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Irregular flowering over years is commonly observed in fruit trees. The early prediction of

tree behavior is highly desirable in breeding programmes. This study aims at performing

such predictions, combining simplified phenotyping and statistics methods. Sequences

of vegetative vs. floral annual shoots (AS) were observed along axes in trees belonging to

five apple related full-sib families. Sequences were analyzed using Markovian and linear

mixed models including year and site effects. Indices of flowering irregularity, periodicity

and synchronicity were estimated, at tree and axis scales. They were used to predict tree

behavior and detect QTL with a Bayesian pedigree-based analysis, using an integrated

genetic map containing 6,849 SNPs. The combination of a Biennial Bearing Index (BBI)

with an autoregressive coefficient (γg) efficiently predicted and classified the genotype

behaviors, despite few misclassifications. Four QTLs common to BBIs and γg and one

for synchronicity were highlighted and revealed the complex genetic architecture of the

traits. Irregularity resulted from high AS synchronism, whereas regularity resulted from

either asynchronous locally alternating or continual regular AS flowering. A relevant and

time-saving method, based on a posteriori sampling of axes and statistical indices is

proposed, which is efficient to evaluate the tree breeding values for flowering regularity

and could be transferred to other species.

Keywords: bayes factor, biennial bearing, entropy, Malus × domestica, markov models, pedigree based analysis

INTRODUCTION

Biennial bearing, defined as the irregular fruit or seed production over consecutive years, is a trait
commonly observed in perennial crops (Monselise and Goldschmidt, 1982; Samach and Smith,
2013). In fruit trees, yield and fruit quality depend on bearing behavior, which is in turn strongly
dependent on flowering intensity. However, floral induction may be inhibited by concurrent
fruiting, leading to biennial bearing. Economically and environmentally sustainable techniques
are therefore required for the management of biennial bearing in fruit production. An alternative
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strategy would be to select cultivars combining high fruit quality,
long-term resistance to pests and diseases, tree architecture
adapted to modern training systems and regular production.
Breeding processes in trees are usually slower than in crops,
because of the juvenile phase length and the long time required
to assess the agronomic performances of pre-selected trees,
especially bearing behavior (Laurens et al., 2012). Predicting
bearing habit as soon as possible from the beginning of the
genotype’s production is thus of high interest. This strategy is
reinforced by the existence of large differences among cultivars
(Lauri et al., 1997, 2014) and the demonstration of genetic control
of biennial bearing in an apple family derived from a cross
between biennial and regular bearing parents (“Starkrimson R©

Red Delicious”× “Granny Smith”; SG) (Guitton et al., 2012).
To characterize successive yields and bearing behavior,

different approaches have been proposed (see Durand et al.,
2013 for a review). The Biennial Bearing Index (BBI; see the list
of abbreviations and notations in Table 1), which estimates the
intensity of deviation in yields during successive years (Wilcox,
1944), has become the accepted standard to describe biennial
bearing. It has been applied to yield (mass of fruit) at different
scales: whole areas, individual trees or branches—on apple and
other fruit tree species (Pearce and Doberšek-Urbanc, 1967;
Reddy et al., 2003; Smith et al., 2004; Rosenstock et al., 2010;
Guitton et al., 2012). However, the measure of the magnitude of
irregular bearing by BBI is questionable, especially for trended
series (Huff, 2001). A new methodology was thus introduced
to characterize the bearing habit of trees as early as the first
years of production, when the production is increasing. This
methodology was based on a trend model on the yearly number
of flowers, combined with a BBI-derived index and an index on
correlations between residuals, denoted by γ (see Supplementary
Material M1). An approximation of these indices based on
within-tree sampling of successions of annual shoots (AS) along
axes was considered. An entropy criterion was proposed to
assess synchronicity of flowering in a given year, allowing a
connection between axis- and tree-scale behaviors. However, the
ability of axis-scale indices to predict genotype habits at tree scale
was investigated on a single family (SG), and the annual shoot
sequences were merely used to approximate the total number of
flowering AS.

In the present study, we propose to extend the previous
investigations by exploring new methods and indices based on
the analysis of sequences of flowering shoots, and by performing
a multi-family QTL detection to enlarge the genetic basis of
biennial bearing variation in apple trees. We assumed that
the analysis of entire sequences of successive AS, combined to
flowering synchronicity in each year, would provide new insights
on the genotype’s behaviors. We thus proposed (i) to use not only
the total number of flowering AS but also the vegetative ones
and their succession; (ii) to derive new indices from this analysis
at no additional measurement cost; (iii) to re-examine previous
assumptions on the relation between alternation and regularity
at tree and axis scales. Regarding genetics, we considered a larger
germplasm to allow the comparison of alleles’ performance in
different genetic backgrounds (Pauly et al., 2012). We assumed
that this will increase the number of segregating QTLs, detection

power, accuracy of positions, and give more robust estimation of
QTL effects (Bink et al., 2002; Liu et al., 2012). A Pedigree Based
Analysis (PBA) was performed, using the concept of Identity By
Descent (IBD) based on both pedigree and marker information
(van de Weg et al., 2005; Luan et al., 2012). Our aim was to
confirm previously found QTLs on the SG family and find new
ones, tracing the original source of the favorable alleles and
deepening our understanding of the genetic determinisms of
biennial bearing in apple tree.

MATERIALS AND METHODS

Plant Material
Five segregating families with known and related pedigree were
used (Figure 1). The first family (Segura et al., 2006) is derived
from a cross between a female parent (“Starkrimson R© Red
Delicious”) having strong tendency to biennial bearing and a
male parent (“Granny Smith”) prone to regular bearing. This
family, hereafter referred as SG, is composed of 123 genotypes,
each replicated twice in the same site, and among which 115
individuals were genotyped and phenotyped (Table 2). The
second family, referred as XB (Celton et al., 2011), is from a
cross between the hybrid X3263 (regular bearer) and “Belrène”
(biennial bearer). It comprises 324 genotypes among which 50
were randomly selected for replication, resulting in a total of
374 trees that were all phenotyped, among which 58 were also
genotyped. For both families, seedlings were grafted on a semi-
dwarfing Pajam I rootstock and planted in 2004 and 2005,
respectively, in a random experimental design at the Diascope
INRAMontpellier experimental unit. All trees were grown under
irrigated conditions with minimal training. In the SG family,
branches along the trunk were removed below 50 cm in the first
year and fruits were slightly thinned in the first 2 years of growth
to avoid branch breaking. In XB family the trees were neither
pruned nor the fruits thinned (Table 2).

The three other families, called HIVW, N, and P, respectively,
were chosen for their related pedigree. The HIVW family had
a parent (X3263) common to the XB family and the other one
(X3259) to the N family. Both N and P families had a common
parent (X3305) and the three families derived from “Golden
Delicious” with different parentage degrees (Figure 1). They are
composed of 171, 42, and 45 individuals, respectively, each with
a single replicate per genotype. They were planted at the INRA
Angers experimental station, in 1992. The trees were trained in
vertical axis with an annual manual thinning that was performed
at the end of June and left one fruit per inflorescence. At both
sites, pest and disease management was performed consistently
with professional practices.

