interaction effects were tested using the appropriate
mean squares, obtained from the RANDOM option in SAS (SAS
Institute, 2009).

For each trait, cycle means across environment were regressed
as dependent variables on cycle numbers (0–3) as independent

variables. The coefficient of linear regression (b-value) provided
an estimate of the gain per cycle, which was divided by the
intercept and multiplied by 100 to obtain the percent response
per cycle.

Favorable alleles are alleles that have a positive effect on
the trait under selection for higher values and negative effect
on the trait under selection for lower values. The favorable
allele of each marker was determined using the coded marker
scores −1 or 1 that was used to represent each parent. As
the target trait was grain yield and alleles were expected to
have a positive effect on it, the parent with the positive marker
score was chosen as the favorable parent. The mean change in
the frequency of favorable alleles was calculated for each cycle
for all markers using the Power Marker (v3.25) software. The
mean, minimum, maximum, skewness, kurtosis, and standard
error of the frequency of favorable alleles were calculated
using the PROC UNIVARIATE procedure in SAS version 9.3
(SAS Institute, 2009). The minor allele frequency, inbreeding
coefficient, heterozygosity, homozygosity, number of effective
alleles, genotype lost, and genotype gained were calculated using
the Power Marker (v3.25) software.

RESULTS

Performance of Testcrosses of S1 Lines
under Drought Stress and Well-Watered
Conditions
In the combined ANOVA, year was a significant source of
variation for all measured traits except ASI, plant height, PASP,
SEN under DS and ASI, and EASP under WW conditions
(Table 1). The variation of testcrosses within cycle was highly
significant for days to silking and SEN under DS and days
to silking, ASI and plant height under WW conditions.
Year × testcross interaction was significant only for days to
silking under both DS and WW conditions (Table 1).

Significant mean squares were recorded among selection
cycles for grain yield, days to silking, and plant height under
Striga infested condition (Table not included). Testcrosses within
cycles were significant for all traits except for EASP and SDR at
8 weeks after planting. Environment × testcross interaction was
significant for days to silking and SDR at 8 weeks after planting,
while environment× cycle interaction was not significant for the
remaining other measured traits.

Genetic Gains of a Bi-parental
Population Improved with MARS
The testcrosses of MARS population sustained a 87% yield loss in
2015 due to severe damage by fall armyworm and an average of
73% in both years. The standard hybrid check (9022-13) also had
the largest yield loss of 88% under DS, the highest days to silking,
poorest PASP and shortest plants (Table 2). The highest grain
yield was recorded at C3, which was significantly higher than the
two standard check hybrids (9022-13 and 8338-1). The C3 yielded
13% more than C0, 10% above P1xT and 44% more than 8338-1
(Table 2). The C3 out yielded the base population by 163 kg ha−1
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TABLE 1 | Combined mean squares from analysis of variance for grain yield and other agronomic traits of a population improved with MARS under
drought stress and well-watered conditions at Ikenne in 2014 and 2015.

Source df Grain yield
(kg ha−1)

Days to
silking

ASI Plant height
(cm)

Ear aspect (1–5) Plant aspect (1–5) Leaf senescence
(1–9)

