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In plants many developmental processes are regulated by auxin and its directional
transport. PINOID (PID) kinase helps to regulate this transport by influencing polar
recruitment of PIN efflux proteins on the cellular membranes. We investigated how
altered auxin levels affect leaf growth in Arabidopsis thaliana. Arabidopsis mutants and
transgenic plants with altered PID expression levels were used to study the effect on
auxin distribution and leaf development. Single knockouts showed small pleiotropic
growth defects. Contrastingly, several leaf phenotypes related to changes in auxin
concentrations and transcriptional activity were observed in PID overexpression (PIDOE )
lines. Unlike in the knockout lines, the leaves of PIDOE lines showed an elevation in total
indole-3-acetic acid (IAA). Accordingly, enhanced DR5-visualized auxin responses were
detected, especially along the leaf margins. Kinematic analysis revealed that ectopic
expression of PID negatively affects cell proliferation and expansion rates, yielding
reduced cell numbers and small-sized cells in the PIDOE leaves. We used PIDOE lines as
a tool to study auxin dose effects on leaf development and demonstrate that auxin,
above a certain threshold, has a negative affect on leaf growth. RNA sequencing
further showed how subtle PIDOE-related changes in auxin levels lead to transcriptional
reprogramming of cellular processes.

Keywords: auxin, cell division, cell expansion, kinematic analysis, leaf growth and development, PINOID (PID),
RNA-sequencing

INTRODUCTION

For agronomical reasons and to improve our knowledge of organ size control in multicellular
organisms it is important to understand the genetic basis and the encoded molecular circuitry
regulating the growth of organs such as leaves (Powell and Lenhard, 2012; Nelissen et al., 2014;
Czesnick and Lenhard, 2015; Vanhaeren et al., 2015). Leaf initiation occurs at the periphery of
the shoot apical meristem (SAM) where a few stem cells start to proliferate and develop into a
primordium, which subsequently grows out to form a leaf. These latter stages of growth are solely
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defined by two distinct but overlapping processes: cell
proliferation that results from cell division (cell cycle activity),
and subsequent cell expansion, driven by vacuolar expansion
and cell wall extension through the activity of numerous cell
wall modifying proteins (Green, 1976; Green and Bauer, 1977;
Beemster and Baskin, 1998; Donnelly et al., 1999; Cosgrove,
2000, 2001; De Veylder et al., 2001; Breuninger and Lenhard,
2010; Wolf et al., 2012; Kalve et al., 2014; Szymanski, 2014).
Though overlapping, these two processes are separated in time,
allowing kinematic growth analysis to calculate average rates of
cell division and expansion. Such studies provide insights into
the variation in cellular processes and help to understand how
the activity of individual cells defines the fate of a mature leaf
(Silk and Erickson, 1979; De Veylder et al., 2001).

The plant growth hormone auxin regulates leaf growth
and development by controlling leaf positioning, initiation,
differentiation and venation patterning (Reinhardt et al., 2000,
2003; Benkova et al., 2003; Scarpella et al., 2006). Local
auxin accumulation mediated by PIN-FORMED1 (PIN1) efflux
proteins specifies the site of leaf primordium initiation, while
its depletion from the proximity inhibits the formation of
additional primordia (Reinhardt et al., 2003; Heisler et al., 2005;
Vernoux et al., 2010). Basipetal transport of auxin through the
subepidermal layers of a developing primordium leads to the
formation of a midvein and lateral veins (Scarpella et al., 2006).
Auxin also influences formation of leaf serrations by generating
PIN1 localization-driven auxin maxima in the lobes at the leaf
margin (Hay et al., 2006; Bilsborough et al., 2011). In brief, auxin
transport not only plays a pivotal role in early leaf initiation,
but also in the later phases sculpting mature leaf shape and
form.

