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Arbuscular mycorrhiza (AM) can help plants to tolerate arsenic (As) toxicity. However,
plant responses are found to vary with the host plant and the AM fungal species. The
present study compares the efficacy of two AM fungi Rhizoglomus intraradices (M1)
and Glomus etunicatum (M2) in amelioration of As stress in wheat (Triticum aestivum L.
var. HD-2967). Mycorrhizal (M) and non-mycorrhizal (NM) wheat plants were subjected
to four levels of As (0, 25, 50, and 100 mg As kg−1 soil). Although As additions had
variable effects on the percentage of root colonized by the two fungal inoculants, each
mycobiont conferred benefits to the host plant. Mycorrhizal plants continued to display
better growth than NM plants. Formation of AM helped the host plant to overcome
As-induced P deficiency and maintained favorable P:As ratio. Inoculation of AMF had
variable effects on the distribution of As in plant tissues. While As translocation factor
decreased in low As (25 mg kg−1 soil), it increased under high As (50 and 100 mg
As kg−1 soil). Further As translocation to grain was reduced (As grain:shoot ratio) in M
plants compared with NM plants. Arsenic-induced oxidative stress (generation of H2O2

and lipid peroxidation) in plants reduced significantly by AMF inoculation. The alleviation
potential of AM was more evident with increase in severity of As stress. Colonization
of AMF resulted in higher activities of the antioxidant enzymes (superoxide dismutase,
catalase, and guaiacol peroxidase). It increased the concentrations of the antioxidant
molecules (carotenoids, proline, and α-tocopherol) than their NM counterparts at
high As addition level. Comparatively higher activities of enzymes of glutathione-
ascorbate cycle in M plants led to higher ascorbate:dehydroascorbate (AsA:DHA)
and glutathione:glutathione disulphide (GSH:GSSG) ratios. Inoculation by AMF also
augmented the glyoxalase system by increasing the activities of both glyoxalase I and
glyoxalase II enzymes. Mycorrhizal colonization increased concentrations of cysteine,
glutathione, non-protein thiols, and activity of glutathione-S-transferase that facilitated
sequestration of As into non-toxic complexes. The study reveals multifarious role of AMF
in alleviation of As toxicity.
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INTRODUCTION

Increase in geological and anthropogenic activities across the
globe have led to heavy metal contamination in groundwater and
soil. Heavy metals like As, cadmium (Cd), lead (Pb), chromium
(Cr), and mercury (Hg) have been reported to be the major
heavy metal pollutants of groundwater and soil (Chatterjee and
Chatterjee, 2000; Öncel et al., 2000; Oancea et al., 2005). This
has steered changes in physiological and biochemical processes
in plants leading to a reduction in plant growth, performance
and yield. Toxic effects of these heavy metals include inhibition
of cytoplasmic enzymes and damage to cell structures due to
oxidative stress (Van Assche and Clijsters, 1990; Asati et al.,
2016). Groundwater contaminations with As have been reported
in many countries such as Argentina, Bangladesh, Chile, China,
India, Japan, Mexico, Mongolia, Nepal, Poland, Taiwan, Vietnam,
and United States (Chowdhury et al., 2000; Smith et al., 2000;
Anawar et al., 2002; Pandey et al., 2002). However, in the
Ganges Delta region of Bangladesh and West Bengal, As in
groundwater has emerged as the largest environmental health
disaster (Rahman et al., 2009). Much of South Asia’s food grains
supply particularly staple foods like wheat and rice comes from
Indo-Gangetic Plain (IGP). Rice and wheat are the staple food
crops occupying nearly 13.5 million hectares of the IGP of South
Asia covering Pakistan, India, Bangladesh, and Nepal. These
crops contribute more than 80% of the total cereal production
and are critically important to employment and food security
for hundreds of millions of rural families for these countries
(Gupta and Seth, 2007; Sekar and Pal, 2012). As-contaminated
groundwater is used for drinking as well as irrigation. There are
concerns that As is absorbed by plants particularly cereals, that
are irrigated with As-contaminated groundwater, and poses a
great threat to human health and ecological safety (Zhu et al.,
2008; Meharg et al., 2009).

The effect of the As-contaminated groundwater irrigation on
crops has attracted attention only during the last decade (Norra
et al., 2005; Huang et al., 2006; Bhattacharya et al., 2010). Most
studies in the past have focused on rice, and relatively less
information is available on As accumulation, distribution, and
speciation in wheat, which is the second most important food
grain cereal (Roychowdhury et al., 2002; Tao et al., 2006; Zhao
et al., 2010; Tong et al., 2014).

Arsenic enters in the plants through phosphate transporters
as a phosphate analog or through aquaglyceroporins (Sharma,
2012). The phytotoxic effects of As generally include reduction in
growth, chlorophyll biosynthesis, and nutrient uptake (Moreno-
Jiménez et al., 2012). Arsenate [As(V)] is the main As species
occurring in aerobic soils. It acts as a phosphate (Pi) analog and is
transported across the plasma membrane via phosphate transport

Abbreviations: AM, arbuscular mycorrhiza; AMF, arbuscular mycorrhizal fungi;
APX, ascorbate peroxidase; As, arsenic; As(III), trivalent arsenite; As(V), trivalent
arsenate; AsA, ascorbic acid; CAT, catalase; DHA, dehydroascorbic acid; DHAR,
dehydroascorbate reductase; Gly I, glyoxalase I; Gly II, glyoxalase II; GPX,
guaiacol peroxidase; GR, glutathione reductase; GSH, reduced glutathione;
GSSG, glutathione disulphide; GST, glutathione-S-transferase; M, mycorrhizal;
MDA, malondialdehyde; MDHAR, monodehydroascorbate reductase; NM, non-
mycorrhizal; NPSHs, non-protein thiols; PCs, phytochelatins; ROS, reactive
oxygen species; SOD, superoxide dismutase; TF, translocation factor.

systems (Stoeva and Bineva, 2003). Cytoplasmic As(V) interferes
with metabolic processes involving Pi, making it potentially toxic
to plants. However, it is rapidly reduced to arsenite (AsIII) in
the cytoplasm (Meharg and Hartley-Whitaker, 2002; Stoeva and
Bineva, 2003). Arsenate reduction results in the formation of ROS
with consequent lipid peroxidation, and cellular damage (Meharg
and Hartley-Whitaker, 2002; Sharma, 2012). Arsenite reacts
with sulfhydryl groups (-SH) of enzymes and tissue proteins,
inhibiting cellular function, causing death (Smith et al., 2010a).
ROS produced as a result of As stress need to be scavenged for
maintenance of normal plant growth. Detoxification mechanisms
for As(III) include efflux from the roots, sequestration in cell
vacuoles and complexation with thiols for which As(III) has very
high-affinity (Smith et al., 2010a).

Earlier investigations have shown that higher plants that
are adapted to As-polluted soils are generally associated with
AM fungi (Meharg and Cairney, 1999; Gonzalez-Chavez et al.,
2002). The mechanisms by which AM fungi augment plant
tolerance to As stress are not clear. Potential mechanisms that
have been frequently recognized are improved nutritional status
and reduced metal uptake. Inoculation by AM fungi can exert
protective effects on vascular plants under As contamination
by transforming inorganic As in less toxic organic forms
or by diluting As concentration by enhancing plant biomass
(Gonzalez-Chavez et al., 2002; Liu et al., 2005; Chen et al., 2007;
Dong et al., 2008; Zhang et al., 2015; Li et al., 2016).

Formation of AM provides an alternative pathway — AM
pathway for uptake of nutrients especially P. The AM pathway
is distinct from the direct pathway; it involves different cell
types, different Pi transporters, and is likely to be separately
regulated (Smith and Smith, 2011). The direct pathway involves
high-affinity Pi transporters located in root hairs and epidermal
cells near the root apex. However, the mycorrhizal pathway
develops behind the root hair zone. It involves uptake of Pi by AM
fungal high-affinity Pi transporters in the extraradical mycelium,
followed by translocation of phosphorus along the hyphae to
intracellular structures in the root cortex and transfer to the root.
The transfer across the symbiotic interface involves efflux of Pi
from the AM fungus into the apoplast and uptake into the plant
cells by Pi transporter(s) that are preferentially or specifically
expressed in colonized cortical cells. Mycorrhizal plants display
lower specific As(V) uptake and higher P:As ratio than NM plants
(Christophersen et al., 2009; Smith et al., 2010b).