Phenotyping
On the SG family, as described in Durand et al. (2013),
successions of vegetative vs. floral AS were observed over
consecutive years (based on the presence/absence of an
inflorescence) along different types of axes: trunk, long and
short axillary shoots (Table 2). Shoots were classified depending
on their length. A distinction was also made between the long
proleptic and sylleptic axillary shoots (see Segura et al., 2006).
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TABLE 1 | Abbreviations used in this article.

AIC An (/Akaike) information criterion. Criterion used to select between statistical models (not necessarily nested)

ANOVA Analysis of variance

AS Annual shoot

auto.cov (γg) Index quantifying the tendency of residuals from a linear trend models to change signs over years

BBI Biennial bearing index

BBI_norm BBI normalized by the sum of yields

BBI_res_norm BBI on the residuals of a linear trend model, normalized by the sum of yields

BIC Bayesian information criterion

BLUP Best linear unbiased predictor (conditional mean of random effects)

Entropy Indicator of the randomness of some variable (0 corresponding to non-random)

Ent
g

Entropy of flowering probabilities of a given genotype g

Ent
glmm,g

Entropy of flowering probabilities issued from some GLMM

ηg,t Random genotype x year interaction in the Markovian model for the probabilities of flowering

Fg,r,π ,t,ℓ Presence (1) or absence (0) of flowering for a given genotype, replication, site, year and position on a axis

GLMM Generalized linear mixed model

HIVW, N, P Families of apple trees planted at the INRA Angers experimental station, from X3263 × X3259, X3305 × X3259 and “Rubinette” × X3305 cross,

respectively (Figure 1)

IBD Identity by descent

M, A Montpellier vs. angers (locations of the trees in France)

MCMC Markov chain monte carlo: simulation algorithm for approximate Bayesian inference

Memory History of the flowering events related to the current position of an AS within its axis (order 2 memory is the history of the last two events)

NN Neural network (non-linear regression model)

PBA Pedigree based analysis

PCA/PC Principal Components analysis, principal component

QTL Quantitative trait loci

SG “Starkrimson® red delicious” × “Granny Smith” family planted in Montpellier (Figure 1)

SNP Single-nucleotide polymorphism

θg,m Random genotype x memory interaction in the Markovian model for the probabilities of flowering

trait_ax Trait estimated using axis-scale data (e.g., BBI_res_norm_ax)

trait_pred Trait at tree scale predicted from axis-scale data and a (non-linear) regression model (e.g., BBI_res_norm_pred)

XB X3263 × “Belrène” family planted in Montpellier (Figure 1)

In red, abbreviations used for indices. In blue, abbreviations used for naming apple tree families.

FIGURE 1 | Genetic relationships between the five studied full-sib families (XB, HIVW, SG, N, and P; represented by black boxes) and their parents

(represented by gray boxes) and founders or other members of the pedigree (represented by white boxes). Blue lines link the father to its progenies and red

lines link the mother to its progenies. GoldenDel, “Golden Delicious,” ReiDuMans, “Reinette du Mans,” Wagenerap, “Wagenerapfel”; see text for family abbreviations

and supporting information 2 for other abbreviations used in the pedigree. Reproduced from Allard et al. (2016) with the permission of Oxford University Press.

Flowering occurrence was observed along the trunk of each tree,
as well as one long sylleptic and one long proleptic axillary shoot,
both sampled on the first AS of the trunk (2004 AS). On each long
axillary shoot, two short axillary shoots per AS were phenotyped
the same way. Thus, 10 short axillary shoots of 5 to 1 years were
recorded on long sylleptic, and 8 short axillary shoots of 4 to 1

years were recorded on long proleptic ones. The flowering pattern
was described by recording the presence/absence of flowering
event on AS (6 possible flowering occurrences on the trunk and
long sylleptic shoots, 5 on the long proleptic axillary shoots).
The data thus consisted in vegetative vs. floral AS in 6 to 1
year sequences, with 2,716 sequences in total, with a mean
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TABLE 2 | Information on the different families used and sampling strategy.

Family Parents Plantation

year

Site Gen. Nba Rep Nb Management Observation Scale Axis

Nb

Nb of

years

Female Male

SG “Starkrimson®

Red Delicious”

“Granny

Smith”

2004 Montpellier 115 2 Slightly pruned

Slightly thinned

Treated and irrigated

Tree

Axes Trunk

Long Sylleptic shoots

Long Proleptic shoots

Short axillary shoots

All

1

1

1

18

6

6

6

6

1–5

XB X-3263 “Belrène” 2005 Montpellier 58 1 Not pruned

Not thinned

Treated and irrigated

Axes

Long Proleptic shoots

Short axillary shoots

3b

9b

HIVW X-3263 X-3259 1992 Angers 172 1 Pruned Axes 9b 6–7

6–7

N X-3305 X-3259 1992 Angers 42 1 Thinned

Treated and irrigated

Long Proleptic shoots

Short axillary shoots

3b 6–7

6–7

P “Rubinette” X-3305 1992 Angers 45 1

The columns indicates the names of the family, the names of its parents, the year it was planted, the site where it was planted, the number of genotypes composing the family, the

number of replications for each genotype, comments about the orchard management, the observation scales, the number of axes observed per tree, the number of years of the

observed shoots.
aGenotyped and phenotyped;
bOn average.

length of 3.0 (corresponding to 3 consecutive AS, or years, in
average).

For the XB, HIVW, N, and P families, similar observations
were performed on three long proleptic axillary shoots along
which, four and three short AS were phenotyped along 2006 and
2007 AS, respectively. The numbers of sequences were 7,757 in
XB (with mean length of 5.3), 1,511 in HIVW (mean length of
6.0), 442 in P (mean length of 6.2), and 905 in N (mean length of
6.4; see distributions in Supplementary Figure S1).

Statistical Modeling of AS Fate Sequences
Our approach is based on the classical BBI and on indices defined
in Durand et al. (2013): BBI-derived indices (denoted BBI_norm
and BBI_res_norm), autoregressive coefficient γg and entropy.
They are based on counts of flowering AS at axis and whole-
tree scales, whenever possible. The description of the trend and
autoregressive models, BBI-derived indices and the statistical
methodology for classification of genotype habit can be found in
Supplementary Material M1. Compared to the original indices,
we added a fixed “site” effect, Montpellier (M) or Angers (A), in
the trend and autoregressive models, whenever possible.

At the axis scale, sequences of AS fates are denoted
(Fg,r,π ,t,ℓ)ℓ≥0

with (Fg,r,π ,t,ℓ = 0) denoting the absence and

(Fg,r,π ,t,ℓ = 1) the presence of flower for replication r of genotype
g at site π , year t, and location (or AS) ℓ in the axis. The indices at
axis scale, denoted by BBI_ax, BBI_norm_ax, BBI_res_norm_ax,
and γ ax, were computed as those defined at tree scale but using
the total yearly counts of flowering AS in axes sampled within
each tree replicate.