Directional flow of auxin occurs by active polar transport
with the help of AUXIN1/LIKE AUX1 (AUX/LAX) influx
carriers and efflux carriers such as PINs and ABC transporters
(Křečk et al., 2009; Kang et al., 2011; Swarup and Péret,
2012). Disruption of this auxin transport causes defects in
many developmental and growth-related processes (Friml, 2003).
PINOID (PID) is an early auxin-inducible gene belonging to
the AGC VIII group of protein-serine/threonine kinases (Robert
and Offringa, 2008) that plays a major role in the control
of polar auxin transport (PAT; Bennett, 1995; Christensen
et al., 2000; Benjamins et al., 2001). PID plays a controlling
role in PINs’ subcellular distribution, since changes in PIN1,
PIN2, and PIN4 localization in the plasma membrane switches
from the basal to the apical side of the cell when PID
abundance passes above a certain threshold (Friml et al.,
2004).

Here, we show the effect of altered PID expression on
auxin and we study the effect of these changes on Arabidopsis
leaf growth. While pid knockouts had no significant changes
in total auxin levels, PIDOE contrastingly, accumulated auxin
in the leaves. Previous reports showed that allelic mutants
of pid show pleiotropic growth defects (Bennett, 1995) and
PIDOE lines display an agravitropic root phenotype and reduced
number of lateral roots (Benjamins et al., 2001). However, leaf
phenotyping, especially with cellular resolution, has not received
much attention. In our study, PIDOE lines showed a strikingly

reduced rosette growth, encouraging us to study the cellular and
genetic basis of this interesting phenotype.

MATERIALS AND METHODS

Plant Material and Growth Conditions
Seedlings of Arabidopsis thaliana Col-0 ecotype were grown in
half strength Murashige and Skoog (MS) medium including
vitamins (Duchefa, The Netherlands), containing 1% sugar,
0.5 g/L MES buffer and 0.7% agar at 21◦C with a light intensity
of 70–90 µmol m−2s−1 in long day conditions. Prior to sowing,
seeds were sterilized with 70% ethanol for 30 s, subsequently
with 5% bleach and sterile water. Knockout T-DNA insertion
lines were obtained from NASC. The pid-14 mutant was the
SALK_049736 line as reported by Haga et al. (2014). The two
PIDOE lines, P10 and P21, were developed by Benjamins et al.
(2001) by cloning the PID cDNA in sense orientation behind the
strong Cauliflower Mosaic Virus 35S promoter (35S::PID) and
introducing it into A. thaliana ecotype Columbia (Col).

Microscopic Morphological Analysis and
Kinematic Growth Analysis
Rosette pictures were taken from three replicate plates using a
Cannon EOS 40D camera. Leaves were cleared overnight with
70% ethanol, followed by 100% lactic acid. Cleared leaves were
then pictured under a Nikon AZ-100 macroscope equipped with
a Nikon DS-Ri1 digital camera. Pictures of young leaves and
epidermal cells were taken with a Nikon C1 confocal microscope
(Nikon, Belgium) using 20–60× lenses depending on the age.
Three leaves, with an area close to the average, were chosen for
drawing cells in ImageJ1. The drawn cell pictures were saved as
eight bit and 2556 × 2045 size, in jpeg format and later analyzed
in a linux-based software and used for further calculations as in
Andriankaja et al. (2012). Cell measurements for the petiole were
made by staining petioles in propidium iodide as mentioned in
Wuyts et al. (2010) followed by visualization using a Nikon C1
confocal microscope.

Transverse Sectioning
In brief, fixed leaves were dehydrated by sequential incubation in
different concentrations of ethanol and embedded in Technovit
7100 resin (Kalve et al., 2015). Using a rotary microtome, 5 µm
thick sections of the middle part of leaves were made, stained and
mounted on slides before visualization.

GUS Staining
Whole plants were cleared in acetone for 10 min followed
by a 10 min treatment with GUS solution (Phosphate buffer
(pH 7), 0.1% Triton X-100, 0.5 mM K4[Fe(CN)6].3H20, 0.5 mM
K3[Fe(CN)6]) without X-gluc before being kept at 37◦C in GUS
staining solution with X-gluc (958 µM X-gluc dissolved in 1%
DMSO). Samples were fixed with ethanol:acetic acid (3:1) after
3–5 h and cleared with 8 M NaOH before mounting on slides.