The AM symbiosis is known to increase tolerance of plants to
various abiotic stresses by promoting antioxidant defense system
(Ruiz-Lozano, 2003; Wu et al., 2006; Evelin and Kapoor, 2014).
However, information on antioxidant defense in mycorrhizal
(M) versus non-mycorrhizal (NM) plants in relation to As stress
is very scarce (Yu et al., 2009; Garg and Singla, 2012; Garg
et al., 2015). Plants subjected to abiotic stress often produce
toxic aldehydes such as methylglyoxal (MG). MG is mostly
detoxified by the combined actions of the enzymes Gly I and
Gly II that together with glutathione make up the glyoxalase
system (Hoque et al., 2016). Several studies have shown close
links between the antioxidant and glyoxalase systems in plants,
suggesting a direct influence of the glyoxalase system on ROS
detoxification (reviewed in Hoque et al., 2016). However, effect
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of AMF inoculation on glyoxalase system in relation to abiotic
stress tolerance has not been reported so far.

Among the various detoxification pathways activated in the
plants under As stress, increased synthesis of sulfur-containing
defense compounds such as PCs and GSH is considered to be
of prime importance for the tolerance and survival of plants
(Mishra et al., 2009). Role of AM in modulating thiol metabolism
in relation to heavy metal stress such as Cd and Zn has been
recently realized (Garg and Kaur, 2013; Garg and Chandel, 2015).
However, to the best of our knowledge there is no report on the
effect of AM on thiol metabolism in plants under As-stress.

This study was aimed to compare the effectiveness of two AM
fungal species (Rhizoglomus intraradices and Glomus etunicatum)
on growth and tolerance of wheat (Triticum aestivum L.
var. HD-2967) in different levels of As stress. We tested
the hypotheses that (1) inoculation with AM fungi results in
decreased As uptake and its translocation to shoot and grain; and
(2) AM formation results in mitigation of As-induced oxidative
stress. We also measured the concentration of molecules
containing -SH groups (such as cysteine, glutathione, and
NPSHs) to gain insights into broader aspects of AM mediated
As-stress alleviation.

MATERIALS AND METHODS

Plant Material
The crop plant chosen for the study is T. aestivum L. variety
HD-2967. It is a double dwarf variety that was released for
commercial cultivation in India in September 2011. It has profuse
tillering and is resistant to Ug99, a deadly African race of stem
rust already prevalent in central India. In the 2013–2014 Rabi
(winter) season, it was grown in about six million hectares
in India. The variety is resistant to salt stress, however, no
information is available on tolerance to heavy metal stress
including As.

AMF Symbionts
Inocula for the AM fungal symbionts R. intraradices
(N.C. Schenck and G.S. Sm.) C. Walker and A. Schüßler
(CMCCWep319) and G. etunicatum W.N. Becker and Gerd
(CMCC/AM-1207) were obtained from Center for Mycorrhiza
Culture Collection, The Energy and Resources Institute, New
Delhi, India. These were propagated as soil-based open cultures
in sterile soil mixture (Kapoor et al., 2002). The cultures were
maintained under natural conditions of temperature, light,
and humidity for 1 year. No Rhizobium was added. NM mock
inoculum consisted of trap plants without AMF inoculum grown
under similar conditions. Before use, root colonization was
confirmed and trap plants were allowed to dry. The inoculum
consisted of the roots chopped into small pieces and mixed with
the soil mass (containing about 150 spores per 10 g of soil and
hyphae) of the culture pots.

Soil and Arsenic Treatment
Physico-chemical properties of the soil used in this experiment
were analyzed at Division of Soil Science and Agricultural

Chemistry, Indian Agricultural Research Institute, New Delhi,
India. The soil texture was sandy clay loam (48:29:23),
pH 8.3 with high organic carbon concentration (1.0%), available
phosphorus (116 kg ha−1) and potassium (432 kg ha−1) content.
The soil used contained low nitrogen content (167 kg ha−1) but
was adequate in micronutrients such as magnesium (97.3 mg
kg−1), zinc (6.6 mg kg−1), and iron (9.4 mg kg−1). As content
(14.8 µg kg−1) was also found in the soil. The soil had 11.5%
moisture and 42.5% water holding capacity. Soil was mixed with
sand in equal proportion. This soil mix will be referred to as soil
henceforth. The soil was sterilized by autoclaving twice over 48 h
at 121◦C for 1 h, and 3 kg of sterilized soil was dispensed into
each pot.

Different concentrations of As (0, 25, 50, and 100 mg As kg−1

soil) were prepared using sodium arsenate (Na2HAsO4.7H2O).
These concentrations were chosen to study effectiveness of AM
in low (25 mg As kg−1), moderate (50 mg As kg−1), and high
(100 mg As kg−1) levels of As stress. Conclusion on these cardinal
concentrations were based on studies on different crop plants
(Chen et al., 2007; Liu et al., 2012; Spagnoletti and Lavado, 2015).
In order to ensure homogenous distribution, As was dissolved
in 50 ml of distilled water and then mixed thoroughly with soil.
The pots were allowed to equilibrate for a period of 1 month by
undergoing repeated cycles of saturation with distilled water and
air drying (Cox and Kovar, 2001).

Experimental Design
The experiment had a completely randomized factorial design
with two factors: AMF inoculations and As levels. There were
four levels of As (0, 25, 50, and 100 mg As kg−1, soil) as
Na2HAsO4.7H2O and three AMF treatments [Control (NM),
R. intraradices, and G. etunicatum] (Supplementary Figure S1).
Hence, there were 12 treatments (4 × 3) and each treatment was
replicated five times.

Wheat seeds were sterilized with 5% sodium hypochlorite
solution for 15 min, and washed thoroughly with distilled water.
The seeds were placed and allowed to germinate in wet sterilized
germination paper for the period of 7 days at 25◦C. Four seedlings
(two-leaf stage) were transplanted in each pot. At the time of
transplantation each seedling was inoculated by 20 g of AMF
inoculum. NM plants were raised instead by adding dry mock
inoculum.

The experiment was conducted in pots placed in the Botanical
Garden of Department of Botany, University of Delhi, Delhi,
India. Plants were grown for 45 days under natural conditions
from December to February (Rabi season in India). During the
experimental period, the average temperature ranged between 9
and 16◦C and average relative humidity between 56 and 94%.
Pots were casually rearranged after every 2 days during the
growth period to take into account variations in environmental
conditions (if any). The soil was maintained at 60% of field
capacity, to avoid loss of solution due to drainage.

Plant Harvest
Shoots and roots were harvested separately. Samples were
carefully washed with deionized water to remove adhering soil
particles. The dry weights of shoot and root were determined after
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oven drying at 70◦C for 48 h. Wheat spikes were collected and
dried at 70◦C to constant weight. The spikes were then dehusked
by hand and the weight of thousand grains was recorded.

Percent Root Colonization by AMF
Subsamples of fresh roots were collected and cut into segments
approximately 1 cm long, cleared with 10% (w/v) potassium
hydroxide in a water bath at 90◦C for 15 min, and stained with
Trypan blue (Phillips and Hayman, 1970). The percentage of the
total root colonized by the AM fungus was determined using the
gridline intersect technique (Giovannetti and Mosse, 1980).

Determination of As and P
Concentrations
Roots, shoots, and grains were analyzed for concentration of
As and P. Oven-dried plant tissue samples were powdered to
pass through a 0.5-mm sieve. Samples were digested with nitric
acid and hydrogen peroxide in kjeldahl tubes. After digestion
the solutions were cooled, diluted to 50 ml using double
distilled water, filtered into acid-washed plastic bottles. This
solution was further used for the determination of As using
atomic absorption spectrophotometer (AAS) (SensaAA, GBC,
Hampshire, IL, United States). The solution of As acid (H3AsO4)
in HNO3 (0.5 mol l−1 As Certipur R©) was used as standard. The
absorbance was read at 193.7 nm.

The concentration of P was determined using ammonium
molybdate and stannous chloride (Allen, 1989). The absorbance
was read at 700 nm.

