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Biotic stress by mass outbreaks of defoliating pest insects does not only affect tree

performance by reducing its photosynthetic capacity, but also changes N cycling in the

soil of forest ecosystems. However, how insect induced defoliation affects soil N fluxes

and, in turn, tree N nutrition is not well-studied. In the present study, we quantified N input

and output fluxes via dry matter input, throughfall, and soil leachates. Furthermore, we

investigated the effects of mass insect herbivory on tree N acquisition (i.e., organic and

inorganic 15N net uptake capacity of fine roots) as well as N pools in fine roots and needles

in a Scots pine (Pinus sylvestris L.) forest over an entire vegetation period. Plots were

either infested by the nun moth (Lymantria monacha L.) or served as controls. Our results

show an increased N input by insect feces, litter, and throughfall at the infested plots

compared to controls, as well as increased leaching of nitrate. However, the additional

N input into the soil did not increase, but reduce inorganic and organic net N uptake

capacity of Scots pine roots. N pools in the fine roots and needles of infested trees

showed an accumulation of total N, amino acid-N, protein-N, and structural N in the roots

and the remaining needles as a compensatory response triggered by defoliation. Thus,

although soil N availability was increased via surplus N input, trees did not respond with

an increased N acquisition, but rather invested resources into defense by accumulation

of amino acid-N and protein-N as a survival strategy.

Keywords: feces, inorganic N, litter, N fluxes, nitrate, N metabolites, organic N, throughfall

INTRODUCTION

In forest ecosystems, nitrogen (N) cycling is influenced by insect herbivory (e.g., Kurz et al., 2008;
LeMellec andMichalzik, 2008; Morehouse et al., 2008; Cobb et al., 2010) already at low tomoderate
levels via loss of foliage, tree growth, throughfall leaching, litterfall, and litter decomposition
(Schowalter et al., 1991; Chapman et al., 2003; Cunningham et al., 2009). With rapid defoliation by
phytophagous insects, large amounts of tree biomass and thus nutrients are turned first into insect
biomass and are subsequently released to the soil (Russel et al., 2004). To date, only few studies
have analyzed the direct links between insect mass outbreaks and N fluxes from canopy to soil as
well as nutrient dynamics and partitioning in the rhizosphere (e.g., Pederson and Bille-Hanssen,
1995; Le Mellec and Michalzik, 2008; Pitman et al., 2010). Consequently, only little is known about
alterations of resource allocation patterns by herbivory (Kaitaniemi et al., 1999; Sampedro et al.,
2009).
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In forest ecosystems, insect mass outbreaks result in the
mobilization of large amounts of organic N previously stored in
otherwise long-living needles, which reenter ecosystem N cycling
within a relatively short amount of time as a consequence of
foliage loss. Thus, N entry to the soil is increased directly and
indirectly via decomposition processes (Hunter, 2001; Lovett
et al., 2002; Keville et al., 2013) influencing microbial community
structure, GHG flux, and N turnover (Michalzik and Stadler,
2000; Stremińska et al., 2006; Le Mellec et al., 2011). This organic
N input originates from both dissolved N from throughfall (Le
Mellec and Michalzik, 2008) as well as solid deposition of insect
feces, dead larvae, and leaf fragments (Christenson et al., 2002;
Le Mellec et al., 2009; Kaňa et al., 2013). Focusing on organic
N, increasing amounts are based on two processes: (1) Partly
eaten needle fragments are dropped by the feeding larvae, adding
additional N to the needle litter. (2) Total N concentration in
the needles of infested trees is increased compared to non-
infested trees as a compensatory response to frass. For example,
needles of Masson pine (Pinus massoniana Lamb.) infested with
Masson pine moth (Dendrolimus punctatus Walker) accumulate
secondary metabolites as chemical defense measures (Fang et al.,
2016). Consequently, total needle N content is increased, in turn
changing the composition of future litter (Millard and Grelet,
2010). Furthermore, compared to leaf litter, insect feces often
have an altered chemical as well as physical quality due to larvae
digestion which causes inhomogeneous and porous surfaces and
a wider C:N ratio (Le Mellec et al., 2009). In the soil, this
surplus of N in combination with quality changes can accelerate
important processes in N cycling, i.e., (1) soil respiration
(Reynolds and Hunter, 2001; Frost and Hunter, 2004), which
might lead to increased soil CO2 emissions (Lovett and Ruesink,
1995; Michalzik and Stadler, 2000), (2) mineralization, especially
in N-limited ecosystems (Belovsky and Slade, 2000; Chapman
et al., 2003; Le Mellec and Michalzik, 2008; Heinzdorf, 2013),
and (3) N leaching, particularly of nitrate, causing further N
losses to the system (Swank et al., 1981; Pitman et al., 2010;
Le Mellec et al., 2011). In contrast to these effects accelerating
N turnover, other studies suggest a redistribution of N in the
soil with no detectable ammonia volatilization, nitrous oxide
emission, or nitrate leaching (Russel et al., 2004) and/or soil
microbial N immobilization due to a wider C:N ratio. This might
be observed especially when organic material, such as feces, are
supplied to the soil, indicating slowed decomposition rates due
to limited N availability (Le Mellec et al., 2009; Katayama et al.,
2014).

The loss of major amounts of biomass as a consequence of
insect mass outbreaks not only affects ecosystem N cycling, but
also mediates tree internal changes (Dale et al., 2001; Kurz et al.,
2008), such as nutrition, especially with regard to N and water
relations (Kosola et al., 2001; Morehouse et al., 2008). However,
contradictory results on the consequences of herbivory on N
nutrition and water relations of forest trees have been reported.
For example, external input of N via atmospheric deposition
or fertilization over several years, and increased N storage were
observed in eastern hemlock (Gómez et al., 2012; Rubino et al.,
2015) and red oak (Frost andHunter, 2008). N storage wasmostly
a result of free amino acid accumulation (especially arginine

and glutamine; Vestgarden, 2001; Throop and Lerdau, 2004; Kos
et al., 2015). Increased soil N availability can lead to increased
N uptake by tree roots (e.g., Stoelken et al., 2010; Li et al.,
2015). However, in response to insect mass outbreaks, inorganic
N uptake capacity was reduced in hybrid poplar (Populus ×