1http://rsbweb.nih.gov/ij/
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Auxin Quantification
To measure concentrations of free and conjugated IAA, leaves
1 and 2 were harvested every day from 9 to 25 DAS. The
analyses were repeated twice as independent experiments and
from multiple plates in each experiment. Dissected samples
were collected, frozen in liquid nitrogen, and ground using
a MagNALyser (Roche) with 2 mm glass beads. IAA was
extracted based on Prinsen et al. (2000). Homogenized leaves
were extracted overnight in 80% methanol (10 ml/g fresh weight).
C6

13-phenyl-IAA (150 pmol, Cambridge Isotope Laboratories
Inc., Andover, MA, United States) was added as internal
standard. After centrifugation (20000 g, 15 min, 4◦C, 5810R,
rotor FA-45-30-11 Eppendorf, Hamburg, Germany), part of the
supernatant was passed over a C18 cartridge (500 mg, Varian,
Middelburg, The Netherlands) to retain pigments. The effluent
was then diluted to 50% methanol and concentrated on a
DEAE-Sephadex (2 ml, GE Healthcare Bio-Sciences AB, Uppsala,
Sweden) anion exchange column for the analysis of free IAA.
The DEAE cartridge was eluted with 10 ml 6% formic acid and
IAA was concentrated on a C18 cartridge coupled underneath.
This C18 cartridge was then eluted with 2 × 0.5 ml diethylether
and the ether was evaporated (Turbovap), dissolved in acidified
methanol and methylated with diazomethane. The samples were
subsequently dried under a nitrogen stream and dissolved in
50 µl 10% MeOH. For small biomasses, samples were diluted
in 6% formic acid and immediately concentrated on a C18
cartridge omitting the DEAE anion exchange cartridge. The
remaining part of the supernatant was diluted 1/2 with 14 N
NaOH and hydrolysed at 100◦C for 3 h under a water saturated
nitrogen stream. After hydrolysis, samples were titrated to pH-3
with 1 M HCl, diluted 1/10 with water and concentrated on a
C18 cartridge as described above for free IAA (Prinsen et al.,
2000).

Indole-3-acetic acid was analyzed by UPLC-MS/MS
(Acquity TQD, Waters, Manchester, United Kingdom)
(6 µl injection by partial loop, column temp. 30◦C, solvent
gradient 0–2 min: 95/5; 10% MeOH in NH4OAc 1 mM/MeOH;
2–4 min linear gradient until 10/90 10% MeOH in NH4OAc,
1 mM/MeOH; 4–6 min, isocratic 10/90 10% MeOH in NH4OAc
1 mM/MeOH; MS conditions: Polarity MS ES(++), capillary
2 kV, cone 20 V, collision energy: 20 eV, source temperature:
120◦C, desolvation Temperature: 450◦C, Cone gas flow
50l/h, desolvation gas flow: 750 l/h, collision gas flow:
0.19 ml/h). For quantification we selected the diagnostic
transitions 190 > 130 m/z for Me-IAA and 196 > 136 m/z
for Me-C13-IAA (dwell time 0.020 s) using Masslynx and
Quanlynx software (V4.1, Waters). Methanol and water
used for MS were UPLC grade (Biosolve, Valkenswaard, The
Netherlands). Data are expressed in pmol per gram fresh weight
(pmol.g−1FW).

Flow Cytometry
Leaves were harvested as for auxin quantification. Prior to
analysis the frozen leaves (kept on dry ice) were chopped with
a single edge razor blade in 200 µl Crystain UV precise P
Nuclei extraction buffer (Partec) and 800 µl Cystain fluorescent
buffer (Partec). The mix was filtered through a 50 µm CellTrics

filter and transferred to a glass tube. At least 10,000 nuclei
were analyzed with a CyFlow flow cytometer and the FloMax
software (Partec) in six independent biological replicates for each
genotype. Endoreduplication index was calculated as

EI = 0∗2C+ 1∗4C+ 2∗8C+ 3∗16C.