Measurement of Oxidative Damage
Lipid peroxidation in leaves and roots of wheat plants was
detected according to Heath and Packer (1968) by measuring
the concentration of MDA. The amount of MDA was calculated
using extinction coefficient of 155 mM−1 cm−1 and expressed as
nmol MDA g−1fresh weight.

Hydrogen peroxide concentrations in leaves and roots were
determined according to Velikova et al. (2000). Plant tissue
was homogenized in trichloroacetic acid in an ice bath. The
supernatant obtained following centrifugation at 16099 × g for
15 min was used for determination of H2O2 concentration. The
assay mixture contained supernatant, 10 mM phosphate buffer
(pH 7.0), and 1 M potassium iodide (KI). The assay mixture was
kept in dark for 1 h and the absorbance was read at 390 nm. The
concentration of H2O2 was determined from a standard curve
and expressed as H2O2 µg g−1 fresh weight.

Preparation of Enzyme Extract
A fresh sample of leaf or root (1 g) was ground to a fine
powder in liquid nitrogen and homogenized with a mortar and
pestle in ice-cold 0.2 M phosphate buffer (pH 7.8) containing
0.1 mM EDTA. The homogenate was centrifuged at 16099× g for
20 min at 4◦C, and the supernatant was used as a crude enzyme
source. For APX and DHAR activities, 1 mM AsA and 2 mM
2-mercaptoethanol were added into above phosphate buffer,
respectively. The homogenate was centrifuged at 20,000 × g for
10 min at 4◦C and supernatant was used as enzyme source.

An aliquot of the extract was used to determine protein
concentration by the method of Bradford (1976) using bovine
serum albumin as the standard. All enzyme activities were
expressed as nkat mg−1 protein (1 katal = 1 mol s−1 catalytic
activity) in all the treated as well as non-treated plants. All
enzymatic measurements were carried out at 25 ± 2◦C by using
UV/Vis spectrophotometer (Beckman Coulter DU R©730).

Antioxidant Enzymes Activities
Superoxide dismutase (EC 1.15.1.1) activity was determined
following the method by Elavarthi and Martin (2010). The
reaction mix consisted of 50 mM phosphate buffer (pH 7.8),
2 mM EDTA, 9.9 mM L-methionine, 55 µM NBT, 0.025% triton
X-100 and enzyme extract. Reaction was started by addition of
1 mM riboflavin followed by placing the test tubes under 20-W
fluorescent bulbs for 15 min. A parallel set of tubes with same
reaction mix was kept in dark that served as control, whereas
those incubated in light without the enzyme extract served as
blank. Activity was measured spectrophotometrically at 560 nm.

One unit of enzyme activity was defined as the amount of
enzyme required to bring about 50% inhibition of the rate of NBT
reduction measured at 560 nm. CAT (EC 1.11.1.6) activity was
determined according to Aebi and Lester (1984) by monitoring
the decrease in absorbance at 240 nm due to decomposition of
H2O2. GPX (EC 1.11.1.7) activity was assayed as the increase
in optical density at 470 nm due to the oxidation of guaiacol to
tetra-guaiacol (Egley et al., 1983).

Non-enzymatic Antioxidants
Carotenoids in leaves were extracted in dimethyl sulfoxide and
their concentration (mg g−1 fresh weight) was calculated using
the formula given by Arnon (1949). For proline estimation, plant
tissue was homogenized in 3% sulfosalicylic acid following the
method of Bates et al. (1973). The reaction mixture consisted
of acid ninhydrin reagent, glacial acetic acid and supernatant.
Toluene was added to the reaction mixture, and absorbance
was recorded at 520 nm. The concentration of α-tocopherol
(µg g−1 fresh weight) was determined according to Sadasivam
and Manickam (2008).

Components of Ascorbate-Glutathione
Cycle
Ascorbate peroxidase (EC 1.11.1.11) activity was estimated
following the protocol of Nakano and Asada (1981). The
enzyme activity was calculated by using an extinction
coefficient of 2.8 mM−1cm−1. GR (EC 1.6.4.2) activity was
measured according to Smith et al. (1989) by monitoring the
reduction of 5-5′-dithiobis(2-nitrobenzoic acid) (DTNB) to
5-thionitrobenzoic acid (TNB) by glutathione in the reaction at
412 nm.

Monodehydroascorbate reductase (EC 1.6.5.4) activity was
assessed according to the method of Miyake and Asada (1992).
The decrease in absorbance was read at 340 nm.

Dehydroascorbate reductase (EC 1.8.5.1) activity was assayed
by following the method of Nakano and Asada (1981). An
increase in absorbance was read at 265 nm, and DHAR activity
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was calculated using an extinction coefficient of 7.0 mM−1 cm−1.
One unit (U) of enzyme activity is defined as 1 nmol DHA
reduced min−1.

Concentrations of ascorbate (AsA) and dehydroascorbate
(DHA) were determined using the methods of Arakawa et al.
(1981) and Nakagawara and Sagisaka (1984). 0.1 g of fresh
tissue (roots and leaves) was homogenized in 10 ml of cold
5% (w/v) trichloroacetic acid. The homogenate was centrifuged
at 16,000 × g for 10 min at 4◦C and the supernatant was
used for the AsA and total ascorbate (AsA + DHA) assay.
Total ascorbate was determined through a reduction of DHA
to ascorbate by dithiothreitol (DTT). DHA concentrations were
estimated subtracting AsA from total ascorbate. A standard curve
in the range 0–10 µmol of ascorbate or DHA was plotted to find
out the related contents.

Total glutathione was determined by following the method of
Wang and Jiao (2000). Estimation of GSH was done following the
method of Wu et al. (2006). GSSG was obtained by subtracting
GSH from total GSH.

Enzymes of Glyoxalase System
Glyoxalase I (EC 4.4.1.5) activity was determined according
to the method of Hossain et al. (2009). Briefly, the assay
mixture contained 100 mM K-phosphate buffer (pH 7.0), 15 mM
magnesium sulfate, 1.7 mM GSH, and 3.5 mM MG in a final
volume of 700 µl. The increase in absorbance was recorded at
240 nm for 1 min and the activity was calculated using the
extinction coefficient of 3.37 mM−1 cm−1.

Glyoxalase II (EC 3.1.2.6) activity was assessed following the
method of Principato et al. (1987) by examining the formation
of GSH at 412 nm for 1 min. The increase in absorbance was
recorded at 412 nm for 1 min and the activity was computed using
the extinction coefficient of 13.6 mM−1 cm−1.

Thiol Metabolites and Related Enzyme
Cysteine concentration was estimated according to Gaitonde
(1967). The reaction mixture consisted of acid ninhydrin reagent
II, glacial acetic acid and supernatant. Following the development
of pink color absorbance was recorded at 560 nm. Cysteine
concentration was calculated using 28 mM−1 cm−1 as extinction
coefficient, expressed as nmol g−1 fresh weight. NPSHs were
determined following Ellman (1959) using Ellman’s reagent
(5 mM EDTA, 0.6 mM DTNB present in 0.12 M phosphate
buffer, pH 7.5). Concentration of NPSHs was calculated using
13.1 mM−1 cm−1 as extinction coefficient and expressed as
nmol g−1 fresh weight. PCs were determined by calculating the
difference between total NPSHs and GSH (Bhargava et al., 2005).

Glutathione-S-transferase (EC 2.5.1.18) activity was estimated
by the method of Habig and Jakoby (1981).

Statistical Analysis
All the numerical data obtained from the experiments was
analyzed using Statistical Package for the Social Sciences 21.0
(SPSS Inc., Armonk, NY, United States; IBM Corporation,
United States). One-way ANOVA was performed for comparing
significant differences among individual means. Two-way
ANOVA was performed for studying interaction between

mycorrhizal and As treatments. Differences between the
individual means were compared using Duncan’s test.

RESULTS

Triticum aestivum var. HD2967 plants successfully formed AM
when inoculated with R. intraradices (M1) or G. etunicatum
(M2) (Supplementary Figure S2). The percent root colonization
ranged between 52 and 61% for M1 and between 58 and 70% for
M2. Mock-inoculated plants stayed NM (Figure 1). The percent
root colonization in M2 fungal species decreased with increase
in As in soil. While it increased in M1 plants at lower addition
levels of As (25 mg kg−1 soil) and then gradually decreased at
higher concentrations (50 and 100 mg kg−1 soil). Mycorrhizal
colonization was significantly influenced by As, AMF and their
interaction (Table 1).