These counts were also used to compute two entropies,

denoted respectively Ent
g

(entropy based on frequencies)

and Ent
glmm,g

(entropy based on a generalized linear mixed

model-GLMM). These two indices are based on the assumption
of independent Bernoulli distributions for the successive AS fates
Fg,r,π ,t,ℓ. This assumption led us to ignore dependencies and
patterns of alternation that could be inferred from sequences of
AS fates along axes.

It can be assumed that models and indices taking explicitly

into account the succession of AS fates would yield better

predictions of genotype habit and provide new insights on the
relationship between alternation at axis and whole tree scales.
This is why we modeled the sequence of AS fates (Fg,r,π ,t,ℓ)ℓ≥0

, in

this new study, using high-order Markov chains (see Costes and

Guédon, 2012, for discussion of the shortcoming of using first-
order rather than high-order Markov chains). In such models,
the variable at time t depends on the M past variables where

M is the order or memory length. The values of these M past
variables are referred to as the memory m of the model at time
t. For example, memory “10” means that flowering occurred
at time t–2 but not at time t–1. Markov chains with different
orders were estimated on the basis of every non-overlapping
sequence extracted from the trees. A second-order Markov chain
was chosen by a model selection procedure based on the Bayesian
Information Criterion (BIC, see Kass and Raftery, 1995). This
choice of order means that knowledge of the presence/absence
of flowers at years t–1 and t–2 is necessary for prediction
of flowering at year t. Thus, the set of memories was {00,
10, 01, 11}.

Assuming that alternation is partly genetic, some interactions
between year t, memory m and genotype g should have
an effect on flowering. To model these interactions with
binary observations Fg,r,π ,t,m,ℓ, approaches based on GLMMs
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are relevant (Molenberghs and Verbeke, 2005). The following
Markovian GLMM was considered:

log
P(Fg,r,π ,t,m,ℓ = 1)

P(Fg,r,π ,t,m,ℓ = 0)
= λ + ρπ + µm + ϕt + θg,m

+ ηg,t + ζg,r , (1)

where λ is a fixed intercept, ρπ is the fixed effect of site π (with
Angers site as reference ρA = 0), µm is the fixed effect of
memory m (with reference µ00 = 0), ϕt is the fixed effect of
year t (with reference ϕ2006 = 0) treated as a qualitative variable,
variables θg,m are independent random interactions between
genotype g and memory m with common variance τ 2θ , variables
ηg,t are independent random interactions between genotype g
and year t with common variance τ 2η , and variables ζg,r are
independent replication-specific random effects with common
variance τ 2ζ . All random effects were assumed to be mutually
independent and Gaussian. This model consists of a high-order
Markov chain for process (Fg,r,π ,t,m,ℓ)ℓ≥0

where the transitions

are treated as GLMMs, so as to introduce fixed and random
effects in modeling binary outcomes. Parameter estimation was
by restricted maximum likelihood. For a better interpretation of
the model and obtain new indices, it is useful to estimate the
value of the random effects. This is achieved by their Best Linear
Unbiased Predictors (BLUPs), which are the conditional means
and also the most probable values of the random effects. These
were computed by glmer and ranef functions of package lme4
(Bates et al., 2011). The BLUPs of θg,m were used to discriminate
genotypes on their low vs. high probability of AS bearing flowers
at year t given they had memory m. Similarly the BLUPs of
ηg,t were used to discriminate genotypes on their low vs. high
probabilities of bearing flowers at year t.

Predicting Tree Fruiting Behavior from
Axis-Scale Indices
One goal was the prediction of tree flowering behavior with
respect to three classes: regular, irregular or biennial.We assumed
that the true class of each genotype could be deduced from
the tree-scale indices, for the SG family, using a clustering
method developed in Durand et al. (2013). The dependencies
between class and tree-scale indices are represented in Figure 2.
The classification of the genotypes of all families from axis-
scale indices was achieved using as predictors: the BLUPs of the

θg,m random effects, BBI_res_norm_ax, γ ax, Ent
g
and Ent

glmm,g

(which were available for every genotype, as opposed to whole
tree-scale predictors). Note however that BLUPs may not be
defined for every parameter and genotype. For example, if
memory 11 did not occur in the axes of some genotype g, θg,11
cannot be defined, resulting into missing predictors. Moreover,
some predictors could be highly correlated and redundant. To
handle both issues of predictor absence and redundancy, a
principal component analysis (PCA) for partially missing data
was used, with the R package missMDA (Josse and Husson,
2012). Classification was performed using neural networks (NNs,
see Supplementary Material M2). The number of principal
components (PCs) and the NN regularization parameter were
determined by out-of-sample validation.

FIGURE 2 | Representation of the clusters for the genotypes in the SG

family, as a function of the tree-scale indices BBI_res_norm and γg

(auto.cov). Cluster 1 can be interpreted as regular bearing genotypes, cluster

2 as biennial bearing genotypes, and cluster 3 as irregular bearing genotypes.

Reproduced from Durand et al. (2013) with permission from Oxford University

Press, Copyright 2013.

Although classification can be a relevant method to assess
regularity at tree scale, its prediction is a rough summary
(through three classes only) of the flowering behavior. In other
contexts, such as genotype ranking, quantitative assessment of
the bearing behavior may be required. This could be achieved
through the tree-scale indices BBI_res_norm and γg (when
measured), since they provide a more accurate description of
this behavior. Since tree-scale indices were known for SG only,
approximation of both indices was performed by regression,

from axis-scale indices θg,m, BBI_res_norm_ax, γ ax, Ent
g
and

Ent
glmm,g

. NNs were used as nonlinear regression functions

(instead of nonlinear classifiers in the case of classification), also
using missing data PCA. The NN parameters were estimated
by least squares minimization. Since the optimal numbers of
PCs to be used in classification and regression NNs may be
different, they were both chosen independently by out-of-sample
validation. The approximated values of BBI_res_norm and γg are

referred to as BBI_res_norm_pred and γ pred, respectively. These
two values are necessarily linearly dependent due to the nature
of NNs.

Classification and regression were also performed in Durand

et al. (2013) but the models did not consider Ent
glmm,g

nor θg,m.