canadensis cv. Eugeneii) defoliated by gypsy moth (Lymantria
dispar L.) (Kosola et al., 2001). In contrast, studies investigating
eastern hemlock (Tsuga canadensis L.) and red oaks (Quercus
rubra L.) found no effect of defoliation on inorganic N uptake
(Lovett and Tobiessen, 1993; Rubino et al., 2015). Loss of leaf
biomass also changes tree internal water relations via a reduction
in leaf transpiration, thereby negatively affecting tree water
balance and nutrient uptake (Aroca et al., 2012). Until today, it is
unknown whether organic N uptake capacity is affected by insect
mass outbreaks and if infested trees have altered preferences for
inorganic or organic N sources. However, organic N sources
contribute significantly to tree N nutrition, particularly in N-
limited forest ecosystems (Stoelken et al., 2010; Dong et al.,
2015, 2016; Li et al., 2015). Tree internal changes in physiology
often result in decreasing growth rates and higher mortality
(Kosola et al., 2001; Morehouse et al., 2008). However, also
compensatory effects are observed including increased biomass
production and higher growth rates (Russel et al., 2004) or N
accumulation in different plant parts, mostly as proteins and
amino acids (Gómez et al., 2012; Rubino et al., 2015), thereby
increasing the nutritional value for herbivores. Particularly with
regard to N, external uptake and internal allocation of N,
but also a shift to C in the C/N ratio can support defense
measures of trees (e.g., via the production of phenolics; Frost
and Hunter, 2008), and thereby directly affect insect population
levels, survivorship, as well as outbreak frequency (Throop and
Lerdau, 2004).

Here, we study the effects of a mass outbreak of nun moth
(Lymantria monacha L.)—a member of the Lymantriidae family
of Lepidoptera—on N fluxes in the soil and the consequences
for N nutrition of Scots pine (Pinus sylvestris L.) over the course
of a year. In Germany, the nun moth is widely distributed in
the pine forest of the north-eastern lowlands (Majunke et al.,
2002). In spring 2013, 5,800 ha of forest in Brandenburg were
affected by mass outbreaks of the nun moth including 366 ha of
total defoliation (Möller and Heydeck, 2013). At that time, more
than 11,000 ha of Scots pine forest were treated with insecticides
(Möller and Heydeck, 2013). The study aimed to characterize the
effects of insect mass outbreaks (1) on soil N fluxes (i.e., in litter,
insect feces, throughfall, leachates), (2) on inorganic and organic
N acquisition strategies of Scots pine, (3) on compensatory
processes in the N nutritional status of fine roots and needles,
(4) In addition, it was assessed how these responses shift over
time. For this purpose, we quantified N contents in throughfall,
dry matter input, soil leachates, and metabolites in fine rots
and needles (i.e., total soluble amino acid, total soluble protein,
and structural N levels). In addition, we quantified inorganic and
organic 15N net uptake capacity of fine roots. We hypothesize
that (1) N input via solid and wet depositions and N leaching via
the soil solution will increase during the insect mass outbreak,
especially during the main defoliation period (Le Mellec et al.,
2009; Kaňa et al., 2013; Keville et al., 2013). (2) Infested trees are
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physiologically unable to take advantage of the fertilization effect
of additional litter, because the uptake of nutrients and water
is restricted by the loss of needle biomass, thereby leading to a
decreased N uptake capacity (Kosola et al., 2001). (3) In fine roots
and needles, amounts of total soluble proteins and amino acids
increase as a compensatory effect to needle biomass loss (Frost
and Hunter, 2008; Gómez et al., 2012; Rubino et al., 2015).

MATERIALS AND METHODS

Field Site Description
To study the consequences of insect mass outbreaks on soil
N fluxes and tree N nutrition in Scots pine forests, two forest
districts were chosen. One district was infested by the nun moth
(L. monacha L.), the other served as control. Within each district,
three plots of 300–350 m2 were selected. The infested district
was located 3 km north of Märkisch Buchholz, Brandenburg,
Germany (52◦8′38′′N, 13◦45′14′′E, 42m a. s. l.); the control
district—a stand with comparable initial site conditions but
with an uncritical abundance of insect pests—10 km west
of Teupitz, Brandenburg, Germany (52◦9′29′′N, 13◦36′47′′E,
35m a. s. l.). Following the administrative procedure of forest
protection for monitoring of pests (nun moth of 25.05.93)
in the study area, nun moth calamity was classified “heavy”
(based on 1,185 counted moths on four representative stems) in
2013 with a needle loss of ∼80% according to the Eberswalde
Forestry State Center of Excellence (Landeskompetenzzentrum
Forst Eberswalde, unpublished data). These mass outbreaks of
nun moth can be favored by the semi-arid conditions of the
study area, because increased frequencies of nun moth mass
outbreaks are related with drought stress (Bejer, 1988). All
six plots were located in 65-year-old white moss pine forest
(Leucobryo-Pinetum) stands with a total abundance of 96% Scots
pine (P. sylvestris L.) and 4% beech (Fagus sylvatica L.) as well
as isolated seedlings of pedunculate oak (Quercus robur L.) in
the understorey. However, beech seedlings are only found at
locations with increased soil water content, whereas small oak
seedlings are very rare. Both species did not occur at the study
plots. At all plots, the soil type was classified as podzol (FAO
classification) on Aeolian sand with mostly fine to medium sand
(0.2–0.63 mm) of glacial origin as parent rock material with
little gravel. The average annual air temperature at the weather
station “Lindenberg” [∼40 km distance to the field sites is 9.2◦C
with an average annual total precipitation of 576 mm (1981–
2010, German Federal Meteorological Service (DWD)]. See also
Table 1 for more details on stands and soil (Ah horizon) of the
study sites. Sampling and field measurements were conducted
in 2014, 1 year after nun moth population culmination, at four
time points related to the developmental stages of the nun
moth: (1) pre-defoliation stage in early May (spring), (2) main
defoliation stage in late May, (3) post-defoliation stage in July
(summer), and (4) later post-defoliation stage in early October
(autumn). For N in throughfall, dry matter input, and soil
leachates, samples were additionally taken at two winter dates:
pre-defoliation in February and post-defoliation in November.
The chosen sampling times during one vegetation period were
based on the nun moth’s development cycle: Adult nun moths

TABLE 1 | Stand and soil details at the field sites.