Two-way analysis revealed significant influence of As and
AMF inoculation on dry weights of shoots as well as roots
(Table 1). In response to increase in As concentrations, wheat
plants exhibited decrease in plant biomass (Table 2). The
reduction was seen in both NM and M plants and was dependent
on As concentration in soil. However, at all concentrations of As,
M plants showed higher biomass as compared to NM plants with
an exception of shoot parameters at 50 mg As kg−1 soil for M1.
Response to mycorrhizal treatment was most evident at 100 mg
As kg−1 soil, where shoot and root biomass of M wheat was near
twofold (M1) or more than twofolds (M2) that of NM. Overall
the performance of wheat plants with respect to its biomass was
highest in M2. Biomass of grains (1000 grains) decreased with
increase in As stress, with grains from NM plants registering a
greater decline than M plants. At 100 mg As kg−1 soil treatment,
grain biomass declined in NM by 44% while in M1 and M2 it
declined by 36% over their respective controls (0 mg As kg−1

soil).

FIGURE 1 | Effect of As addition levels on Triticum aestivum L. var. HD-2967
root colonization by Rhizoglomus intraradices (M1) and Glomus etunicatum
(M2). Data is represented as mean ± SD (n = 5). Bars showing different letters
indicate significant differences among treatments according to the Duncan’s
multiple comparison test (p < 0.05); where M1, R. intraradices; M2,
G. etunicatum.
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TABLE 1 | Two-way ANOVA analysis of Arsenic addition levels (As), mycorrhizal treatments (AMF) and their interactions (As × AMF) on variables of Triticum aestivum L.
var. HD-2967 studied.

Significance SHOOT ROOT

As AMF treatments As × AMF As AMF treatments As × AMF

Dry weight ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

Thousand grain weight ∗∗∗ ∗∗∗ ∗ nd nd nd

As concentration ∗∗∗ ∗∗∗ ns ∗∗∗ ∗∗∗ ns

P concentration ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

H2O2 concentration ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

MDA concentration ∗ ∗∗∗ ns ∗∗∗ ∗∗∗ ∗∗∗

SOD activity ∗∗∗ ∗∗∗ ∗∗ ∗∗∗ ∗∗∗ ∗∗∗

CAT activity ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

GPX activity ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

APX activity ∗∗∗ ∗∗∗ ∗∗ ∗∗∗ ∗∗∗ ∗∗∗

Carotenoids concentration ∗∗∗ ∗∗∗ ∗∗∗ nd nd nd

Proline concentration ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

α-Tocopherol concentration ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

Total ascorbate concentration ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

MDHAR activity ∗∗ ∗∗∗ ∗∗ ns ∗∗∗ ∗∗∗

DHAR activity ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

GSH concentration ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

GSSG concentration ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

GR activity ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

Gly I activity ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗

Gly II activity ∗∗∗ ∗∗∗ ∗ ∗∗∗ ∗∗ ns

Cysteine concentration ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

NPSHs concentration ∗∗∗ ∗∗∗ ∗∗ ∗∗∗ ∗∗∗ ∗∗∗

PC concentration ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

GST activity ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

Where nd, not determined; ns, not significant; ∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05.

TABLE 2 | Effect of As addition levels and AMF treatments on biomass of various parts of T. aestivum L. var. HD-2967 plants.

As addition levels
(mg kg−1 soil)

AMF treatment Dry weight (g)

Shoot Root Grain (1000)

0 NM 3.0 ± 0.07 f 1.5 ± 0.02 e 43.7 ± 1.01 e

M1 3.9 ± 0.09 g 1.9 ± 0.02 h 52.7 ± 1.54 f

M2 4.1 ± 0.05 g 1.9 ± 0.04 h 55.2 ± 1.18 f

25 NM 1.9 ± 0.02 d 1.1 ± 0.02 c 37.6 ± 0.95 d

M1 2.2 ± 0.24 e 1.6 ± 0.03 f 42.1 ± 0.10 e

M2 3.9 ± 0.04 g 1.8 ± 0.04 g 53.8 ± 0.85 f

50 NM 1.0 ± 0.02 b 0.9 ± 0.03 b 29.9 ± 1.01 b

M1 0.9 ± 0.03 ab 1.4 ± 0.02 d 35.3 ± 1.08 cd

M2 2.4 ± 0.15 e 1.7 ± 0.03 f 42.7 ± 1.11 e

100 NM 0.7 ± 0.21 a 0.6 ± 0.01 a 24.6 ± 1.26 a

M1 1.4 ± 0.04 c 1.1 ± 0.01 c 33.9 ± 4.62 c

M2 1.8 ± 0.03 d 1.4 ± 0.02 d 35.3 ± 1.45 cd

Data is presented as mean ± SD (n = 5). Different letters indicate significant differences among treatments according to the Duncan’s multiple comparison test (p < 0.05);
where NM, non-mycorrhizal, M1, Rhizoglomus intraradices; M2, Glomus etunicatum.

As in Plant Tissue
The concentration of As increased steadily in shoots and roots
of both NM and M plants with increasing amount of As in
soil (Table 3). Two-way ANOVA analysis showed significant

independent effects of As and AMF on concentration of As in
root and shoot, however, no significant As × AMF interaction
was observed (Table 1). The inoculation with M1 or M2
significantly reduced As concentration in both shoots and roots
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TABLE 3 | Effect of As addition levels and AMF treatments on As concentration, As content, and phosphorus concentration in T. aestivum L. var. HD-2967 plants.

As addition levels
(mg kg−1 soil)

AMF treatment As concentration (µg g−1 dry weight) Arsenic content (g) P concentration (mg g−1)

Shoot Root Grain Shoot Root Shoot Root

0 NM ND ND ND ND ND 6.9 ± 0.06 g 6.2 ± 0.07 gh

M1 ND ND ND ND ND 7.2 ± 0.04 h 6.7 ± 0.14 i

M2 ND ND ND ND ND 7.8 ± 0.13 k 6.7 ± 0.12 i

25 NM 11.1 ± 0.7 b 15.4 ± 0.6 b 0.8 ± 0.06 d 21.7 ± 1.9 c 17.4 ± 0.7 a 6.5 ± 0.03 f 5.5 ± 0.03 f

M1 5.3 ± 0.3 a 12.0 ± 0.5 a 0.5 ± 0.02 c 11.9 ± 2.2 b 19.4 ± 1.3 a 7.4 ± 0.02 i 6.0 ± 0.08 g

M2 5.1 ± 0.1 a 9.8 ± 0.2 a 0.3 ± 0.01 a 19.7 ± 0.4 bc 17.7 ± 0.7 a 7.5 ± 0.04 j 6.3 ± 0.14 h

50 NM 22.8 ± 1.3 d 39.9 ± 3.5 e 0.8 ± 0.05 d 21.7 ± 2.1 c 37.5 ± 3.3 b 5.5 ± 0.04 d 4.1 ± 0.33 c

M1 21.5 ± 0.9 d 35.4 ± 2.5 d 0.6 ± 0.04 c 20.8 ± 0.8 bc 48.8 ± 4.5 d 5.6 ± 0.02 d 4.4 ± 0.14 d

M2 19.4 ± 0.1 c 25.3 ± 1.5 c 0.5 ± 0.02 b 46.0 ± 3.6 de 41.8 ± 2.5 c 6.0 ± 0.08 e 5.1 ± 0.02 e

100 NM 31.5 ± 0.3 f 53.8 ± 1.7 g 2.0 ± 0.04 g 22.4 ± 7.9 c 33.7 ± 2.2 b 3.5 ± 0.01 a 2.9 ± 0.04 a

M1 29.2 ± 2.7 e 43.8 ± 1.7 f 1.5 ± 0.04 f 39.5 ± 3.4 d 48.4 ± 2.9 d 4.7 ± 0.02 b 3.3 ± 0.04 b

M2 28.3 ± 0.7 e 37.8 ± 2.8 de 1.1 ± 0.08 e 52.3 ± 2.5 e 51.2 ± 4.8 d 5.1 ± 0.05 c 3.9 ± 0.03 c

Data is presented as mean ± SD (n = 5). Different letters indicate significant differences among treatments according to the Duncan’s multiple comparison test (p < 0.05);
where NM, non-mycorrhizal; M1, R. intraradices; M2, G. etunicatum; ND, not detected.