Therefore, we assessed the gain of using these new indices as
predictors. Since the tree-scale indices were known for SG only,
the classification and regression errors were assessed on this
family.
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Genetic Map and QTL Mapping
The five full-sib families and their progenitors were genotyped
with the Infinium R© 20K SNP array (Bianco et al., 2014),
according to Chagné et al. (2012) and Antanaviciute et al. (2012).
A genetic map composed of 7,100 SNPs has been integrated
over 27 full-sib families using the same approach as in Di Pierro
et al. (2016), and was used for QTL mapping (van de Weg et al.,
unpublished). 6,849 SNPs were used after careful checking of
their robustness (van de Weg et al., 2013; Di Guardo et al., 2015),
consistency and recombination pattern on the 5 families and the
pedigree members (Allard et al., 2016). The quality of the map
was achieved by intense data curation and by using graphical
genotyping to avoid double recombinations along with the use of
multiple families to create an integrated genetic map that reduced
cases of false marker order. The high quality of our current map
is underlined by the low number of SNPs that are in discordant
order (71 SNPs, 3.2%), the small size of the genetic segments in
which these discordant orders occurred (usually 0.5 cM, data not
shown), and the similar small size of both genetic maps. Then sets
of single SNPs were integrated into haploblocks, corresponding
to successive 1 cM segments. Haplotypes were composed using
the software FlexQTLTM (www.flexqtl.nl) and PediHaplotyper
(Voorrips et al., 2016).

Indices used in QTL analysis were BBI_res_norm_ax, γ ax,

BBI_res_norm_pred, γ pred, Ent
g
, Ent

glmm,g
, the BLUPs for

genotypes × memory interactions (θg,00, θg,01, θg,10, θg,11) and
genotype × year interactions (ηg,2006, ηg,2007, ηg,2008, ηg,2009,
ηg,2010, ηg,2011, ηg,2012). Among all variables, QTLs were detected
using a linearmodel that comprised an interceptµ, the regression
coefficients a on the QTL covariates, and a residual e, as:

y = µ +Wa+ e (2)

where W is the design matrix for the QTL effects. A bi-allelic
model is assigned to a QTL with alleles denoted by Q and q,
with only additive effects and values of [QQ, Qq, qq] equal to [1,
0, −1]. As QTL genotypes of individuals are a priori unknown,
modeling is based on independent assignment of alleles to
founders and segregation indicators to trace transmission from
parents to offspring (Bink, 2002). Uniform priors were assigned
to µ and λ (vector giving QTL position), and normal priors to
the vectors a and e in (2), i.e., a∼N(0, σ 2

a I) and e∼N(0, σ 2
e I).

σ 2
a and σ 2

e are the per-QTL explained variance and the residual
variance, with priors being inverse Gamma distributions (Bink
et al., 2008). The number of QTLs was assigned a Poisson prior.
Results for a prior mean of 5 are reported only. Other values
yielded similar results and inferences (data not shown). Samples
from the joint posterior distribution f (µ, a, λ, σ 2

a , σ
2
e

∣

∣y ) of the
model parameters were obtained by Markov chain Monte Carlo
(MCMC) simulation in FlexQTLTM (Bink et al., 2008, 2014).

The MCMC algorithms and details on the monitoring of
Monte Carlo accuracy and length of the simulation chains can be
found in Bink et al. (2008) and Allard et al. (2016), respectively.
The number of QTLs was inferred from a pairwise comparison
of models differing by one QTL, and considering twice the
natural logarithm of the Bayes Factors (Kass and Raftery, 1995),
denoted 2∗lnBF. Values >2, 5, and 10 indicate positive, strong,

and decisive evidence for the presence of a QTL, respectively.
QTL positions were based on posterior QTL intensities, and QTL
contributions on the posterior mean estimates of the QTL effects.
Posterior probabilities of QTL genotypes were also estimated
(Bink et al., 2014).

When several QTLs were detected for a variable, the
interactions between QTLs were tested by linear models with
haplotypes located at the peak of the QTLs. Model selection was
achieved with a backward method based on AIC (Burnham and
Anderson, 2002).

RESULTS

Modeling as Sequence
A Markovian GLMM was estimated merging the five families
(1) in Section Statistical Modeling of AS Fate Sequences). It had
a BIC value of 44,300. It was compared with the models (i)
without any random effect (i.e., with τ 2θ = τ 2η = τ 2ζ = 0, BIC
= 52,944), (ii) containing “genotype” and “replication” random
effects only (no interactions with year or memory, BIC= 50,723),
(iii) without “replication” random effects (BIC= 44,394) and (iv)
without “genotype” random effects and their interactions (BIC=

50,780). The parameter estimates are in Table 3.
The BIC values of these models showed that all fixed

(site, memory, year) and the random replication effects were
significant, consistently with the associated p-values (Table 3).
The replication effect, although included in the best model,
induced less variability in flowering thanmemory and year effects
(the latter having the largest variance). The trees in Montpellier
had lower flowering probability than those in Angers. Flowering
AS were more frequent after a vegetative AS preceded by a

TABLE 3 | Estimates of fixed effects and variances (with the p-values of

the tests of the null hypothesis “n = 0” against the alternative “n 6= 0,” for

parameters n associated with fixed effects) of the mixed model estimating

the probability of flowering at axis scale in five apple tree families.

Estimates p-value

Intercept λ −0.36 0.19

Fixed effects Site πM −1.05 1e-16

Memory µ10 1.40 1e-16

µ01 −0.33 1e-07

µ11 0.31 1e-06

Year ϕ2007 1.46 1e-07

ϕ2008 1.81 1e-11

ϕ2009 1.42 1e-07

ϕ2010 0.55 0.04

ϕ2011 1.36 1e-07

ϕ2012 0.49 0.07

Common variances τ2
θ

0.54 –

τ2η 2.33 –

τ2
ζ

0.22 –

See text for detailed model description.
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flowering AS, than directly after a flowering AS (since µ10 was
higher than µ01 and µ11), showing frequent biennial alternation
in flowering at axis scale. The probability of flowering was the
highest in 2008, whereas it was particularly low in 2010 and 2012,
whatever the site.

Empirical standard deviations were computed for the BLUPs
of random effects θg,m and ηg,t to estimate their specific variability
for each memory m or year t (Table 4). The random interactions
θg,10 (between genotypes and memory “flowering AS followed by
a vegetative AS”) had the lowest genetic variability. In contrast,
the random interactions θg,01 between genotypes and memory
“vegetative AS followed by a flowering AS” had noticeably higher
variability. The genetic variability of the random interactions ηg,t
increased with years, showing that the genetic differences became
larger with tree age.

Prediction of Tree-Scale Indices Using
Linear Regression of Axis-Scale Indices
Trend models of the yearly numbers of flowers at axis scale
were used to compute BBI_res_norm_ax and γ ax [models (A)
and (I) in Supplementary Material M1]. However, the site effect
was included in (I) only, since its inclusion in (A) induced
non-identifiability issues.

BBI_res_norm and γg were regressed with three or four
principal components (PCs) using NNs, and the best cross-
validated correlations were obtained with three PCs. The
optimal correlation between BBI_res_norm and its prediction
BBI_res_norm_pred was 0.71 when using BBI_res_norm_ax,

γ ax and Ent
g
as predictors, and 0.72 when using the PCs.