Infested site Control site

STAND

Tree height, average (m) 19 18

Tree age (years) 65 65

Stem density/ha 480 470

Diameter breast height (DBH, m) 23 23

SOIL–Ah HORIZON

C content (%) 21.74 13.81

N content (%) 0.74 0.46

C/N ratio 29.42 30.25

pH (H2O) 3.4 3.3

pH (KCl) 2.4 2.6

Average tree height (m), tree age (years), stem density per ha, and diameter at breast

height (m) in the year of the study (forester, personal communication), C and N content

(%), C/N ratio, and pH were determined in mixed soil samples of the Ah horizon in

early May (n = 3). C and N were quantified in oven-dried, finely ground soil samples

using an Elementar Vario EI analyser (Elementar Analysensysteme GmbH, Langenselbold,

Germany). pH was measured on air-dried soil samples.

fly from mid-July to the beginning of September and lay 70–
300 eggs in bark alcoves with larvae hatching at the beginning
of May and go through 5–7 larvae stages before pupation in
July (Lipa and Glowacka, 1995). Newly hatched nun moth larvae
prefer young, soft needles while older larvae also feed on old
needles (Lipa and Glowacka, 1995). The feeding activity is very
destructive because the needles upper half is cut off and then
the remaining part is consumed (Lipa and Glowacka, 1995). A
mass outbreak of the nun moth usually implies the economic
end of the stand because often at least 50% of the trees die as
a consequence of enormous needle loss (Eberswalde Forestry
State Center of Excellence, 2013). Even after the insect mass
outbreak, an increased vulnerability to storm events and drought
stress remains, and under the current climate conditions in the
northern German lowland, surviving trees usually require 5–6
years to regenerate completely (Eberswalde Forestry State Center
of Excellence, 2013).

15N Uptake Experiments
15N-labeling experiments were conducted in the field to quantify
net N uptake capacity of infested and uninfested Scots pine trees.
Per plots, 12 adult trees were randomly chosen. Intact fine roots
(<2 mm diameter) still attached to the tree were carefully dug
out, cleaned with water and incubated in 5 ml of an artificial
soil solution according to the method described by Simon et al.
(2010). The artificial soil solution contained 100 µM KNO3,
90 µM CaCl∗22 H2O, 70 µM MgCl2

∗ 6 H2O, 50 µM KCl, 24
µM MnCl∗2 4 H2O, 20 µM NaCl, 10 µM AlCl3, 7 µM FeSO∗

4
7 H2O, 6 µM K2HPO4, 1 µM NH4Cl, 25 µM glutamine, and
25 µM arginine (pH 6.5), mimicking the conditions at a low N
availability field site (Simon et al., 2013). Arginine and glutamine
were chosen, because they represent the most abundant free
amino acids in most plant parts (Griffin et al., 1991; Gessler et al.,
1998). To quantify inorganic and organic net N uptake capacity,
four different solutions were used for each individual tree, each
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containing all four N sources: NH+
4 , NO

−
3 , as well as the amino

acids glutamine and arginine. However, only one N form was
labeled with 15N. Furthermore, a control solution without 15N-
labeled compounds was used to determine the natural abundance
of 15N in the roots. To avoid diurnal variation in N uptake
(Gessler et al., 2002), incubation experiments were conducted
for 2 h between 10 a.m. and 2 p.m. Following incubation, the
submersed root parts plus an additional 10–15 mm were cut off,
washed twice with 0.5 µMCaCl2, dried with cellulose paper, and
the fresh weight was determined. After drying at 60◦C for at least
48 h, the dry weight was determined.

Sampling of Fine Root and Needles
For the quantification of root and needle N metabolites,
samples were taken from the same individuals used for
15N uptake experiments. Approximately 2–3 g of fine
roots were sampled from three roots. In addition, 50–
60 fresh previous-year needles were taken from different
tree branches from the outer middle crown. All samples
were immediately shock-frozen in liquid nitrogen and
stored at −80◦C on return from the field until further
analyses.

Sampling of Insect Feces, Needle Litter,
Throughfall, and Soil Solution
N input into the soil was measured as dry matter input
(i.e., total N in insect feces and needle fragments), and in
throughfall as well as soil solution [i.e., total N, nitrate-N, and
dissolved organic N (DON), respectively] according to Le Mellec
et al. (2011). At all plots, 10 randomly distributed throughfall
samplers (diameter 20 cm) were set up. At each sampling date,
samplers from each plot were pooled to five mixed samples.
For collection of soil percolates, zero tension humus lysimeters
were established underneath the humus layer at each plot
according to Le Mellec et al. (2011). Sampling of throughfall
and soil solution was conducted at biweekly intervals, during
main defoliation at weekly intervals. Insect derived fragments
(i.e., feces, leaf debris) and (green) litter fall were collected
using nylon tree nets (mesh size 300 × 300 µm) with a net
size between 15 and 17 m2 according to the canopy diameter
(Le Mellec and Michalzik, 2008). Net sampling was conducted
weekly.

Quantification of 15N, 13C, and Total N
and C
To quantify 15N, 13C, as well as total N and C contents in the
fine roots and total N content in needles, plant tissues were finely
ground using a ball mill (Retsch TissueLyser, Haan, Germany).
Aliquots of 0.8–2.5mg were weighed into 4 × 6 mm tin capsules
(IVA Analysentechnik, Meerbusch, Germany). Samples were
analyzed with an elemental analyzer (NA2500, CE Instruments,
Milan, Italy) coupled to an isotope ratiomass spectrometer (Delta
Plus, Thermo Finnigan MAT GmbH, Bremen, Germany). As a
working standard, glutamic acid was used, for δ13C calibrated
against the primary standards USGS 40 (glutamic acid, δ13CPDB

= −26.39) and USGS 41 (glutamic acid, δ13CPDB = 37.63)
and for δ15N against USGS 25 (ammonium sulfate, δ15NAir =

−30.4) and USGS 41 (δ15NAir = 47.600). To detect a potential
instrument drift over time standards were included after every
12th sample. Net N uptake capacity was calculated according
to Gessler et al. (1998): net N uptake capacity = ((15Nl-
15Nc)

∗N∗
totdw

∗105)/(MW∗fw∗t), where 15Nl and
15Nc represent

the atom% of 15N in labeled (Nl) and n control roots (i.e.,
natural abundance), respectively. Ntot is total N%, dw the dry
weight, and fw the fresh weight of the root. MW is the molecular
weight (15N g mol−1) and t stands for the incubation time.
For each amino acid, the 15N/13C ratio of root fresh weight
was compared to the total C/N ratio to determine whether
amino acids were taken up as intact molecules (data not shown).
Because net C uptake capacity based on 13C incorporation in
root fresh weight differed from the 15N incorporation, it can
be assumed that amino acids were either partially degraded in
the artificial soil solution or on the root surface, or that amino
acid-derived carbon was respired inside the roots (Simon et al.,
2011).