TABLE 4 | Effect of As addition levels and AMF treatments on phosphorus:arsenic ratio, As translocation from root to shoot and shoot to grain and bioaccumulation
factor in T. aestivum L. var. HD-2967 plants.

As addition levels
(mg kg−1 soil)

AMF treatment Phosphorus:Arsenic ratio Translocation factor Bioaccumulation factor

Shoot Root Shoot:Root Grain:Shoot

0 NM ND ND ND ND ND

M1 ND ND ND ND ND

M2 ND ND ND ND ND

25 NM 582.6 354.8 0.7 0.06 0.6

M1 1384.6 502.5 0.4 0.10 0.5

M2 1462.9 647.6 0.5 0.05 0.4

50 NM 241.3 102.3 0.5 0.03 0.8

M1 261.4 123.2 0.6 0.02 0.7

M2 308.6 202.2 0.8 0.02 0.5

100 NM 111.7 54.2 0.6 0.06 0.5

M1 161.0 76.0 0.7 0.05 0.4

M2 180.7 103.6 0.7 0.03 0.4

NM, non-mycorrhizal; M1, R. intraradices; M2, G. etunicatum; ND, not detected.

with respect to NM (Table 3). As concentration decreased in
shoots of M1 plants by 52, 5.83, and 7.20%, and that of M2
plants by 54, 14.8, and 10.1% at 25, 50, and 100 mg As kg−1 soil,
respectively, when compared with NM counterparts. In roots,
inoculation with M1 decreased As concentration by 21.7, 11.2,
and 18.5% over NM plants at 25, 50, and 100 mg As kg−1

soil, respectively. Whereas M2 decreased As concentration by
36.3, 36.5, and 29.7% at 25, 50, and 100 mg As kg−1soil as
compared to NM. Thus the proportion of decrease was higher in
roots compared to shoots in M plants at higher concentrations.
However, in contrast the content of As in M plant tissue (shoot
and root) was higher than NM plants at higher levels of As stress.
As content was maximum in tissues of M2 plants followed by M1
and NM at 100 mg As kg−1 soil.

Arsenic concentration in grain increased with increase in As in
soil (Table 3). However, at all levels of As in soil, its concentration

was far less in grains of M plants compared to NM plants. Arsenic
concentration declined by 28, 27, and 24.5% in M1 and by 60, 42,
and 45% in M2 at 25, 50, and 100 mg As kg−1soil compared to
their NM counterparts.

P Concentration
Mycorrhizal condition, level of As in soil and their interaction
had strong effects on P concentration in shoot and root of
wheat plants (Table 1). P concentration markedly declined in
plants in response to As exposure (Table 3). Inoculation by
AMF alleviated the antagonistic effect of As, and significantly
enhanced P-accumulation in both shoot and root compared to
NM counterparts at all levels of As. At 100 mg As kg−1 soil,
P-uptake was most adversely affected, and the ameliorative effect
of AMF was also evident at this As level. At all levels of As in soil,
P:As ratio was higher in M over NM plants (Table 4).
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Translocation and Bioaccumulation
Factor
The TF decreased in NM plants with increase in concentration
of As in soil (Table 4). Inoculation by AMF showed variable
effect on TF (shoot:root), while in low dose of As (25 mg
kg−1soil), there was decline in TF in M plants. In moderate
and high levels of As, in contrast to decrease in NM, significant
increase in TF was observed in M1 and M2 treatments. However,
translocation of As from shoot to grains was lesser in M plants
(M1 and M2) than NM plants (Table 4). The As bioaccumulation
factor decreased with increase up to 50 mg As kg−1 soil, and
further decreased with higher concentration in all the treatments.
Mycorrhizal plants accumulated less amount of As as compared
to NM plants with M2 plants showing a less As accumulation than
M1 plants.

Oxidative Damage
With increase in As in soil, there was a gradual increase in
H2O2 concentrations in M and NM wheat plants (Figures 2A,B).
The H2O2 level was higher in roots as compared to shoots. In
shoots, the H2O2 concentration was significantly influenced by
As stress, AMF treatments and their interaction (Table 1). M2
plants continued to maintain lowest H2O2 concentration level
followed by M1 and NM plants. Regardless of the intensity of
As toxicity, M plants displayed lower H2O2 concentration than
corresponding NM plants; however, the differences were not
significant between AMF treatments in roots up to 50 mg As
kg−1soil (Figure 2B).

Lipid peroxidation (measured as concentration of MDA)
showed a linear increase with corresponding increase in the
concentration of As in the soil (Figures 2C,D). Again the level
of lipid peroxidation was very high in root in comparison
to shoot in all the treatments. Mycorrhizal plants showed
lower levels of lipid peroxidation than the corresponding
NM plants at each As level (except M1 at 25 mg As
kg−1 soil in shoot). Two-way analysis revealed significant
interaction between As concentration and AMF inoculation
on root MDA concentration whereas no significant effect of
their interaction was observed in shoot MDA concentrations
(Table 1).

Antioxidant Enzyme Activities
Two-way ANOVA showed significant influence of As, AMF
and interactive effects of As × AMF on activities of SOD,
CAT, GPX, and APX in shoots as well as roots (Table 1).
SOD activity was highest among all the antioxidant enzyme
activities (Figures 3A,B). The increase in As-induced SOD
activity led to concomitant increment in activities of H2O2
scavenging enzymes — CAT and GPX (SOD-CAT: rshoot = 0.91;
rroot = 0.79; SOD-GPX: rshoot = 0.90; rroot = 0.86). The
activities of these enzymes were higher in tissues of M plants
(Figures 3C–F). The APX activity increased in plants with
increase in intensity of As stress from 25 to 50 mg As kg−1

soil, thereafter it decreased at 100 mg As kg−1 soil in roots of
NM and M1 plants. The enzyme activity was higher in M plants
(Figures 3G,H).

Non-enzymatic Antioxidants Molecules
Two-way ANOVA showed significant influence of As, AMF
individually and their interactive effects on carotenoids, proline,
and α-tocopherol concentrations (Table 1). The concentration of
carotenoids increased at initial levels of As concentration (25 mg
As kg−1 soil) in NM and M plants. The concentration declined
with increase in As at 50 and 100 mg As kg−1 soil, but the
concentration of carotenoids in M plants (M1 and M2) at 50 mg
As kg−1 soil was higher than the concentrations at 0 mg As
kg−1 soil, similarly in M2 plants the carotenoid concentration
increased at 100 mg As kg−1 soil (Table 5). Inoculation of AMF
led to an overall increased level of carotenoids as compared to the
NM plants, although this extent of increase varied with each As
addition level.

Proline concentration increased at lower addition levels of As
(25 mg As kg−1 soil) in NM plants while it decreased in M plants
in both shoot and root. As the addition levels of As increased
(50 mg As kg−1soil) proline concentration in shoots decreased
in NM and M2 plants, showing a hike in M1 plants. In roots, the
concentration increased in M1 and NM plants while it decreased
in M2 plants. With a higher addition level of As (100 mg As
kg−1soil) proline concentration decreased in both shoot and root
of NM and M1 plants and increased in M2 plants. Both the
mycobionts did not show a definite pattern of increase reporting
that both AMF responded differently to each As treatment.
However, at highest As addition level (100 mg As kg−1soil)
proline concentration was higher in M plants than NM plants
both in shoot and root. Concentration of α-tocopherol enhanced
on increasing the As stress in NM, M1, and M2 plants; however,
in plants inoculated with M1 and M2, level of α-tocopherol was
higher than that of NM plants.