Drought stress

Year 1 503468519∗∗∗ 3738.9∗∗ 96.2 71103 22.7∗ 7.1 23.2

Rep (year) 2 1095999 46.5∗∗∗ 29.6∗ 27823∗∗∗ 1.2∗ 1.3 2.6

Block (rep∗year) 160 347250∗∗∗ 4.9∗∗∗ 2.0∗∗ 769∗∗∗ 0.3∗∗∗ 0.4∗∗∗ 1.1∗∗∗

Cycle 3 609210 1.2 0.6 512 0.3 1.4∗∗∗ 1.8

Testcross (cycle) 196 173602 6.1∗∗∗ 1.6 194 0.1 0.2 0.8∗∗∗

Year∗cycle 3 126009 1.2 0.6 277 0.1 0.2 1.4

Year∗testcross (cycle) 196 164532 2.79∗ 1.4 160 0.1 0.1 0.5

Error 238 154694 2.2 1.5 161 0.1 0.2 0.6

Well-watered

Year 1 270273062∗∗∗ 1055.7∗ 0.3 61347.2∗∗∗ 3.0 55.2∗∗∗

Rep (year) 2 543111 4.9 0.8 203.8 0.2 0.0

Block (rep∗year) 160 1137466∗∗∗ 3.4∗∗∗ 0.4 348.2∗∗∗ 0.2∗∗∗ 0.2∗∗∗

Cycle 3 181768 2.4 0.4 201.7 0.1 0.1

Testcross (cycle) 196 842886 5.4∗∗∗ 0.6∗∗∗ 192.8∗∗∗ 0.1 0.2

Year∗cycle 3 308202 0.9 0.6 109.6 0.2 0.1

Year∗testcross (cycle) 196 808615 2.3∗ 0.4 104.2 0.1 0.2

Error 238 697218 1.8 0.4 120.8 0.1 0.2

Significant at ∗P ≤ 0.05, ∗∗P ≤ 0.01, and ∗∗∗P ≤ 0.001 levels, respectively.

TABLE 2 | Means and genetic gains for grain yield and other agronomic traits of a population improved with MARS under drought stress and
well-watered condition at Ikenne in 2014 and 2015.

Grain yield
(kg ha−1)

Days to
silking (days)

ASI Plant height
(cm)

Ear aspect
(1–5)

Plant aspect
(1–5)

Leaf Senescence
(1–9)

Genotypes DS WW DS WW DS WW DS WW DS WW DS WW DS

C0 1280 5013 58 58 3 2 151 201 3.4 2.8 3.0 2.5 6.3

C1 1387 5111 58 58 4 2 156 204 3.3 2.7 2.8 2.4 6.1

C2 1347 5045 58 58 3 2 154 204 3.3 2.7 2.8 2.4 6.3

C3 1443 5055 58 58 3 2 155 204 3.3 2.7 2.8 2.4 6.3

P2 × Tester 1156 5334 58 60 3 2 164 203 3.1 2.5 2.9 2.4 6.8

P1 × Tester 1317 6402 58 58 3 2 155 212 3.4 2.5 3.1 2.1 7.0

P1 × P2 1228 5752 59 59 4 2 165 221 3.4 2.3 2.8 2.1 6.3

9022-13 (sus) 323 2587 64 62 3 1 128 181 4.0 3.3 3.6 2.8 5.3

8338-1(sus) 1003 3174 63 62 2 2 163 197 3.6 3.5 2.9 2.6 5.3

LSD(0.05) ns ns ns ns ns ns ns ns ns ns 0.01 ns ns

CV (%) 29 17 3 3 35 33 8 6 11 13 14 17 12

Gain cycle−1 44.9 6.0 −0.02 0.11 −0.1 0.03 0.9 0.9 −0.03 −0.03 −0.06 −0.03 0.02

% Resp cycle−1 3.6 0.1 −0.03 0.2 −2.9 1.5 0.6 0.4 −0.9 −1.1 −2.0 −1.2 0.3

R2 0.71 0.04 0.07 0.69 0.07 0.60 0.36 0.60 0.60 0.60 0.60 0.60 0.07

Resp, Response; Sus, Susceptible.

in the DS condition and also sustained a yield loss of 71% between
the WW and DS conditions (Table 2). In general, mean ASI was
3 days under DS and 2 days under WW condition. Under Striga
infestation, traits measured did not change with selection in the
population through MARS. However, the testcrosses of S1 lines
derived from the various cycles produced more yield, had taller
plants, supported fewer S. hermonthica plants, had improved
Striga ratings and better EASP scores compared to the hybrid
checks (Table 3).

The response to selection per cycle was −2% for PASP under
DS condition (Table 2).

Grain yield of the best testcrosses in each selected cycle
of the MARS population under DS with their corresponding
performance under WW condition, Striga infested and non-
infested conditions are presented in Figure 1. The best testcrosses
differed significantly from the parents, P1 × P2 and hybrid checks
under DS condition. The performance of the testcrosses ranged
from 35 to 84% above P1 × P2 and hybrid checks under DS
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TABLE 3 | Means and genetic gains for grain yield and other agronomic traits of testcrosses of a population improved with MARS under Striga infested
condition at Abuja and Mokwa in 2014 and 2015.