The optimal correlation between γg and γ pred was 0.60 using

BBI_res_norm_ax, γ ax and Ent
g
, and 0.64 using PCs. Using

Ent
glmm,g

instead of (or in addition to) Ent
g
did not improve

correlations. Thus, adding information fromMarkovian GLMMs
did not significantly improve the prediction of the tree-scale
indices.

TABLE 4 | Empirical standard deviations of random effects for each kind

of interaction of the mixed model estimating the probability of flowering

at axis scale in five apple tree families.

Interactions Std. Dev.

Genotype × memory θg,00 0.45

θg,10 0.35

θg,01 0.42

θg,11 0.36

Genotype × year ηg,2006 0.81

ηg,2007 0.88

ηg,2008 1.00

ηg,2009 1.09

ηg,2010 1.11

ηg,2011 1.26

ηg,2012 1.73

See text for detailed model description.

Classification of the Genotypes with
Respect to Tree-Scale Bearing Habit
Classification of the genotypes of SG, which may be interpreted
as the expected error rate on other families, yielded a 39%
cross-validated error rate when using BBI_res_norm_ax, γ ax

and Ent
g
, and 35% with PCs. Genotypes with unknown values

of BBI_res_norm_ax, γ ax or Ent
g
were excluded, thus keeping

115 genotypes in SG. As previously, the best prediction was

achieved with three PCs. Both Ent
glmm,g

and Ent
g
were included

in the PCA, in addition to the other axis-scale indices. Although
limited, the improvement of the error rate, was significant at level
0.7% on 50 random test samples (Student’s t-test).

To predict the unknown bearing habits at tree-scale of
the genotypes of XB, HIVW, N, and P, the optimal NN
model on SG was re-estimated on the whole data set, using
genotypes with known classes (i.e., 122 genotypes in SG)
for learning the mapping between local indices and classes.
Confusion between classes concerned irregular genotypes that
could hardly be discriminated from regular and biennial bearing
genotypes (Table 5). This comes from irregular genotypes having
intermediate values of their indices, between those for the
regular and biennial bearing genotypes. As a result, 15 regular
and 9 biennial genotypes were classified as irregular, and 9
irregular genotypes were classified as regular. In contrast, one
misclassification only occurred between regular and biennial
bearing genotypes, highlighting that discrimination between
both behaviors is easy.

The three classes were discriminated by analyses of
variance (ANOVAs) performed on the axis-scale indices
(see Supplementary Table T1). The lowest p-values (<1e-8) were

obtained with θg,01, Entg , BBI_res_norm_ax and γ ax, which

pointed out especially contrasted values of these indices among
the three classes. These four indices thus highlight a higher
potential than the other ones to discriminate between classes of
bearing behavior.

The model yielded the following predictions:

• SG: 29 (24%) regular, 29 (24%) biennial bearing, 64 (52%)
irregular genotypes—with 33% error rate on the learning

sample (37% if using BBI_res_norm_ax, γ ax and Ent
g
only)

• XB: 48 (17%) regular, 69 (25%) biennial bearing, 158 (57%)
irregular genotypes

TABLE 5 | Contingency table for the number of genotypes of each

possible true class (corresponding to observations on SG family)

assigned to each possible predicted class by NN on local indices.

Predicted class

Regular Biennial Irregular

True class Regular 20 1 15

Biennial 0 22 9

Irregular 9 6 40

For example, among the 36 regular genotypes, 15 were predicted as irregular.
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• HIVW: 38 (22%) regular, 23 (14%) biennial bearing, 109 (64%)
irregular genotypes

• N: 31 (31%) regular, 9 (9%) biennial bearing, 60 (60%)
irregular genotypes

• P: 10 (19%) regular, 4 (8%) biennial bearing, 39 (74%) irregular
genotypes.

Consistency of the Indices between Tree
and as Scales
Correlation matrices were computed between the tree and axis-
scale indices for SG (Table 6) and between indices at axis-scale
only for the five combined populations (Table 7). The strongest
correlations between tree-scale and axis-scale indices were the
correlations between BBI_res_norm_ax, γ ax and θg,01 (which
correlation is negative with BBI_res_norm_ax and positive with

γ ax). Moreover, θg,11 and Ent
g

were moderately correlated

with BBI_res_norm (negatively) and with γ ax (positively), while

Ent
glmm,g

was poorly correlated and θg,10 uncorrelated (at level

0.05) with the tree-scale indices.

QTL Mapping
QTLs were detected for all indices except for θg,10, ηg,2007, ηg,2009,
ηg,2010, ηg,2011, and ηg,2012. Two major QTLs were detected with
a strong evidence (2∗lnBF ≥ 5) on LG4 and LG, for the two
BBI-derived indices (BBI_res_norm_ax, BBI_res_norm_pred)
(Table 8, Figures 3A,B, Figure S2 in Supplementary Material for
the trace plot of QTL across iterations). The QTL detected on
LG4 explained 11.5, and 13.3% of variance, respectively. The QTL
on LG5 explained 6.9, and 8.3% of the variance of each index,
respectively (Table 8). Two other QTLs were detected on LG8
and LG10 but had a strong evidence for BBI_res_norm_pred
only. They explained 11.7 and 10% of variance of this index,
respectively.

Two QTLs were detected on LG8 and LG10 but had a strong
evidence for BBI_res_norm_pred only. They explained 11.7 and
10% of variance of this index, respectively.

TABLE 6 | Correlation coefficients between indices at whole tree scale

and indices and BLUPs at axis scale, with 95% confidence intervals, in the

SG family.

Tree scale indices

BBI_res_norm γg

Tree scale indices γg −0.66 (−0.75, −0.54) 1

Axis scale indices

and BLUPs

BBI_res_

norm_ax

0.72 (0.61, 0.80) −0.61 (−0.72, −0.49)

γ ax −0.55 (−0.67, −0.41) 0.51 (0.36, 0.63)

Ent
g

−0.46 (−0.59, −0.30) 0.34 (0.17, 0.49)

Ent
glmm,g

−0.19 (−0.36, −0.01) 0.09 (−0.09, 0.27)

θg,01 −0.55 (−0.66, −0.41) 0.50 (0.35, 0.62)

θg,11 −0.21 (−0.40, −0.01) 0.17 (−0.03, 0.36)

θg,00 0.23 (0.04, 0.39) −0.22 (−0.39, −0.04)

θg,10 0.00 (−0.21, 0.21) −0.07 (−0.28, 0.14) T
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TABLE 8 | Parameters associated with the QTL detected for BBI derived indices, autoregressive coefficients and entropy.