Components of Ascorbate-Glutathione
Cycle
The concentrations of AsA, DHA were influenced by As
treatments, consequently AsA:DHA ratio also changed
(Figures 4A,B). In roots the value was highest in M2 plants at 25
and 50 mg As kg−1soil, while slight effect of AMF treatment was
evident at 100 mg As kg−1 soil. The total ascorbate concentration
significantly increased with increase up to 50 mg As kg−1

soil, beyond this the change was not significant in NM plants
(Table 5). However, M plants sustained increase in total ascorbate
with increase in As stress

At all levels of As stress, MDHAR activity was higher in M
plants as compared with that of NM plants (Figures 4C,D).
Similarly, at all levels of As, DHAR activity was higher in M
plants (Figures 4E,F). Interestingly, in shoot DHAR showed
strong positive correlation with GSH and GSSG (DHAR-GSH:
rshoot = 0.83; DHAR-GSSG: rshoot = 0.84), in contrast in root
it showed weak negative correlation with these parameters
(DHAR-GSH: rroot =−0.33; DHAR-GSSG: rroot =−0.44).

Two-way ANOVA revealed significant influence of As, AMF
and interactive effects of As × AMF on concentration of GSH
in shoot as well as root (Table 1). In shoot, As exposure to
plants resulted in varied response in different AMF treatments
in terms of GSH concentration (Figure 5A). With increase in
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FIGURE 2 | Effect of As addition levels and AMF treatments on concentrations of H2O2 in (A) shoot and (B) root and MDA in (C) shoot and (D) root of T. aestivum L.
var. HD-2967 plants. Data is represented as mean ± SD (n = 5). Bars showing different letters indicate significant differences among treatments according to the
Duncan’s multiple comparison test (p < 0.05); where NM, non-mycorrhizal; M1, R. intraradices; M2, G. etunicatum.

As in soil from 0 to 50 mg As kg−1soil, a significant increase in
concentration of GSH was observed, with an exception of M1
plants where GSH concentration showed a striking increase at
initial levels of As (25 mg kg−1 soil) but thereafter declined at
50 mg As kg−1 soil. With further escalation in As to 100 mg kg−1

soil, a decrease in GSH level was observed in NM plants while
M1 and M2 plants showed non-significant change. In root, there
was a steady decline in concentration of GSH with increasing
concentration of As (Figure 5B). However, in M plants the GSH
concentration was greater as compared to NM plants.

Two-way ANOVA revealed significant influence of As, AMF
and interactive effects of As × AMF on the concentration of
GSSG in shoot as well as root (Table 1). In shoot, at all levels of As
stress the concentration of GSSG was highest in M2 followed by
M1 and NM plants (Figure 5C). In contrast in root GSSG showed
decrease with increasing levels of As stress. However, at low levels
of As stress (0 and 25 mg As kg−1 soil), GSSG concentration was
higher in M plants (Figure 5D). At higher levels (50 and 100 mg
As kg−1 soil), the effect of the two AMF species was variable.

In shoot as well as root of NM plants, the GSH:GSSG ratio
decreased with increase in As concentration. In M plants (M1 and
M2) there was not a definite pattern in variation of GSH:GSSG
ratio, although their value remained higher than NM equivalents
(Figures 5E,F).

Two-way ANOVA revealed significant influence of As, AMF
and interactive effects of As × AMF treatment on GR activity
in shoot as well as root (Table 1). Activity of GR enhanced
on increasing the concentration of As in NM, M1, and
M2 plants, however, GR activity was more in M1 and M2
plants as compared to NM plants (Figures 5G,H). GR activity
and GSH concentration in shoot showed moderate positive
correlation, however, these showed weak negative correlation in
root (GR-GSH: rshoot =−0.61; rroot =−0.41).

Glyoxalase System
No significant increase was found in Gly I activity in
shoot and root of NM plants at all concentrations of As
(Figures 6A,B). While in M plants Gly I activity increased at
higher concentrations of As (50 and 100 mg kg−1 soil).

The activity of Gly II increased with increase in the
concentration of As in shoots of both NM and M plants
(Figure 6C). However, the increase was non-significant between
0 and 25 mg As kg−1 soil for NM plants. Mycorrhizal plants
exhibited higher enzyme activity at all levels of As corresponding
to NM plants. In roots the activity of Gly II exhibited no
significant increase at 25 mg As kg−1 soil but increased
significantly at 50 and 100 mg As kg−1 soil in both NM and M
plants with higher increase of the enzyme activity in M plants
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FIGURE 3 | Effect of As addition levels and AMF treatments on the activities of SOD in (A) shoot and (B) root, CAT in (C) shoot and (D) root, GPX in (E) shoot and
(F) root and APX in (G) shoot and (H) root of T. aestivum L. var. HD-2967 plants. Data is represented as mean ± SD (n = 5). Bars showing different letters indicate
significant differences among treatments according to the Duncan’s multiple comparison test (p < 0.05); where NM, non-mycorrhizal; M1, R. intraradices; M2,
G. etunicatum.
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(Figure 6D). Two-way analysis revealed significant effects of As
and AMF treatments independently and by their interaction on
Gly I activity both in shoot and root, and Gly II activity in
shoot. However, Gly II activity was significantly influenced by As
and AMF in root but remained unaffected by their interaction
(Table 1).

Thiol Metabolites
Cysteine and NPSHs were significantly influenced by As and
AMF treatments independently as well as by their interaction
(Table 1). Cysteine showed a gradual rise in shoot and root with
increase in As in soil in all the treatments (Figures 7A,B). The
positive influence of AMF inoculation was apparent in higher
levels of As (50 and 100 mg kg−1) additions. Concentration
of NPSHs increased with rise in As from 25 to 50 mg As
kg−1 soil, a further surge in As exposure to 100 mg As kg−1

soil resulted in sharp decline in NM plants (root and shoot)
(Figures 7C,D). In M2 plants the level of NPSHs remained
maximum at all levels of As stress. The concentration of PCs
increased with increase in As from 25 to 50 mg kg−1 soil in
all treatments (Figures 7E,F). However, positive effect of AMF
inoculation was evident distinctly only at 100 mg As kg−1 soil.
Another interesting observation is that the concentrations of thiol
metabolites are higher in root in comparison to shoot.

The GST activity showed no significant effect in shoot of NM
plants, while it enhanced with increase in the concentration of As
in the soil in M plants (Figure 8A). In root the enzyme activity
increased significantly in M plants while, in NM plant there was
increase in the activity up to 50 mg As kg−1 soil (Figure 8B).
Beyond this it declined. The activity of GST was significantly
influenced by treatments of As and AMF independently as well
as by their interaction in both shoot and root (Table 1).

DISCUSSION

Arsenic additions had variable effects on the percentage of
T. aestivum root colonized by R. intraradices and G. etunicatum.
The reports on effect of As on percent of root colonized are not
consistent. While many experiments have reported no decrease in
percent colonization when As was artificially added to soil (Trotta
et al., 2006; Chen et al., 2007; Christophersen et al., 2009), there
are reports of reduction in colonization (Liu et al., 2005; Garg
et al., 2015), and also an increase (Al Agely et al., 2005). In spite
of this difference in root colonization with respect to As, each
mycobiont conferred benefits to the host plant. Nevertheless the
extent of assistance varied with AMF species participating in the
formation of AM, and the parameter assayed. At each level of
As in soil, M plants continued to display better growth than NM
plants, suggesting alleviation of As toxicity.

Root and shoot As concentrations in wheat plants increased
proportionately to the level of As added to the soil. However,
As concentrations were higher in tissues (root, shoot, and grain)
of NM plants than M plants. The greater biomass has ensued
dilution of the harmful metalloid in plant tissues, limiting its
toxic effect. AM mediated significant dilution of As in plant
tissues has been previously reported (Liu et al., 2005; Chen et al.,
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FIGURE 4 | Effect of As addition levels and AMF treatments on the ratio of AsA:DHA in (A) shoot and (B) root, activities of MDHAR in (C) shoot and (D) root and
DHAR in (E) shoot and (F) root of T. aestivum L. var. HD-2967 plants. Data is represented as mean ± SD (n = 5). Bars showing different letters indicate significant
differences among treatments according to the Duncan’s multiple comparison test (p < 0.05); where NM, non-mycorrhizal; M1, R. intraradices; M2, G. etunicatum.

2007; Cozzolino et al., 2010). In contrast at higher levels of As
stress, the content of As in M plant tissue (shoot and root) was
higher than NM plants. Reports on total As content in AM plants
are variable, with values higher than in NM plants observed
in both roots and shoots of maize (Xia et al., 2007) and lower
values in sunflower and lentil (Ahmed et al., 2006; Ultra et al.,
2007). Increased total As content in AM plants may be the result
of more extensive root systems in the larger plants that make
an important contribution on a whole plant basis (Chen et al.,
2007).