Quantification of Total Soluble Protein-N,
Total Amino Acid-N, Ammonium-N,
Nitrate-N, and Structural N Content in Fine
Roots and Needles
Before analyses of N metabolites, fine root and needle
samples were ground to a homogeneous powder in liquid N2.
Total soluble protein, amino acids, ammonium and nitrate
concentrations were quantified according to Simon et al. (2010).
For total soluble proteins content, ∼0.05 g ground frozen plant
material were extracted in 1.5 ml buffer containing 50 mM
Tris-HCl (pH 8.0), 1 mM EDTA, 15% glycerol (v/v), 5 mM
dithiothreitol, 0.1% Triton X-100 (v/v), 2 tablets of protease
inhibitor cocktail (EDTA-free, Complete, Roche Diagnostics,
Mannheim, Germany) and quantified using Bradford Reagent
(Amresco Inc., Solon, Ohio, USA). The absorption was
determined at 595 nm with a spectrophotometer (Ultrospec 3100
pro, Amersham Biosciences, Piscataway, USA). Bovine serum
albumin (BSA) was used as standard. For total amino acids
content, ∼0.05 g finely ground plant tissue was extracted as
previously described in 1 ml methanol-chloroform (3.5:1.5, v:v)
and 0.2 ml Hepes buffer (20 mM Hepes, 10 mM NaF, 5 mM
EGTA, pH 7.0) (Winter et al., 1992). The concentration of total
amino acids was quantified using the method of Liu et al. (2005).
Absorption was measured at 570 nm in a spectrophotometer
(Ultrospec 3100 pro, Amersham Biosciences, Piscataway, USA).
L-glutamine was used as standard. Ammonium and nitrate
contents were quantified with the method reported by Simon
et al. (2010): Approximately 0.04 g of plant tissue were soaked
in 0.1 g washed polyvinylpyrrolidone (PVP, Sigma-Aldrich Inc.,
Steinheim, Germany) prepared in 1 ml distilled water to
bind phenols. Ammonium and nitrate concentrations were
determined using an ion chromatograph (DX 120, Dionex,
Idstein, Germany) coupled to an autosampler (AS 3500, Thermo
Separation Products, Piscataway, NJ, USA) equipped with the
PeakNet software (version 4.3, Dionex). Anion mixtures of
NO−

3 , PO
3−
4 , SO2−

3 , and SO2−
4 or cation mixtures of NH+, K+,

Mg2+, and Ca2+, both in distilled water, were used as standards.
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Ammonium and nitrate contents of fine roots and needles were
negligible (data not shown). Thus, structural N was calculated
by substracting total soluble protein-N, and amino acid-N from
total N.

Quantification of N in Insect Feces, Needle
Litter, As Well As Throughfall, and Soil
Solution
N input into the soil was measured in dry matter (i.e., total
N in insect feces and needle litter), throughfall as well as
soil solution (i.e., total N, nitrate-N, and dissolved organic
N each). For determination of total N in dry matter, insect
feces were separated from needle litter and both dried at
45◦C. Fresh and dry weight was determined. Total N content
was quantified in aliquots of the dry material (3 technical
replicates per net) by thermal oxidation using a Leco CHN
1000 analyser (LECO Enterprise, Mönchengladbach, Germany).
Aliquots of throughfall and soil solutions were filtered with
0.45µmcellulose-acetatemembrane filters (Sartorius, Göttingen,
Germany) and analyzed for dissolved N (DN) via thermal
oxidation (Dimatoc 100, Dimatex, Essen Germany) and for
nitrate by ion chromatography (761 Compact IC, Methrom,
Filderstadt, Germany) according to Le Mellec et al. (2011). DON
was calculated as difference between DN and nitrate-N. Total
N was quantified by thermal oxidation (Dimatoc 100, Dimatec,
Essen, Germany) in solutions of 0.45 and 500 µm particle size.

Statistical Analyses
Prior to comparisons between treatments, all data were tested
for normal distribution and homogeneity of variances. Statistical
analyses for inorganic and organic net N uptake capacity as well
as N metabolites in roots and needles were performed using
R package version 1.3.1 (R Development Core Team, 2008).
Differences between infested and control sites were detected
using Kruskal–Wallis test on ranks. For multiple pairwise
comparison within one treatment at different sampling dates
between the different N sources as well as N metabolites and
infested vs. control plots at each sampling date, post-hoc Dunn’s
test was performed using the Bonferroni correction for p-value
adjustment (Dinno, 2015). For statistical analyses of throughfall,
dry matter, and soil leachates, SPSS (SPSS Statistics for Windows,
version 22.0., IBM, Armonk, USA) was used. Comparisons
between infested and control sites, as well as sampling dates were
tested using ANOVA.

RESULTS

Insect Mass Outbreak Affects N Fluxes in
Dry Matter Input, Throughfall, and Soil
Leachates
In general, mean and accumulated N input into the soil (i.e.,
total N in insect feces, litter, and throughfall, as well as DON
in throughfall) was significantly higher at the infested compared
to the control plots at all sampling times (Table 2). Similarly, N

TABLE 2 | Mean N fluxes (kg/ha) per month and cumulative N fluxes (kg/ha) per 6 months.

Mean N fluxes (kg ha−1)

totN totN totN NO3-N DON totN NO3-N DON

feces litter throughfall throughfall throughfall soil solution soil solution soil solution

INFESTED

Winter I n.a. n.a. 14.3 ± 6.5*A 3.1 ± 0.8A 6.5 ± 2.9*A 7.5 ± 4.3*A 6.3 ± 2.1*A 0.7 ± 0.1A

Spring n.a. n.a. 16.8 ± 7.9*AB 3.7 ± 1.3AB 6.8 ± 3.2*AB 9.7 ± 4.9*AB 8.1 ± 3.1*AB 0.8 ± 0.1*AB

Main defoliation 11.3 ± 2.9**A 5.9 ± 1.9**A 17.9 ± 8.1*B 4.7 ± 1.6B 11.3 ± 2.9*B 10.7 ± 5.1*AB 9.5 ± 3.4*AB 1.1 ± 0.2*B

Summer 8.9 ± 3.6*A 6.7 ± 2.4**A 15.4 ± 8.3*AB 3.9 ± 1.3AB 8.7 ± 3.6*AB 10.8 ± 4.8*AB 9.6 ± 3.4*AB 1.0 ± 0.1*AB

Autumn 5.7 ± 3.4**A 6.3 ± 2.1**A 14.9 ± 7.1*AB 4.4 ± 1.7AB 7.8 ± 3.4*AB 10.9 ± 4.9*B 10.0 ± 3.6**B 0.9 ± 0.3*AB

Winter II n.a. 6.5 ± 1.9**A 12.3 ± 7.1*AB 3.3 ± 0.8AB 6.9 ± 2.3*AB 9.7 ± 3.9*AB 8.3 ± 2.9**AB 0.7 ± 0.2AB

Mean 8.6 ± 3.3** 6.4 ± 2.1** 15.3 ± 7.5* 3.9 ± 1.3 8.0 ± 3.1* 9.9 ± 4.7* 8.6 ± 3.1* 0.9 ± 0.2*