Genotypes Grain yield
(kg ha−1)

Days to
silking

Plant
height
(cm)

Striga damage
rating 8 weeks

(1–9)

Striga damage
rating 10 weeks

(1–9)

Emerged Striga
count 8 weeks

(number)

Emerged Striga
count 10 weeks

(number)

Ear
aspect
(1–5)

C0 3839 61 151 2.5 4.0 2.3 2.7 3.1

C1 4055 61 157 2.4 3.9 2.2 2.6 3.0

C2 4024 61 155 2.5 3.9 2.3 2.7 3.0

C3 3824 61 156 2.4 4.0 2.2 2.6 3.0

P2 × Tester 3220 62 155 2.6 4.1 2.1 2.8 3.1

P1 × Tester 3690 61 146 2.3 3.8 2.2 2.5 3.0

P1 × P2 4359 62 162 2.3 3.9 2.3 2.7 2.7

9022-13 (tolerant) 1371 66 144 3.5 6.5 2.6 3.1 3.6

8338-1 (susceptible) 406 57 126 5.1 6.7 2.7 2.9 4.6

LSD (0.05) 108 0.2 1.5 ns ns ns ns ns

CV (%) 20 4 7 21 20 31 23 12

Average gain cycle−1
−7.6 0.07 1.3 −0.02 0.03 −0.02 −0.02 −0.03

% response cycle−1
−0.2 0.1 0.9 −0.8 0.6 −0.9 −0.7 −1.0

R2 0.01 0.52 0.41 0.20 0.12 0.20 0.20 0.60

FIGURE 1 | Mean grain yield of the best five testcrosses selected from each cycle of MARS population under drought, well-watered, Striga infested
and non-infested conditions at Ikenne, Abuja, and Mokwa in 2014 and 2015.

condition. However, the performance of the testcrosses above
P1 × P2 and hybrid checks were not consistent under WW
condition, Striga infested and non-infested conditions.

Changes in Frequency of Favorable SNP
Marker Alleles
The mean frequency of the favorable marker alleles for grain yield
increased from C0 to C3 by 9% (Table 4). In C1, the frequencies of
the favorable alleles fell below the expected frequency (0.50) and
picked up again in the advanced cycles (Figure 2 and Table 4).
None of the markers were fixed for the favorable allele in the
different cycles of MARS (Table 4). The mean combination of
favorable alleles present in each S1 lines increased significantly
by 8% from C0 to C3 and the mean of the best 10 S1 lines cycle−1

increased from C0 to C3 by 7% (Table 5). The change in minor

alleles decreased by 22% with advance in selection from C0 to
C3, but none of the marker loci got fixed (Table 6). The level
of heterozygosity among the cycles decreased by 15% and the
number of effective alleles decreased by 9% from C0 to C3. The
inbreeding coefficient increased by 57% and homozygosity by
13% from C0 to C3. About 5% of the total markers used were
lost during selection at C2 and C3 (Table 7). Twelve genotypes
were lost at C2 and C3 and only two of the markers (bt2_7 and
PZA02148_1) were common in the two cycles (Table 7).

DISCUSSION

Developing hybrids that are able to withstand DS throughout the
growing season with no yield penalty under optimum conditions
have become important, since drought incidence and severity
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TABLE 4 | Means, maximum, and minimum frequencies of favorable
marker alleles for yield.

Cycles C0 C1 C2 C3

Minimum 0.33 0.23 0.19 0.08

Maximum 0.76 0.80 0.95 0.91

Skewness 0.86 0.21 0.21 0.16

Kurtosis 3.49 −0.63 −0.67 −0.35

Mean 0.50 ± 0.01 0.49 ± 0.01 0.52 ± 0.01 0.55 ± 0.01

vary considerably among years and within fields (Beyene et al.,
2016a). The year × cycle interaction was not significant for
any of the measured traits under both DS and WW conditions,
suggesting that cycles showed consistent performance despite the
stress conditions, across the 2 years. This was consistent with
the result of other authors (Menkir and Kling, 2007; Derera
et al., 2008; Menkir et al., 2010; Adebayo and Menkir, 2014) but
was in disagreement with Menkir et al. (2012). Consequently,
genotypes with consistently better drought tolerance and high
yield potential can be selected under both conditions.

The absence of significance among cycles and the high level
of yield reduction observed in this study under DS condition,
resulted from the combined effect of severe DS and armyworm
(Spodoptera spp.) infestation that occurred in 2015. DS can cause
detrimental effects to plant pathogen resistance (Atkinson and
Urwin, 2012). Exposure of plants to a pest or pathogen increases
the effects of an abiotic stress such as water deficit (Cockfield
and Potter, 1986; Audebert et al., 2000). For these reasons, the
observed yield reduction under DS in the present study was
more than those reported by other authors (NeSmith and Ritchie,
1992; Banziger et al., 2000; Menkir and Akintunde, 2001; Campos
et al., 2006; Derera et al., 2008). Though, an increase in mean
performance for grain yield, plant height and a decrease in
PASP and SEN ware observed in the bi-parental population,
the observed shift with selection moved towards the positive
direction. This was consistent with the result of Beyene et al.