LG 2lnBF_LG max_2lnBF_bin pos (cM) Peak (cM) add_ef fq %var

BBI_res_norm_ax 4 10.6 8.94 32–41 36–37 0.39 0.12 11.5

5 5 6 3–24 9–10 0.19 0.5 6.9

7 1.9 3.1 65–90 71–72 0.18 0.69 5.4

8 2.1 4.6 10–23 14–15 0.2 0.39 7.7

10 4.4 7.4 57–78 75–76 0.21 0.58 7.7

12 2 4.1 34–43 38–39 0.18 0.39 5.8

BBI_res_norm_pred 4 6.3 6.8 32–47 36–37 0.13 0.35 13.3

5 5.8 8 3–24 21–22 0.1 0.56 8.3

8 8.4 9 8–23 14–15 0.12 0.42 11.7

10 9.3 8 57–78 75–76 0.11 0.52 10

γ ax 4 2.7 4.4 34–45 34–35 0.15 0.59 5.3

5 2.6 4.7 21–36 21–22 0.18 0.41 5.3

10 3.1 6.4 59–76 75–76 0.18 0.45 5.3

γ pred 4 6.7 6.8 32–45 36–37 0.11 0.64 12

5 6.2 8.3 3–30 21–22 0.1 0.42 10

8 9.4 8.9 8–23 14–15 0.11 0.59 12

10 9.5 7.8 57–78 75–76 0.1 0.5 10

Entg 12 3.1 5.4 6–23 20–21 0.05 0.43 5

Entglmm,g 1 3.7 6.4 44–59 48–49 0.05 0.63 10

7 2.4 4.3 39–56 51–52 0.05 0.54 10

9 8 7.4 19–34 25–26 0.07 0.75 20

15 4.5 7.1 46–69 56–57 0.05 0.65 10

17 3.1 5 0–27 0–1 0.05 0.5 10

The first column indicates the variable concerned, the following columns indicate the LG where the QTL is located, 2ln(BF) value at LG scale, 2ln(BF) value at bin scale, the position of

the QTL in cM, the position of the QTL peak, its additive effect, the frequency of positive allele and percentage of variance explained, respectively. Only 2lnBF values corresponding to

the comparison of a model with 0 QTL to a model with 1 QTL are presented. QTLs that appear in bold are QTL with a strong evidence for presence, i.e., with a 2*lnBF value higher

than 5.

For the autoregressive coefficients, the same regions along
the genome were detected. For γ ax, three QTLs were detected
on LG4, LG 5 and LG 10 (Figure 3C) but none with a strong
evidence (Table 8). The QTLs on LG5 and LG10 colocalized
with that of the BBI indexes (Figure 3). Four QTLs were
mapped for γ pred on LG4, LG5, LG8 and LG10 (Figure 3D) and
colocalized with BBI_res_norm_pred. QTLs on LG4 and LG8
explained 12%, and those on LG5 and LG10 explained 10% of
the variance of γ pred (Table 8). Five QTLs were detected for

Ent
glmm,g

(Figure 3F), among which only that on LG9 had a

strong evidence and explained 20% of the variance.
The QTL detected for θg,00, θg,01 andθg,11 (Table T2;

Figures S3, S4 in Supplementary Material) on LG10 colocalized
with that detected for BBIs. It explained 10, 11.8, and 10.9% of
the variance, respectively, and had a strong evidence for θg,00 and
θg,01. Two QTLs with positive evidence were mapped on LG12
and LG6, for ηg,2008 and ηg,2006, respectively (Table T2; Figures
S3, S4 in Supplementary Material).

No interaction between QTLs could be identified for
BBI_res_norm_ax and γ ax, whereas interactions were identified
for BBI_res_norm_pred between QTLs on LG4 and LG8, and for

Ent
glmm,g

between QTLs on LG7, LG9, and LG17, with all 2-way

and 3-way-interactions being significant (results not shown).

Genotype Estimation at Main QTLs
Genotype estimation at QTLs brought two types of information.
Firstly, the allelic classes of parents allowed identifying in
which family QTLs segregated: if one parent of a family was
estimated to be heterozygous at a QTL, this family segregated
for this QTL. Secondly, genotype estimation allowed identifying
parents and founders bearing favorable alleles, specific to the
considered variable. Hereafter, only QTLs with strong evidence
were commented (Table 9).

The estimated genotypes were identical for all QTLs that
colocalized for the normalized BBI indexes, except for that on
LG5 for BB_res_norm_pred (Figure 3). The LG4QTL segregated
in SG only and was heterozygous for “Red Delicious.” The other
parents were estimated to be homozygous for the low value
allele. As low BBI values indicate a regular bearing habit, “Red
Delicious” is likely to transmit the favorable allele to half of its
progenies, whereas the other parents are supposed to transmit
favorable alleles only.
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FIGURE 3 | Posterior probability of QTL position along genome, the beginning and the end of the chromosomes are represented by vertical dashed

lines. The variables displayed are (A) BBI_res_norm_ax, (B) BBI_res_norm_pred, (C) γ ax , (D) γ pred , (E) Entg, (F) Entglmm,g. See text for abbreviation meaning.

The QTL on LG5 segregated in all families except XB with
parents X-3305, X-3259, and “Red Delicious,” which is estimated
to be heterozygous. However, for BBI_res_norm_pred, X-3259
was estimated to be homozygous (Table 9), this questioning the
presence of favorable allele at that position. “Rubinette” was
estimated to be homozygous for the low value allele therefore
supposed to transmit only favorable allele. “Granny Smith” was
estimated to be homozygous for the high value allele therefore
supposed to transmit unfavorable alleles only.

Three parents, “Rubinette,” “Granny Smith,” and “Belrene,”
were estimated to be heterozygous at the LG10 QTL, consistently
with the contribution of several families to this QTL (Figure 3).
Unstable results were found for the genotype estimation of X-
3263, depending on the index used.

“Granny Smith” was estimated to be heterozygous on the LG9

QTL for Ent
glmm,g

, consistently with the segregation of this QTL

in SG only. The other parents were estimated to be homozygous
for the high value allele (Figure 3). Since individuals with the
most regular fruiting behavior had a high value of entropy, these
homozygous parents are supposed to transmit favorable alleles.

The genotype estimates over all QTLs for a given trait provide
information on the value of the parents and founders as genitors.
Taking BBI_res_norm_ax as an example, antagonisms between
QTLs were revealed: the parents estimated to be homozygous
for the favorable low value allele on LG4 were estimated to be
almost systematically homozygous for the unfavorable allele on
LG7 (Tables 8, 9). The count of favorable alleles over the six
QTLs revealed that the founder “Coop17” and the parent X-3259

had the highest values (12 and 9 favorable alleles, respectively).
In spite of QTLs for which no genotype could be estimated,
“Rubinette” and “Golden Delicious” appeared interesting parents
with homozygous estimated genotypes with the favorable allele at
four QTLs over six (Table 9).