Sum 25.9 ± 2.8** 25.4 ± 0.3** 91.6 ± 2.0** 23.1 ± 0.6 48.0 ± 1.8** 59.3 ± 1.3* 51.8 ± 1.4* 5.2 ± 0.2*

CONTROL (NON-INFESTED)

Winter I n.a. n.a. 9.9 ± 3.9*A 4.3 ± 1.8A 5.3 ± 1.9*A 6.7 ± 3.4*A 5.9 ± 1.9*A 0.6 ± 0.1A

Spring n.a. n.a. 11.1 ± 3.3*A 4.6 ± 1.9A 5.4 ± 1.3*A 6.9 ± 3.2*A 5.6 ± 1.6*A 0.5 ± 0.1*A

Main defoliation 3.3 ± 0.5**A 1.4 ± 0.6**A 11.6 ± 3.6*A 4.5 ± 2.0A 5.6 ± 1.2*A 7.1 ± 3.2*A 5.7 ± 1.8*A 0.4 ± 0.1*A

Summer 3.6 ± 0.7**A 1.4 ± 0.4**A 10.6 ± 3.4*A 4.6 ± 1.3A 5.3 ± 1.3*A 6.3 ± 3.5*A 5.6 ± 1.7*A 0.1 ± 0.1*A

Autumn 3.7 ± 0.7**A 1.5 ± 0.5**A 9.8 ± 3.4*A 4.1 ± 2.3A 5.1 ± 0.9*A 6.9 ± 3.0*A 4.9 ± 1.9**A 0.1 ± 0.1*A

Winter II n.a. 1.4 ± 0.2**A 10.1 ± 3.9*A 4.7 ± 2.3A 4.9 ± 2.0*A 6.9 ± 3.3*A 4.9 ± 1.2**A 0.1 ± 0.1A

Mean 3.5 ± 0.6** 1.4 ± 0.4** 10.5 ± 3.6* 4.5 ± 1.9 5.3 ± 1.4* 6.8 ± 3.3* 5.4 ± 1.6* 0.5 ± 0.1*

Sum 10.6 ± 0.2** 5.7 ± 0.1** 73.6 ± 0.7** 26.8 ± 0.2 31.6 ± 0.2** 40.8 ± 0.3* 32.6 ± 0.4* 3.0 ± 0.3*

totN, total N; DON, dissolved organic N; Mean, average N fluxes over a 6 months period; sum, sum of N fluxes over a 6 months period. Asterisks indicate level of significance between

control and infested plots (*p < 0.050, **p < 0.010). Different capital letters indicate significant differences between sampling times within one treatment (p ≤ 0.050). n.a.= not available.
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output (i.e., total N, nitrate-N, and DON in soil leachates) was
significantly higher with insect infestation regardless of sampling
time. Only DON in soil solution (winter I and II) and nitrate-
N fluxes in throughfall (entire year) did not differ significantly
in response to insect infestation. With regard to N allocation
in throughfall, DON fluxes were generally higher than nitrate-N

(p≤ 0.050), whereas soil leachates showed a reversed pattern with

higher nitrate-N compared to DON (p ≤ 0.050). Comparison

with N fluxes across the sampling times showed no significant

differences for the control plots. In contrast, for the infested plots,

total N, nitrate-N, and DON in throughfall as well as DON in

soil leachates increased significantly from the previous winter

sampling to the main defoliation event (p ≤ 0.050). For total N

and nitrate-N in soil leachates, a significant increase was delayed

(i.e., from previous winter to autumn sampling; p ≤ 0.050).

Insect Mass Outbreak Reduced Organic
and Inorganic Net N Uptake Capacity of
Fine Roots in Scots Pine
Mass outbreaks of defoliating nun moth affected net N uptake
capacity of Scots pine differently depending on N source
(Figure 1). Net uptake capacity of ammonium-N, nitrate-N, and
glutamine-N (i.e., only for main defoliation and summer) was
significantly reduced in trees of the infested stands compared
to the control stands (p < 0.001), whereas arginine-N net
uptake capacity was not influenced at all. Mean reduction of net
ammonium-N, nitrate-N, and glutamine-N uptake capacity was
29.6, 65.3, and 65.4%, respectively. Furthermore, net N uptake
capacity changed over the vegetation period depending on N
source. Net ammonium-N uptake capacity regardless of insect
infestation and net glutamine-N uptake capacity at the infested

FIGURE 1 | Inorganic and organic net N uptake capacity (nmol g−1 fw h−1) at infested and non-infested pine forests over the vegetation period. I, infested; C,

control; MD, main defoliation. Box plots show means (dotted lines) and medians (straight lines) (n = 12 for each plot). Whisker extension equals 3x interquantile range

distance. Different small letters indicate significant differences between infested and control plots within one sampling time (p ≤ 0.050). Different capital letters indicate

significant differences between the sampling times within one treatment (p ≤ 0.050).

Frontiers in Plant Science | www.frontiersin.org 6 June 2017 | Volume 8 | Article 954

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Grüning et al. IMO Affect Scots Pine Forests

plots were highest in spring (p ≤ 0.007), however, decreased
during main defoliation and summer with another increase in
autumn (p < 0.020). Net arginine-N uptake capacity decreased
regardless of insect infestation from summer to autumn (p ≤

0.042). For net nitrate-N uptake capacity no differences over
the vegetation period were found. With regard to preference
for certain N sources, we found differences between treatments:
At the control plots, arginine-N was preferred over nitrate-N,
glutamine-N, and ammonium-N (p≤ 0.010); at the infested plots
arginine-N was preferred over glutamine-N and nitrate-N over
ammonium-N (p ≤ 0.001).

Insect Mass Outbreak Enhanced Total N,
Soluble Protein-N, Amino Acid-N, and
Structural N in Fine Roots and Needles of
Scots Pine
In the fine roots (Figure 2), N metabolite concentrations were
significantly higher at infested compared to control plots for total
N (regardless of sampling time; p ≤ 0.009), structural N (only
in autumn; p < 0.001), total soluble protein-N (TSP-N, only at
the main defoliation event; p < 0.001), and total soluble amino
acid-N (TAA-N, at all sampling times except spring; p ≤ 0.001).
Needles showed higher concentrations at infested compared to

control plots for total N and structural N (both regardless of
sampling time; (p ≤ 0.001 and p ≤ 0.031, respectively), TSP-N
(only in spring and at the main defoliation event (p≤ 0.003), and
TAA-N (only in spring and autumn; (p ≤ 0.016).