Since arsenate [As(V)] and inorganic phosphate (Pi) have
similar properties, it is expected that there exists a competition
between As(V) and Pi in all cellular processes. Foremost, As(V)
competes with Pi for entry (Meharg, 1994; Zhao et al., 2010).
Thereafter, cytoplasmic As(V) contends for phosphate binding
sites and hence inhibits metabolic processes (Geng et al., 2006;
Smith et al., 2010a; Srivastava and Sharma, 2013). Therefore,
maintenance of a high cytosolic P:As ratio is necessary in order
to enhance plant As tolerance. In this study, P concentration
in plant tissues decreased as the As concentration in the soil
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FIGURE 5 | Effect of As addition levels and AMF treatments on concentrations of GSH in (A) shoot and (B) root, GSSG in (C) shoot and (D) root, ratio of
GSH:GSSG in (E) shoot and (F) root and the activity of GR in (G) shoot and (H) root of T. aestivum L. var. HD-2967 plants. Data is represented as mean ± SD
(n = 5). Bars showing different letters indicate significant differences among treatments according to the Duncan’s multiple comparison test (p < 0.05); where NM,
non-mycorrhizal; M1, R. intraradices; M2, G. etunicatum.
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FIGURE 6 | Effect of As addition levels and AMF treatments on the activities of Gly I in (A) shoot and (B) root and Gly II in (C) shoot and (D) root of T. aestivum L. var.
HD-2967 plants. Data is represented as mean ± SD (n = 5). Bars showing different letters indicate significant differences among treatments according to the
Duncan’s multiple comparison test (p < 0.05); where NM, non-mycorrhizal; M1, R. intraradices; M2, G. etunicatum.

increased causing an As-induced P deficiency. This may be one
of the crucial reasons accounting for the reduction in growth
of T. aestivum plants under As stress observed in the study.
However, our observation that AMF-colonized plants resulted in
higher shoot and root P concentrations compared to NM plants
in As spiked soil, shows the potential of AM in preserving the
P homeostasis. These results are in accordance to earlier reports
wherein AM plants displayed selective uptake and transfer of P
over As (Chen et al., 2007; Dong et al., 2008). The capacity of M
plants to sustain a high P:As ratio is one of the key reasons for
plant tolerance to As toxicity (Liu et al., 2005; Chen et al., 2007;
Cozzolino et al., 2010).

The AM pathway involves Pi uptake by the external hyphae
and translocation to the plant through fungal hyphae and transfer
across specialized symbiotic interfaces in root cortical cells
(Smith and Read, 2008). This pathway overcomes severe diffusion
limitation, bypasses the sharp depletion zones close to roots and
delivers Pi direct to root cortical cells (Smith and Read, 2008).
In addition, fungal translocation of P is extremely rapid, and
involves movement of polyphosphate from sites of Pi absorption
to sites of breakdown and transfer to plant cells (Ezawa et al.,
2002). Since polyarsenate is not formed (due to low stability),
As(V) cannot be translocated in the same way. Furthermore
establishment of the AM pathway is commonly accompanied by a

decreased contribution of the direct pathway (Smith et al., 2010a;
Chen et al., 2013).

Separate Pi transporters play key roles in the direct and
AM uptake pathways, with AM-inducible plant transporters
expressed in colonized cells in the root cortex of plants (Smith
et al., 2003; Bucher, 2007; Javot et al., 2007). In rice effect
of mycorrhizal inoculation on phosphate transporters (OsPTs)
under As stress has been studied in detail. Arsenate uptake
is reported to be restricted as the expressions of 6 out of
11 phosphate transporters in rice roots were decreased upon
mycorrhizal symbiosis (Paszkowski et al., 2002). AMF are able to
assist the plant to obtain phosphate by inducing OsPT11, which
transport Pi between cells rather than between outside media
and cell (Glassop et al., 2005; Chen et al., 2013). Therefore, it
is assumed that mycorrhiza-specific Pi uptake system controls
the direct uptake system and helps the wheat to take up more
phosphate and less arsenate, resulting in higher P:As ratio
observed in this study. Nevertheless, more study on effect of AMF
inoculation on phosphate transporters of wheat (T. aestivum)
under different levels of As(V) stress is required to confirm this.

Formation of AM in wheat roots influenced distribution of
As in plant tissues. The TF increased at higher concentrations
of As, contradictory to the observations of Dong et al. (2008).
An enhancement in As TF in M plants may presumably be due
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FIGURE 7 | Effect of As addition levels and AMF treatments on concentrations of cysteine in (A) shoot and (B) root, NPSHs in (C) shoot and (D) root and PCs in (E)
shoot and (F) root of T. aestivum L. var. HD-2967 plants. Data is represented as mean ± SD (n = 5). Bars showing different letters indicate significant differences
among treatments according to the Duncan’s multiple comparison test (p < 0.05); where NM, non-mycorrhizal; M1, R. intraradices; M2, G. etunicatum.

to larger magnitude of decline in As concentration in root as
compared with shoots. Also supported by an increase in the As
storing capacity of the leaves (by virtue of increased biomass)
and/or As exclusion in root (Trotta et al., 2006). The latter is also
supported by low bioaccumulation values observed in M plants
at high As addition. However, further As translocation to wheat
grain was reduced as evident by lower As grain:shoot ratio in M
plants compared with NM plants at each level of As stress. Less
As accumulation in grain would have immense significance with
respect to As toxicity in food chain.

Arsenate uptake triggered oxidative stress resulting in
increased generation of H2O2 and lipid peroxidation as reported

in earlier studies (Singh et al., 2007; Liu et al., 2013). Interestingly,
the levels of oxidative stress were much higher in roots than
in shoots. This observation supports the view that most of
the As(V) taken up by the plant is reduced to As(III) in the
roots (Smith et al., 2010a). To cope with enhanced levels of
oxidative stress, plants are equipped with antioxidant system
that gets activated under As stress (Singh et al., 2007; Sobrino-
Plata et al., 2014). APX, GPX, and CAT play a crucial role
in H2O2 degradation. Under As stress, activities of these
enzymes were enhanced due to a higher level of H2O2.
This is in agreement with our results where the activities
of antioxidant enzymes (SOD, CAT, GPX, and APX) and
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FIGURE 8 | Effect of As addition levels and AMF treatments on the activity of GST in (A) shoot and (B) root of T. aestivum L. var. HD-2967 plants. Data is
represented as mean ± SD (n = 5). Bars showing different letters indicate significant differences among treatments according to the Duncan’s multiple comparison
test (p < 0.05); where NM, non-mycorrhizal; M1, R. intraradices; M2, G. etunicatum.

concentration of α-tocopherols increased with concentration of
As in soil.

The present study demonstrates a reduction in As-induced
oxidative damage in wheat plants colonized by R. intraradices
or G. etunicatum. The alleviation potential of AM was more
evident with increase in severity of As stress. Mycorrhizal plants
displayed lower lipid peroxidation and H2O2 levels than NM
plants. Several studies have shown that when subjected to stress,
lipid peroxidation is lesser in M than the NM plants indicating
that AMF inoculation helps in reduction of oxidative damage
(Evelin and Kapoor, 2014; Tan et al., 2015; Yang et al., 2015; Jiang
et al., 2016). It is widely accepted that diminishing H2O2 levels is
one of the strategies by which AM protects plants against diverse
stresses (Hajiboland et al., 2010; Ruiz-Sánchez et al., 2010; Garg
and Bhandari, 2012). Recently, it has been observed that H2O2 is
effusive in roots and there was a higher net H2O2 efflux in roots
when colonized by AMF via aquaporin channels present on the
membranes of external hyphae (Zou et al., 2015).