DISCUSSION

Efficiency of Indices Derived from Whole
as Sequence Analyses at Tree Scale
In this study, we estimated several indices to capture the bearing
behavior of a large set of genotypes. As previously underlined
(Durand et al., 2013), BBI_res_norm and γg are negatively
correlated and complement one another: BBI_res_norm
distinguishes between regular individuals, with low values, and
irregular and biennial bearing individuals, with high values. As a
complement, γg distinguishes biennial bearing individuals, with
negatives values from regular and irregular individuals. The new
indices θg,m and their correlations with γg and BBI_res_norm
provide complementary information: the regular genotypes
(lowest values of BBI_res_norm) exhibit AS with a flowering
probability above average at year t after flowering at year t–1
(highest θg,01 and θg,11, associated with memories 01 and 11).
In contrast, θg,00 and θg,10 are less discriminant, because the
probability to flower after vegetative events is always high. The

positive correlation of entropy Ent
g
with γg and its negative

correlation with BBI_res_norm show that the genotypes with
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TABLE 9 | Parent genotype estimation for BBI_res_norm_ax at each QTL:

qq for homozygous with low value favorable allele, QQ for homozygous

with high values unfavorable allele, and Qq for heterozygous.

LG4 LG5 LG7 LG8 LG10 LG12 Nb favorable.

alleles.

X-3305 qq Qq QQ qq QQ qq 7

X-3263 qq ?? QQ qq QQ ?? 3

X3259 qq Qq Qq qq Qq qq 9

“Rubinette” qq qq ?? qq ?? qq 8

“Granny Smith” qq QQ QQ qq QQ Qq 5

“Red Delicious” Qq Qq QQ Qq QQ ?? 3

“Belrene” qq ?? QQ qq Qq ?? 5

“Winesap” Qq QQ QQ QQ QQ ?? 1

“Wagenerap” qq ?? QQ QQ ?? ?? 2

“ReiDuMans” qq ?? QQ ?? ?? ?? 2

“RedWinter” qq ?? QQ qq ?? ?? 4

“Prima” qq ?? QQ ?? ?? ?? 2

“Jonathan” qq ?? ?? qq ?? ?? 4

“Golden Delicious” qq qq QQ qq ?? qq 8

F2-26829-262 qq ?? ?? ?? ?? ?? 2

F_Delicious qq qq ?? qq ?? ?? 6

“Cox Orange” qq qq ?? qq ?? ?? 6

“Coop17” qq qq qq qq qq qq 12

“Clochard” qq QQ QQ qq QQ qq 6

The favorable allele corresponds to the allele linked to small phenotypic value. The last

column contains the count of favorable alleles over all the QTLs. QTLswith strong evidence

are identified by a bold font.

the highest synchronism (lowest value of entropy) are mostly
biennial bearers (high values of BBI_res_norm, low values of γg).

The correlations between tree- and axis-scale descriptors
suggest that biennial bearing at tree scale results from the
conjunction of two phenomena: synchronism in flowering
between AS in a given year and biennial alternation at AS
scale between consecutive years. On the contrary, regularity at
tree scale results from either asynchronous locally alternating
flowering or regular flowering at AS scale. Irregular genotypes
exhibit intermediate values for every descriptor, suggesting
that these genotypes are characterized by partial biennial
alternation at AS scale or strong biennial alternation with partial
synchronism. However, more complex within-tree organization
of synchronisms could exist (Couranjou, 1983), that have not
been investigated herein. The regular genotypes exhibiting
synchronized and regular flowering AS or desynchronized
flowering AS will require further investigations regarding fruit
set and quality. Indeed, high flowering rate is usually associated
with poor fruit set due to environmental (Tustin et al., 2012)
or genetic co-variation (Celton et al., 2014). Tree management
includes a number of practices to reduce crop load, such as
thinning (manual or chemical) or the manual removal of fruiting
spurs (Lauri et al., 2007; Breen et al., 2016). We can thus suspect
that selecting genotypes with regular desynchronized axes could
be an appropriate strategy for avoiding poor fruit set while
reducing thinning or manipulations costs. In conclusion, three
indices can be considered as key and complementary descriptors

of the bearing behavior of genotypes at either tree or axis
scales: BBI_res_norm, γg and entropy. The first two are sufficient
to classify the genotypes into regular, irregular and biennial
classes. However, entropy allows this diagnostic to be refined
by providing information on the within-tree strategy of regular
genotypes, with potential consequences on tree management and
breeding goals.

More insight on the bearing behavior is also gained by
introducing site and year effects and analyzing the genotype ×

year interactions (ηg,t indices). The lower flowering probability
at Montpellier than Angers may result from the absence of
thinning practices on XB family, which may have hampered
tree flowering capacity over years (Dennis and Neilsen, 1999).
However, thinning was performed quite lately in Angers, due
to a large dispersion of phenological stages among genotypes
(Allard et al., 2016). This practice likely had a relatively low
impact on floral induction which is assumed to occur mid-June
in apical meristems of spurs (Hanke et al., 2007) and therefore
on alternation. Even though the mean probability of flowering
of all genotypes per site highlighted phase opposition in the
last three years (2010–2012, Supplementary Figure S5, left), no
clear characterization of years as being “ON” or “OFF” could
be made on the mean values per family (Supplementary Figure
S5, right). Thus, no climatic year could be considered as “ON”
or “OFF.” Even though critical climatic conditions such as frost
(Nagy et al., 2010) or crop load management (Girona et al., 2010)
can synchronize trees in a given year and site, different genotypes
can be in phase opposition for flowering in a given year, in apple
(Durand et al., 2013) as in olive tree (Ben Sadok et al., 2013).

The new indices at axis scale were expected to improve
prediction of bearing habits at tree scale. Even though the
predicted BBI_res_norm and γg appeared robust based on QTL
detection, only a 4% improvement in predictions on test samples
was obtained compared with Durand et al. (2013) and the
classification error was still of 35% (even though that on SG
family was reduced from 37 to 33%). The misclassification
mainly concerned the irregular genotypes, whereas the regular
and biennial behaviors could be predicted with good accuracy.
The misclassification of regular genotypes considered as irregular
(15 over 36, see Table 5) could lead to discard them during the
selection process. However, this type of error is less problematic
than the reverse (selecting irregular genotype that would be
misclassified as regular) especially if we consider the drastic
reduction in the number of individual selected in the early
stages of breeding process. Therefore, the simplified phenotyping
strategy that consists in sampling axes within the tree structure
with an a posteriori observation appears to be relevant. Indeed,
this is a time-saving strategy for phenotyping that can be
combined to computation of indices for rejecting biennial
and irregular genotypes during the assessment of agronomic
performance of pre-selected genotypes in breeding programmes.
It could also enable further phenotyping of germplasm toward
the implementation of DNA-informed breeding approaches by
further enlarging the number of founders and breeding parents
for which QTL-genotypes are known, or by implementing
genomic selection. Both applications are likely to accelerate the
breeding progress and overcome long generation intervals and
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extensive phenotyping in outbred fruit tree crops (Kumar et al.,
2013; Muranty et al., 2015).