Comparing sampling times within each parameter, levels
of N metabolites differed between sampling dates (Figure 2).
In fine roots of control plots, both total N and structural N
concentrations did not differ significantly between the main
defoliation event, summer, and autumn, but were significantly
higher at these time points compared to spring (p≤ 0.046 and p≤
0.001, respectively). TSP-N concentrationwas highest in spring>

summer/autumn>main defoliation (p≤ 0.001). Similarly, TAA-
N concentrations were highest in summer compared to the main
defoliation event and autumn (p ≤ 0.008) with no differences
between spring and the other sampling times. For the infested
plots, fine roots showed different patterns: Total N concentration
was higher in autumn > main defoliation event > spring (p ≤

0.001), with concentrations in summer only higher compared to
spring (p≤ 0.001) and no differences between the other sampling
dates. Structural N levels were highest in spring> frass> autumn
(p≤ 0.001) and lower in summer compared to spring (p≤ 0.001).
TSP-N concentrations were highest in spring> summer/autumn
(p ≤ 0.001), but no significant differences between any of
the other time points. TAA-N concentrations were significantly

FIGURE 2 | Total N, structural N, soluble protein-N, and soluble amino acid-N content in fine roots and needles (mg/g dw) at infested and non-infested pine forests

over the vegetation period. I, infested; C, control; MD, main defoliation. Box plots show means (dotted lines) and medians (straight lines) (n = 12 for roots, n = 8 for

needles for each plot). Whisker extension equals 3x interquantile range distance. Different small letters indicate significant differences between infested and control

plots within one sampling time (p ≤ 0.050). Different capital letters indicate significant differences between the sampling times within one treatment (p ≤ 0.050).
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higher in summer/autumn compared to the main defoliation
event and spring (p ≤ 0.007). Levels of N metabolites showed
different patterns over the vegetation period in the leaves. At
the control plots, total N concentrations were higher in autumn
compared to summer and spring (p≤ 0.016), with no differences
at the main defoliation event compared to the other sampling
times. Structural N concentration was highest, whereas TSP-
N concentration was lowest at the main defoliation event (p
≤ 0.016). TAA-N concentration did not change at all between
sampling times. At the infested plots, needles showed different
patterns with regard to their Nmetabolites: Total N content in the
needles was lower in summer compared to the main defoliation
event and autumn and lower in spring compared to autumn (p <

0.008), but no other significant differences were found. Structural
N concentration was higher with frass and in autumn compared
to spring (p≤ 0.019), and lower in summer compared to autumn
(p = 0.005). TSP-N was lowest in summer (p ≤ 0.040) with no
differences between the other sampling times. TAA-N levels were
higher in spring and autumn compared to the main defoliation
event and summer (p ≤ 0.043).

Comparing composition of N pools in fine roots and needles,
total Nmainly consisted of structural N, with 59± 10.8% in roots
of infested and 65± 8.4% control trees, and 64± 4.2% in needles
of infested and 61 ± 10.4% of control trees. The second largest
contribution was TSP-N: 24 ± 12.4% in roots of infested and 21
± 7.9% in control trees, and 26± 2.9% in needles of infested and
30 ± 9.1% of control trees. The lowest contribution was from
TAA-N with 15 ± 3.1% in roots of infested and 11 ± 2.4% of
control trees, and 9± 4.3% in needles of infested and 8± 1.5% of
control trees. Comparing N metabolites in fine roots and needles
over the vegetation period, total N and structural N contents
in needles were higher in summer and autumn compared to
spring and main defoliation in both, infested and control trees
(p ≤ 0.001 and p ≤ 0.004). TSP-N in the needles was higher
compared to the roots at the main defoliation event, summer and
autumn sampling times (p ≤ 0.001). In contrast, TAA-N levels
in the roots of infested trees were higher than in needles (p ≤

0.001), except for spring. However, in spring and summer root
TAA-N levels of the control trees were higher than in needles
(p ≤ 0.004).

DISCUSSION

Consequences of Insect Mass Outbreaks
on Soil N Fluxes
Insect Mass Outbreaks in Scots Pine Stands Lead to

Enhanced N Input and Nitrate Leaching
Insect mass outbreaks can affect N cycling directly via changes
in quantity and quality—specifically that of organic input of
feces and dead insect biomass as well as changes in throughfall
composition (Stadler et al., 2005; Müller et al., 2006; Le
Mellec and Michalzik, 2008)—and indirectly via changes in
rhizodeposition, modified nutrient uptake rates by trees and
altered root-soil microbe-interactions (Zimmer and Topp, 2002;
Throop and Lerdau, 2004). In the studied Scots pine forests, the
insect mass outbreak altered soil N cycling resulting in enhanced

N input (i.e., total N, nitrate-N, DON) via feces and litter as
well as N output (i.e., total N, nitrate-N, DON) compared to the
control plots. In other studies, higher total N fluxes in throughfall
were mainly due to increased fluxes of DON originating from
leaching of damaged leaves and washouts of branches and leaves
with phyllosphere microorganisms (Hunter, 2001; Le Mellec and
Michalzik, 2008). For example, growth of epiphytic heterotrophic
microorganisms was increased on infested needles and leaves
of spruce and oak trees which was triggered by sugars and
carbon rich excretions from insects. In turn, microbial growth in
the phyllosphere changed the N composition of the throughfall
(Guggenberger and Zech, 1994; Stadler andMichalzik, 2000). The
increase in total N of litter and feces at infested plots compared to
the controls was due to quantitative higher organic entries. The
additional N input via feces into the system might have further
implications. Feces consist mainly of labile C as well as extractable
N in form of proteins which can stimulate soil microbial activity
resulting in increased CO2 emissions from the soil (Lovett and
Ruesink, 1995; Zimmer and Topp, 2002; Frost andHunter, 2004).
Because the physical and chemical structure of feces is easily
soluble compared to needle litter (Jung and Lunderstädt, 2000),
feces are likely to mediate faster N turnover in the soil. The
increased N input with insect mass herbivory in the present study
also explains the increased N output as total N, nitrate-N, and
DON at the infested forest site, because additional organic input
leads to an enhanced release of nutrients via the soil solution
(Stadler et al., 2001; Chapman et al., 2003; Le Mellec et al., 2009,
2011). Enhanced N output during insect mass outbreaks was
previously observed for other forests and pest insects (e.g., Swank
et al., 1981; Näsholm, 1994; Houle et al., 2009; Pitman et al.,
2010). For example, in a boreal forest, the inorganic N output
via soil the solution was 30 times higher during a mass outbreak
of the spruce budworm compared to an undisturbed forest site
(Houle et al., 2009).