(2015), who also reported an increase in grain yield and plant
height. The ASI increased up to 4 days under DS condition
from an average of 2 days under WW condition. These results
are in agreement with the findings of earlier studies (Edmeades
et al., 1995; Menkir and Akintunde, 2001; Kamara et al., 2003),
who reported that ASI is a useful adaptive trait for selecting
maize for drought-tolerance. Days to silking did not differ for
all cycles, indicating that the lines were at similar phenological
stage (Magorokosho et al., 2003). MARS cycles for plant height
and SEN were significantly (P < 0.05) different from each other
and from the hybrid checks. Beyene et al. (2016a) also found
significant difference among the populations for plant height
under DS.

The non-significant gain for grain yield observed in this study
under DS, was not consistent with the findings of previous
empirical and simulation studies (Bernardo and Yu, 2007;
Massman et al., 2013; Beyene et al., 2016a). The lack of response to
selection under WW condition for grain yield and other traits was
consistent with the findings of previous studies (Bänziger et al.,
1999; Magorokosho et al., 2003). Beyene et al. (2015) and Semagn
et al. (2015) conducted MARS on different bi-parental maize
populations under DS and WW environments and observed that
each population deferred in their response to MARS.

The focus of MARS on selection for high yield under managed
DS alone did not result in an overall improvement in genetic gain
for grain yield and resistance to the parasite. Nonetheless, the
selection for tolerance to drought did not have any negative effect
on the performance of testcrosses of the different selection cycles
when compared to the parents and hybrid checks. As selection
for drought tolerance resulted in a negative response to selection
for grain yield under Striga infestation (non-target traits), it is
important to choose parents with tolerance to multiple stress
and conduct selection under the different stress conditions to
attain the desirable improvement in performance of the progenies
derived from bi-parental cross. This was in agreement with the
findings of Casler et al. (2003), who reported little improvement
on the non-target trait from the simultaneous improvement

FIGURE 2 | Changes in frequency of favorable alleles from C0 to C3 in the bi-parental population.
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TABLE 5 | Means, maximum, and minimum number of combinations of
favorable marker alleles present in all and the best 10 S1 lines of each
MARS cycle.

Entries Minimum
favorable

alleles in S1

Maximum
favorable

alleles in S1

Mean of
favorable

alleles in S1

C0S1 lines 54 132 114 ± 1.6

Best 10 C0S1 lines 125 132 128 ± 1.0

C1S1 lines 8 132 111 ± 2.1

Best 10 C1S1 lines 124 132 128 ± 1.0

C2S1 lines 86 138 117 ± 1.3

Best 10 C2S1 lines 127 138 130 ± 1.3

C3S1 lines 87 145 124 ± 1.5

Best 10 C3S1 lines 134 145 138 ± 1.0

of forage yield and seed yield of orchard grass bred for an
increase in forage yield. Contrary to these findings, Lafitte and
Edmeades (1995) and Edmeades et al. (2006), reported significant
improvements in the non-target trait in a research selected for
tolerance to drought. These could probably be due to genetic and
physiological mechanism(s) between the parental traits. In rare
situations, selection for a non-target trait proves more effective
than the target trait and when it occurs, it may simply be that
the parental alleles under selection are more or less the same in
both environments or because the environments do not differ
sufficiently (Witcombe et al., 2008).

Testcrosses 14, 34, 64, 74, 80, and 81 showed consistent
performance above the mean under both DS and Striga infested
conditions. As shown in Figure 1, the best testcrosses derived
from the bi-parental cross produced higher mean grain yields
than the parents, P1 × P2 and hybrid checks under DS condition.
This result is similar to the findings of Beyene et al. (2016b), who
reported higher performance in grain yield of MARS derived lines
compared to parents and hybrid checks under DS condition.