A better ROS scavenging system in M wheat plants is observed
in accordance with earlier studies (Garg and Kaur, 2013; Garg and
Chandel, 2015). Alpha-tocopherols disrupt the chain propagation
step in lipid auto-oxidation (Serbinonva and Packer, 1994), while
carotenoids protect photosynthetic apparatus by quenching ROS
(Collins, 2001). Proline is reported to inhibit the apoptotic
responses triggered by a variety of abiotic stresses by scavenging
intracellular hydroxyl radical, in addition to its well-established
role as an osmolyte (Chen and Dickman, 2005; Ozden et al., 2009;
Gill and Tuteja, 2010; Carvalho et al., 2015). Enhanced proline
synthesis plays an important role in refilling NADPH to maintain
GSH and ASA in the reduced state by potentiating pentose-
phosphate pathway activity (Verbruggen and Hermans, 2008).
Under all As levels, AMF colonization consistently increased
concentrations of the antioxidant molecules α-tocopherol and
carotenoids while the concentration of proline was more in
M plants at high As level. Higher concentration of these
antioxidants contribute to drop in lipid peroxidation in M
plants.

Superoxide dismutase is a metalloenzyme and exists in
different isoforms based on the metal cofactor: iron (Fe-
SOD), manganese (Mn-SOD), and copper–zinc (Cu–Zn SOD;
Alscher et al., 2002). The activity of each SOD isoform is
influenced by the availability of respective co-factor (Alguacil
et al., 2003). Similarly, CAT and APX are metalloenzymes, and
their enzymatic activity is dependent on the availability of their
cofactors. Enhanced activity of SOD, CAT, and APX may be due
to higher uptake of these micronutrients in M plants. Further
SOD, CAT, and GPX transcripts or enzymatic activity often
increase in response to As exposure (Mylona et al., 1998; Stoeva
and Bineva, 2003; Srivastava et al., 2005; Abercrombie et al.,
2008; Ahsan et al., 2008; Norton et al., 2008; Chakrabarty et al.,
2009). This explains induction of these enzyme activities in NM
plants in the present study also. However, the isoforms of the
various enzymes are differentially expressed in response to As(V)
and As(III) (Finnegan and Chen, 2012). It is known that AMF
colonization has considerable effect on the composition of As
species and their accumulation in plant (Zhang et al., 2014).
The changes in the activities of antioxidant enzymes in M plants
may be due to differential influence on different isoforms as a
result of alteration in As speciation and their cellular distribution.
However, the preparation procedure of the samples for enzymatic
assays does not include organellar isoenzymes in this study.
Further investigations are required to validate this.

In plants ascorbate-glutathione (AsA-GSH) pathway is the
second main component for neutralizing H2O2. The AsA-GSH
antioxidant defense pathway consists of both enzymatic and non-
enzymatic antioxidants. The accumulation of ascorbate is one of
the main effects of As(V) uptake (Srivastava et al., 2005; Singh
et al., 2006; Khan et al., 2009). In this study also, increase in
As(V) in soil stimulated accumulation of ascorbate in wheat
plants. However, the concentration of AsA was higher in M plants
compared with NM plants. AM fungal colonization resulted
in higher activities of DHAR and MDHAR in comparison
with NM plants, and thus explains a higher level of AsA
in M plants. Mycorrhizal plants upheld a higher P:As ratio
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and consequently prevent replacement of Pi by As(V) during
photophosphorylation for the synthesis of ATP. Consequently
As-induced adverse effects on photosynthesis get alleviated in M
plants. Hence higher concentration of AsA may also be due to
more primary metabolites available for its synthesis in M plants.

The GSH:GSSG ratio plays an important role in maintaining
the redox state of the cell and, GR plays a crucial role in
maintaining the GSH:GSSG ratio by catalyzing reduction of
GSSG to GSH (Dixit et al., 2015a). As addition levels led to a
significant increase in GSH as well as GSSG concentrations in
shoots of wheat, while the ratio of GSH:GSSG decreased. These
results are consistent with the observations of Hasanuzzaman
and Fujita (2013). Despite of the enhanced levels of GSSG and
stimulation of GR activity in NM plants up to 50 mg As kg−1

soil, GSH:GSSG declined. It suggests that As triggered activation
of GR was not adequate to overcome GSH consumption in As(III)
complexation (Jozefczak et al., 2012). AM appeared to maintain
a favorable GSH:GSSG ratio due to, (i) decreased oxidative stress
owing to the reduced concentration of As in plant tissue (root
as well as shoot); (ii) better ability to detoxify H2O2 by other
components of oxidative defense system (higher enzymatic and
non-enzymatic antioxidants) hence relieving pressure on GSH to
maintain cellular redox state; (iii) more biosynthesis of GSH.

The glyoxalase system prevents buildup of MG, and converts
it to non-toxic hydroxyacids such as lactate. It consists of two
enzymes (Gly I and Gly II) acting in concert. The upregulation
or overexpression of these enzymes has been reported to impart
tolerance to abiotic stresses (Singla-Pareek et al., 2008; Saxena
et al., 2011). In this study, M plants demonstrated higher activities
of Gly I and Gly II at any level of As than NM plants which
suggested more efficient detoxification of MG in M plants. These
results are in agreement with observations of Shamshiri and
Fattahi (2014) where M plants showed lower MG concentration
than NM plants under salt stress. Furthermore, a few studies have
reported higher expression of Gly I in M plants (Campos-Soriano
et al., 2011; Fan and Liu, 2011).

Detoxification mechanisms for As(III) include efflux from
the roots, sequestration in cell vacuoles and complexation with
thiols (PCs and glutathione) for which As(III) has very high-
affinity. Glutathione protects the cell from free metal ions by
forming non-toxic complexes and facilitates their sequestration
while the enzyme GST catalyzes these conjugations (Jozefczak
et al., 2012). Uptake of As induced the increase in concentration
of thiol metabolites (GSH, NPSHs, and PCs) and incited GST
activity suggesting inherent As tolerance in the wheat cultivar
used in this study. However, AMF colonization (both M1 or M2)
further increased the concentrations of these metabolites and
GST activity, suggesting more capacity in M plants to sequester
As also reflected by higher As content in M roots than NM roots.

The biosynthesis of GSH (and PCs) requires adequate supplies
of glutamine, cysteine, and glycine. Among these, cysteine is by
far the limiting substrate for GSH biosynthesis (Noctor et al.,
1998). Increase in concentration of cysteine in NM and M
plants explains enhanced concentration of GSH, NPSHs, and
PCs. Further higher levels of cysteine in M than NM plants
resulted in higher concentration of GSH, NPSHs, and PCs in
them. Several studies have reported effect of S supply on As

uptake, translocation and accumulation in plants (Fan et al.,
2013; Dixit et al., 2015a,b; Srivastava et al., 2016). Concomitant
studies on AM have shown that in addition to other nutrients
(N, P), sulfur (S) compounds are symbiotically transferred from
AM fungus to host plants (Casieri et al., 2012; Sieh et al.,
2013). Symbiosis by AMF contributes to plant’s S nutrition by
transport of S, as well as organic S-containing compounds (such
as cysteine, methionine, and glutathione), via the mycorrhizal
pathway (Allen and Shachar-Hill, 2009). Therefore, it is tempting
to propose here that the higher concentrations of the thiol
compounds observed in the present study may be due to
enhanced uptake and assimilation of S in M over NM plants.
However, more studies are needed to relate S metabolism in M
plants with As tolerance.

The present study demonstrates an increased As tolerance in
mycorrhizal wheat plants. The study reveals multifarious role of
AMF in alleviation of As toxicity. Formation of AM has systemic
effect on the physiology and biochemistry of the host plants. The
effects of R. intraradices and G. etunicatum in alleviation of As
stress were largely same. However, extent of response varied with
the level of As stress, participating mycobiont and the parameter
analyzed. Higher As tolerance in M plants (i) is not due to
decreased up take of As but due to dilution effect as a result
of more biomass; (ii) more favorable P:As ratio; (iii) a better
antioxidative capacity; (iv) augmented glyoxalase system, and (v)
higher thiol metabolites to sequester As. However, more studies
are required to decipher the physiological and molecular basis of
changes in antioxidant system and thiol metabolites in M plants
under As-stress.
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FIGURE S1 | Pictorial representation of various treatments of As and AMF
innoculation in Triticum aestivum L. var. HD-2967.

FIGURE S2 | Histochemical staining showing AMF colonization in root cortical
cells of Triticum aestivum L. var. HD-2967 with (A) arbuscules and (B) vesicles of
Rhizoglomus intraradices; (C) arbuscules and (D) vesicles of Glomus etunicatum
stained with trypan blue. Bar = 50 µm.
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