Consequences of an Insect Mass Outbreak on Soil N

Fluxes are Linked to the Life Cycle of the Feeding

Insects
Variation in N fluxes over the vegetation period were observed
only at the infested, but not the control plots suggesting that
changes at the infested plots were caused by the nunmoth and the
related biotic stress. The observed N input fluxes increased from
winter to spring and peaked at the main defoliation event, during
which nun moth larvae are most active, and declined again
until autumn, while the nun moth pupated, metamorphosed,
and mated. The higher total N and DON fluxes in throughfall
at the beginning of the previous winter compared to the winter
following the main frass activity at the end of the measuring
period are likely a response to the previous year’s infestation.
Similar patterns of increased N input via litter and throughfall
over the vegetation period as a response to insect mass outbreaks
have been reported in other studies (Stadler et al., 2001; LeMellec
et al., 2009; Pitman et al., 2010), suggesting that this response to
massive herbivory is strongly linked to the variation in the life
cycle of the feeding insects over the vegetation period.

N fluxes in the soil solution showed a delayed response to
insect mass outbreaks with fluxes of total N, nitrogen-N, and
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DON peaking in autumn. This can be explained by several
processes: (1) The reaction-time of a soil system is mainly
regulated by rainfall events and soil buffer capacity which
depends on the soil N status prior to the outbreak event (Pitman
et al., 2010; Griffin et al., 2011). Soils with low N availability,
such as the present study site, often show a lower or delayed
reaction with regard to N input in the soil solution compared
to N-saturated soils due to higher microbial immobilization that
incorporates N into stable organic matter (Frost and Hunter,
2004, 2007). (2) Furthermore, the export of N via nitrate and
DON depends on soil water availability. At our research site,
water supply is limited during late spring and summer due
to low precipitation and high temperatures (Grüning, personal
observation; Gerstengarbe et al., 2003). Increasing precipitation
and decreasing transpiration in autumn and winter contribute
to the peak of N fluxes in the soil solution in autumn. These
results show the significance of sampling time for soil N cycling.
Overall, additional N input in response to insect mass herbivory
exceeded N losses via leaching. Thus, insect mass outbreaks have
the potential to cause long-term effects on soil N cycling by
significantly increasing the total N load in soils (Vestgarden,
2001), and thus providing an additional N source for understorey
vegetation and/or tree regeneration in the years following the
insect mass outbreak (Griffin et al., 2011; Kaňa et al., 2013).

Consequences of Insect Mass Outbreaks
on Tree N Nutrition
Reduction of N Acquisition of Inorganic N and

Glutamine-N by the Roots
Tree N uptake strongly depends on soil N availability (Stoelken
et al., 2010; Simon et al., 2013; Dong et al., 2016). N supply in
soils of infested forests is often increased (Belovsky and Slade,
2000; Chapman et al., 2003; Le Mellec and Michalzik, 2008) as
also found in the present study (see above). Still, inorganic N
and glutamine-N net uptake capacity of Scots pine trees were
strongly reduced (30–65% reduction depending on N source)
under massive herbivory by the nun moth, especially at the main
defoliation event. A reduced inorganic N uptake capacity was
found also for hybrid poplar (Populus x canadensis cv. Eugeneii)
defoliated by gypsy moths (Kosola et al., 2001). In contrast,
for defoliated oak seedlings (Lovett and Tobiessen, 1993) and
hemlock saplings (Rubino et al., 2015) a difference in inorganic
net N uptake was not detected. Three aspects differed in the
latter two studies compared to the present study: (1) Rubino et al.
(2015) applied 15N directly to the soil, (2) both studies used only
inorganic N sources, and (3) both studies investigated seedlings
instead of adult trees. However, N acquisition strongly varies
with tree age (Simon et al., 2011). For example, woody seedlings
take up inorganic and organic N preferably in spring, whereas
adult beech trees show highest N uptake in autumn (Simon
et al., 2011). Furthermore, loss of needle biomass, and thus
photosynthetic tissues, due to massive insect herbivory raises the
relative costs of root N uptake (Jacquet et al., 2014; Fang et al.,
2016). For the utilization of amino acid-N, less energy is on
average required compared to inorganic N sources such as nitrate
and ammonium (Zerihun et al., 1998; Gruffman et al., 2013).

The preference for arginine-N in the present study supports the
view that organic N sources might be preferred over inorganic N
sources at limited energy generation by photosynthesis. However,
under these conditions internal reallocation of N might even be
a better strategy for survival than organic N uptake. Therefore,
it is not surprising that infested Scots pine trees did not use the
additional N available in the soil upon infestation in the present
study.

Previous assumptions that Scots pine has a reduced affinity
toward glutamine and prefers ammonium as N source (Persson
and Näsholm, 2003; Simon et al., 2013) were not confirmed by
the present results. The shift of N uptake toward glutamine-N by
infested trees was mainly caused by a reduction in nitrate rather
than an increase in glutamine-N uptake capacity with infestation.
The observed preference of Scots pine for organic N sources has
been described previously by Persson et al. (2006) and Simon
et al. (2013). It is also relevant for other species, such as European
beech (Dannenmann et al., 2009; Stoelken et al., 2010; Simon
et al., 2011; Li et al., 2015), oak, hemlock (Gallet-Budynek et al.,
2009), willow, and black spruce (Kielland et al., 2006).

Consequences of an Insect Mass Outbreak on

Organic and Inorganic N Acquisition Depend on

Sampling Time over the Vegetation Period
The uptake of ammonium-N and glutamine-N by infested Scots
pine is influenced by sampling time during the vegetation period
and thereby strongly linked to the life cycle of the nun moth. N
uptake capacity was reduced during the insect mass outbreak.
Changes of inorganic and organic N uptake at different times
during the vegetation period have been investigated in previous
studies (Simon et al., 2011; Dong et al., 2016). However, in the
present study the observed changes were only found for infested
trees, but not for control trees, suggesting a link to the increasing
population size of the nun moth with a population peak at the
main defoliation event. Rising spring and summer temperatures
and increased evapotranspiration might exacerbate the decline
of external N acquisition, thereby adding stress to the already
physiologically impaired trees (Heinzdorf, 2013). N uptake is
strongly related to water as well as N availability (Gessler et al.,
1998; Stoelken et al., 2010; Li et al., 2015; Dong et al., 2016).
Furthermore, N acquisition is species-specific and depends on
current tree N nutrition (Näsholm et al., 2009; Gruffman et al.,
2014). The high ammonium net uptake capacity found in the
present study in spring—when nun moth activity is still relatively
low—suggests that insect mass herbivory already interacts with
tree internal regulation of N acquisition at early insect infestation.
The present data also suggest that infested trees might face
difficulties replenishing their N reserves from external sources
after winter by N uptake in case of an insect mass outbreak.