Moreover, this strategy could be directly used on any species
for which retrospective phenotyping of flowering is possible at
AS scale. This is the case for species with terminal flowering such
as pear, walnut, avocado, mango, litchi etc. in which flowering
events can be easily identified. For such species, the methodology
proposed, including prediction of flowering behavior at tree
scale from a posteriori observations and computation of indices
would be transposable. For other species, BBI_res_norm and γg
index could be computed based on counting the total number of
inflorescences measured on several successive years. Even though
more time-demanding than retrospective observations, such
counts may be facilitated and automatized by new technologies
based on imagery (Aggelopoulou et al., 2010; Gongal et al.,
2016).

Genetic Determinisms of Bearing Behavior
in a Multi-family Population
Five major QTLs were yielded, four for BBIs and auto-correlation
coefficient (γg), on LG4, 5, 8, and 10, and one for entropy on
LG9, which were partially common with previous studies on the
SG family, such as the QTL on LG4 previously detected for BBI
(Guitton et al., 2012). Also, a QTL on LG8 was found for BBI at
both tree and axis scales in Durand et al. (2013) and for BBI, yield
and number of flowers per inflorescence in Guitton et al. (2012).
This zone, located at 8–23 cM on LG8, partially overlapped with
QTLs detected in SG family for a descriptor of tree vegetation
density (Virlet et al., 2015), for traits linked to bud break (Celton
et al., 2011; Allard et al., 2016), and traits involved in gas exchange
and xylem conductance (Segura et al., 2008; Regnard et al., 2009;
Lauri et al., 2011). The QTL on LG10 located between 55 and 78
cM for BBIs, γ ax, θg,00 and θg,01 co-localized with those detected
for BBI, precocity and number of seeds per inflorescence in SG
(Guitton et al., 2012) and for the percentage of bourses with
one fruit on short axes in XB family (Celton et al., 2014). The
QTLs detected on LG1 and LG14 by Durand et al. (2013) were
confirmed, but in year specific interaction only, whereas the QTL
on LG11 could not be confirmed. Actually, re-analyzing the same
dataset led us to found an inappropriate account for missing
flowering AS that had led to a false QTL detection. This was
corrected in the present study.

As previously suggested (Bink, 2002; Liu et al., 2012), a higher
power of detection was obtained in a multi-family context,
which brought a higher number of segregating regions, alleles
and individuals. The QTL on LG9 for entropy appeared as a
new zone of importance, as it co-localized with a major QTL
detected for the timing of vegetative and flowering bud break
(Dyk et al., 2010; Celton et al., 2011; Allard et al., 2016). New
QTLs were also detected for BBIs on LG5 and LG7, consistently
with “Starkrimson R© Red Delicious” and “Granny Smith” not
being heterozygous for these QTLs. The QTL on LG5, located
from 9 to 24 cM, co-localized with QTLs previously detected
for variables linked to the tree fruiting capacity (number of
fruits and fruit biomass) under soil water restriction (Virlet
et al., 2015). Moreover, LG5 is homologous of LG10 (Velasco

et al., 2010; Bushakra et al., 2012), also involved in the fruiting
capacity of the trees. As LG5 and LG10 are full-length homologs
which orientation is defined upside-down, these two QTLs may
have a common underlying mechanism. Altogether these co-
localizations suggest that both tree development (LG8) and
fruiting capacity (LG5 and LG10) may contribute to the genetic
variation of biennial bearing behavior in apple tree. They
reinforce previous assumptions regarding the combined effects
of both competition among organs for nutrients and hormonal
signals on biennial bearing (e.g., Chan and Cain, 1967; Dennis
and Neilsen, 1999). To further decipher the putative role of fruits
and carbon economy on the inhibition of floral induction, the
tools defined herein could be wisely used to classify genotypes
before investigating their physiological behaviors.

The lack of QTL interaction detected for BBI_res_norm_ax
and γ ax suggests that QTL contribution to the genetic variance
was properly estimated for these variables. However, the
QTL interactions detected for BB_res_norm_pred and

Ent
glmm,g

suggest that the QTL contribution might be

underestimated. Taking into account epistasis might provide a
better understanding of the genetic architecture of these traits.
The complex genetic architecture of the studied traits and the
alleles present on the different QTLsmay lead to different degrees
of alternation. Further characterization of allelic variations will
be necessary for analyzing their relative contribution to the tree
phenotype.

Finally, no co-localization was found with QTLs detected
for architectural traits measured in the first years of tree
development (Segura et al., 2007, 2009). Even though qualitative
notations of architectural traits collected on young trees and
their linear combinations could lead to an early diagnostic on
biennial bearing (Lauri et al., 2014), no correlations or co-
localization could be found in SG family, which was the only
one studied for early tree architectural development among the
five families considered here. In future work, including the type
of bourse shoot within successive floral AS could improve the
characterization of genetic variations and their relationships with
architectural factors.

Potential Use in Breeding of Genitors or
Founders
In a breeding perspective, three descriptors should be combined
to ensure regular bearing behavior (i.e., BBI_res_norm_pred,
γ pred and entropy). Five major QTLs on LG 4, 5, 8, 9, and
10 should be checked and alleles adequately combined in new
released materials. Considering the strong evidence of QTLs for
these three descriptors, appropriate phenotypes could be targeted
with low BBI_res_norm_pred and medium or high γ pred at the
tree scale with high entropy values avec the axis scale. By contrast,
trees with low values of BBI_res_norm_pred, medium or high
γ pred values and high entropy values at the tree scale could not be
observed in the studied populations. As underlined by Samach
and Smith (2013), the evolutionary advantage of masting (i.e.,
synchronicity of flowering at tree and population levels) remains
questionable. Our results suggest that flowering synchronicity at
the tree level could not be associated with regularity probably
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because it would lead to over-cropping and major drawbacks in
an agronomic context. Knowing if flowering desynchronization
has been selected during the apple domestication remains an
open question.

This study revealed a complex genetic architecture of
flowering habit in apple. The overview of all loci involved in trait
variation led us to assess promising individuals and progenitors.
X-3259 appeared as the most promising parent whereas “Granny
Smith,” which has been phenotypically characterized as a regular
phenotype (Lespinasse, 1977), did not cumulate the highest
number of favorable alleles. “Coop17” was the most promising
founder, estimated to be homozygous for the favorable allele at
all QTLs. “Golden Delicious” and “Cox Orange,” widely used
as founders in breeding programs (Noiton and Shelbourne,
1992), also carried a relatively high number of favorable alleles.
Such reliable overview of the loci involved in bearing habit and
estimation of the genotype at major loci is crucial for making
relevant choices for breeding. The pedigree-based approach used
herein takes the relationships between individuals into account
by identity by descent and allows the transmission of alleles to be
followed across a pedigree. This approach is particularly relevant
for plant species in which varieties are tightly related to each
other, which is the case in most crops (Soleimani et al., 2002).
In addition, the relative importance of loci and the cumulative
effects of small loci should not be overlooked. In this perspective,
genomic selection models would be complementary to QTL
analyses to evaluate the genetic value of individuals by summing

allelic effects at each position of the genome (Kumar et al., 2013;
Muranty et al., 2015).
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