The increase in mean frequency of the favorable marker alleles
for grain yield from C0 to C3 indicated that MARS rapidly
accumulates favorable alleles linked to the desired QTLs in
the breeding population while decreasing the frequency of the
unfavorable alleles (Hallauer, 1985; Hallauer and Miranda, 1988;
Mhike et al., 2010). Our result is in agreement with Bernardo and
Mayor (2009), who reported an increase in frequency of favorable
marker alleles for grain yield, grain moisture, plant integrity,
and stay green in a DH mapping population improved using
MARS. Edwards and Johnson (1994), also reported an increase
in the frequency of favorable alleles in an F2 population of sweet
corn improved using MARS with some marker loci fixed for the
favorable alleles. The frequency of alleles with large effects should

TABLE 7 | The loss of genotypes in SNP markers across MARS cycles.

Markers C0 C1 C2 C3

bt2_4 ++ ++ ++ A/A

bt2_7 ++ ++ G/G G/G

PHM1190_3 ++ ++ ++ A/A

PHM3334_4 ++ ++ ++ G/G

PHM3334_6 ++ ++ ++ G/G

PHM3587_6 ++ ++ ++ G/G

PZA00311_5 ++ ++ ++ A/A

PZA00613_22 ++ ++ ++ C/C

PZA02148_1 ++ ++ G/G G/G

PZA02260_2 ++ ++ ++ C/C

PZA03270_2 ++ ++ ++ A/A

PZA03597_1 ++ ++ ++ A/A

++, Genotype is present in the cycle; A/A, G/G, C/C, missing genotypes.

increase or decrease faster than the frequency of alleles with
relatively small effects (Delaney and Bliss, 1991). The trajectory
of change in allele frequency allows for the identification of
favorable, neutral, or unfavorable alleles. On the other hand,
Johnson (2004) found a high mean frequency at C1 while a third
population showed no difference in mean frequency of favorable
alleles between C1 and C2. Our results suggest that breeder may
conduct three cycles of MARS to develop superior inbred lines
for evaluation.

The mean combination of favorable alleles present in the
present study reveals that all the S1 lines derived from the
advanced cycle (C3), had more combinations of favorable
alleles than those derived from C0, suggesting that a lot of
recombination had taken place and the breeding scheme was
effective in enhancing genetic gain in the bi-parental population.
The observed increase in inbreeding coefficient with selection
are in agreement with Dorak (2014), who stated that positive
inbreeding coefficient values indicates heterozygote deficiency
compared with Hardy–Weinberg Equilibrium expectations. The
high rate of loss of heterozygosity in the MARS populations
was also an indicator of the effect of selection. The frequency
of heterozygotes at the marker loci shown in MARS cycles
decreased as the selection progressed, which was consistent
with the findings of Massman et al. (2013), who also observed
loss of heterozygosity in testcrosses of B73 × Mo17 MARS
population using SNP markers. The unequal percentage decrease
in heterozygosity and increase in homozygosity was due to loss of
some genotypes in their homozygous state. The loss of genotypes
observed in this study suggests that desirable alleles were selected
throughout the four selection cycles. The fact that no genotype
was gained throughout the selection process in each cycle

TABLE 6 | Allelic pattern of MARS population genotyped using single nucleotide polymorphism (SNP) markers.

Cycles Minor allele frequency Inbreeding coefficient Heterozygosity Homozygosity Number of effective alleles

C0 0.46 0.03 0.48 0.52 1.98

C1 0.40 0.04 0.45 0.55 1.90

C2 0.37 0.06 0.42 0.58 1.83

C3 0.36 0.07 0.41 0.60 1.81
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provides further evidence that the genotypic data was accurately
scored and is a true representation of the genetic changes that
occurred during breeding cycles. A similar result was observed by
Vogel (2010) in characterization of maize populations selected for
grain methionine content using SNP markers. Further research is
needed on the use of haplotype signatures to identify genomic
regions that have responded to selection.

CONCLUSION

The MARS procedure caused desirable changes in frequency
of favorable marker alleles, though no significant gain in grain
yield was recorded under DS condition due to the severe fall
armyworm infestation. The absence of changes in grain yield
from the original to the advanced selection cycles under Striga
infestation could arise from the fact that the selection has
not been done to improve defensive traits against Striga. Our
study demonstrated that selection for improved performance
under DS did not necessarily have a negative effect on grain
yield under WW conditions and also, selection of parents with
tolerance to multiple stress may allow some acceptable level of
resistance to the parasite even when improvements were made
only for tolerance to drought. To make significant progress from
selection, however, selection for multiple stress should be done
simultaneously under the target stress conditions. MARS could
therefore, be used to improve genetic gains for complex traits like
drought and accelerate the development of new inbred lines in
maize breeding programs.
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