Enrichment of Total N in Roots and Remaining

Needles of Infested Trees as a Compensatory

Response to Insect Defoliation
In response to insect herbivory and defoliation, Scots pine trees
accumulated N in fine roots and remaining needles. This increase
in total N concentration is not a result of enhanced N acquisition
from the soil (see above), but rather due to an increase in levels
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of total soluble protein-N, amino acid-N, and structural N that
is meditated by tree internal sources. Second-year needles are
the major storage pool for N in Scots pine trees (Millard et al.,
2001). N stored in these needles might serve as buffer against
short-term fluctuations in N supply (Millard and Grelet, 2010),
for example when N acquisition by the roots is reduced during
an insect mass outbreak. N in needles covers up to 60% of the
tree’s N demand for the next vegetation period, thus playing a
key role in tree regeneration after partial defoliation (Millard
and Grelet, 2010; Polacco and Todd, 2011). For example, a 50%
defoliation of mountain beech (Betula pubescens ssp. tortuosa
Ehrh.) by autumnal moth (Epirrita autumnata Borkhausen) lead
to a N accumulation of the remaining leaves, most likely in form
of Rubisco (Ribulose-1,5-bisphosphate carboxylase; Hoogesteger
and Karlsson, 1992; Palacio et al., 2012), thereby stimulating the
rate of photosynthesis of the remaining leaves as compensatory
reaction (Lovelock et al., 1999). In general terms, the increase in
N pools in needles and fine roots might serve different purposes:
(1) Amino acid levels might increase in direct response to N
fertilization in different plant parts of adult Scots pine (bark,
wood, foliage: Nordin et al., 2001; needles: Näsholm and Ericsson,
1990; roots: Ahlström et al., 1988). (2) As a consequence of
defoliation, tree water balance is disturbed (Bréda et al., 2006),
because of an imbalance between root water uptake and leaf
transpiration (Aroca et al., 2012). Accumulation of amino acids
serving as osmoprotectants (Griffin et al., 1991) enables the tree
to maintain water uptake and, consequently N supply, even
when water-stressed (Fotelli et al., 2002; Rennenberg et al., 2006).
(3) The N stored in the remaining needles in the canopy is
also invested in the production of defense compounds, such
as phenolics and lignin (Millard and Grelet, 2010; Fang et al.,
2016). On the other hand, higher nitrogen contents can benefit
herbivores by improving the nutritional quality of the host
plant. However, plant defense compounds also depend on the
trees N content, which in turn has negative impacts on the
insect’s growth and survival (Kytö et al., 1996). Furthermore,
roots produce organic exudates (e.g., amino acids) against
secondary infestations with pathogenic root feeding bacteria,
fungi, and insects (Bezemer and van Dam, 2005; Oliva et al.,
2016). Metabolites involved in aboveground defense are also
synthesized in the roots and then transported aboveground (Van
der Putten et al., 2001). In the study, the increase in structural
N, i.e., lignin, in the fine roots that can also be considered a
means of defense was seen only in autumn indicating a time-
delayed response to defoliation. Similar to the present study,
increased concentrations of total N, TAA-N, and TSP-N in
needles were found in studies investigating eastern hemlock
infested with hemlock wooly adelgid (e.g., Stadler et al., 2005;
Gómez et al., 2012; Rubino et al., 2015; Soltis et al., 2015). With
72% we measured an even stronger increased TSP-N content in
infested Scots pine needles during main defoliation compared to
control trees. In contrast, TAA-N concentrations in needles were
significantly higher only in spring and autumn, which could be
the result of protein breakdown of infested needles during the
main defoliation period (Krasensky and Jonak, 2012). The amino
compounds produced could be allocated to non-infested needles
thereby contributing to its enhanced N content. Apparently,

defoliation by the nun moth has consequences at the whole-
tree level and mediates responses not only in the most affected
plant tissues (i.e., needles). When N acquisition by the roots is
reduced as a response to insect mass herbivory, although soil N
availability is high, internal reallocation of N seems to be a means
to counteract the biotic stress.

Besides internal reallocation of N, tree carbon (C) resources
and/or internal allocation might change in course of defoliation
as net photosynthesis decreases when major parts of a tree’s
green tissue are lost (l-M-Arnold et al., 2016). Together with
an accumulation of N in response to defoliation (as observed
in the present study), C storage compounds might increase as
well, as has been found for various tree species, such as black
pine (Pinus nigra J.F.Arn., Palacio et al., 2012), eastern hemlock
(T. canadensis L., Soltis et al., 2015), balsam fir (Abies balsamea
L., Deslauriers et al., 2015), and red oak (Q. rubra L., Frost
and Hunter, 2008). This increase in C might support re-growth
after defoliation (Palacio et al., 2012) or serve as defense by
thickening cell walls via accumulation of C-rich cellulose and
lignin (Soltis et al., 2015). As a result C/N ratio would be more or
less constant, and indeed this was found in a study by Le Mellec
et al. (2009) for a Scots pine forest comparable to our study site,
both belonging to the same region of periodically reoccurring
insect mass outbreaks. Contrasting this, lower needle C/N ratios
were observed in three pine species (Pinus pinaster A., P. nigra
J.F.Arn., P. sylvestris L.) defoliated by the pine processionary
moth (Thaumetopoea pityocampa Den.Schiff.) indicating an
overbalance of N accumulation in comparison to C accumulation
(Hódar et al., 2015).

Overall, nun moth defoliation has been shown to reduce
annual tree growth of Scots pine, which can be explained
by inhibited water and nutrient supply and reduced
photosynthetically active tissue (Beker, 1996). With >90%
needle loss in one vegetation period, a threshold is reached for
Scots pine leading to significantly decreased tree growth and
increased mortality rates (Cedervind and Langstrom, 2003),
which might become even more severe with multiple consecutive
years of severe defoliation (Van Asch and Visser, 2007).

CONCLUSIONS

The studied insect mass outbreak had significant impact on forest
soil N cycling as well as N nutrition of Scots pines. Both, N input
and output of the humus layer in the forest soil were strongly
related to the biomass loss in response to the massive insect
herbivory. To compensate for the aboveground losses of biomass,
trees can either increase root N acquisition for the stimulation of
growth processes (Lovett and Tobiessen, 1993) or can reallocate
N from internal sources. The present study suggests reallocation
of N from internal sources, because inorganic and organic N
acquisition of tree roots was reduced in spite of increased soil N
availability, whereas total N, structural N, soluble amino acid-N,
and soluble protein-N levels were increased in fine roots and the
remaining needles. However, N in- and output fluxes in the soil
and within trees vary depending on environmental factors, such
as climate, soil type, insect population dynamics, and outbreak
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intensity (Jung, 2008; Gallet-Budynek et al., 2009; Keville et al.,
2013). Our study investigated the consequences of an insect
mass outbreak only for the duration of one vegetation period,
but not potential recovery of the surviving trees. Thus, further
studies are required to gain further insights into these complex
processes.
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