Confocal Imaging
Seedlings of DR5rev::GFP and crossed with PIDOE lines were
stained with propidium iodide (0.1 mg ml−1) for visualization
of cell walls. A Nikon C1 confocal microscope (Nikon, Brussels,
Belgium) was used for GFP visualization.

Expression Profiling
For expression analysis RNA was isolated using Purelink Plant
RNA reagent (Ambion Life Technologies) and quantified with
a nanodrop NZ 1000 (Thermo scientific). An average of 1 µg
of RNA was used for first strand cDNA synthesis using RQ1
RNase-Free DNase treatment and the GoScriptTM Reverse
Transcription System (Promega). A PCR of 30 cycles, using ACT
8 primers and gene specific primers spanning the intron region,
was performed with 54◦C as annealing temperature (primers in
Supplementary Table 1). The time course SyBr green assay for
qPCR was accomplished as per the developer’s protocol using
ROX SYBR Mastermix blue dTTP (Takyon) and a Step one
plus thermocycler (Life technologies). This was done as three
biological and technical repetitions using ACT8 as the reference
gene. The results were analyzed as 11CT comparison with the
StepOnePlusTM Real-Time PCR System (Life TechnologiesTM)
software with a confidence level set at 95%.

RNA Sequencing
Eighteen RNA samples, originating from the first pair of leaves at
9 and 16 DAS and from WT and PIDOE lines were commercially
sequenced using the IlluminaTM platform. Prior to library
preparation the RNA quality and integrity was assessed per
IlluminaTM guidelines. Library preparation was done using the
TruSeq R© Stranded mRNA sample preparation 96-reaction kit
(IlluminaTM) following the low sample protocol according to
manufacturer’s recommendations. In brief, approximately 2.5 µg
of total RNA was diluted and purified using RNA purification
beads targeting the poly-A tail of the mRNA and this was
subsequently fragmented by means of the enzymes provided
in the kit. After the cDNA synthesis adenylation of 3′ ends
and ligation of the adaptors were performed. Adaptors were
ligated in 12-plex formations, allowing the pooling of 12 samples.
Subsequently, the library was quantified using PicoGreen R©

dye (Life TechnologiesTM) as described in the manufacturer’s
protocol. To accurately quantify the concentration in nM
of the sample, the Kapa SYBR R© FAST universal qPCR kit
(Kapa BiosystemsTM) for IlluminaTM sequencing was used
to quantify the number of the amplifiable molecules in the
library and the Bioanalyzer R© machine (Agilent TechnologiesTM)
to determine the average fragment size. These measurements
allowed optimizing the flow cell clustering prior to the Run.
The library was 50 bp pair-end sequenced in one lane of an
IlluminaTM HiSeq1500 sequencer.
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Data Analysis
Resulting sequence data was preliminary analyzed by CLC
Genomics Workbench v.6 using Arabidopsis thaliana (Col-0
TAIR10) sequence database2 as reference genome. The RNA-Seq
analysis was carried out for sequence reads obtained from the
three genotypes. Throughout the analysis with CLC default
settings were used. Briefly, after the trimming of the sequences
they were mapped against the reference genome with the
default settings. The expression values were calculated based on
“reads per kilo base of exon model per million mapped reads”
(RPKM) values (Mortazavi et al., 2008). The RNA-seq data was
grouped accordingly and two group comparisons (unpaired)
were performed. The expression values were normalized by
scaling to the default setting of 10 million reads, and the
proportions were compared using Baggerley’s test (Baggerly et al.,
2003). All significantly induced or repressed genes with known
functions were classified into groups based on gene ontology
(GO) information obtained from the TAIR Database2 by using
MapMan (Thimm et al., 2004) and overrepresented functions and
gene enrichment studies were carried out by PageMan (Usadel
et al., 2006) and Cytoscape (using the BiNGO plugin) software.

Statistics
All the measurements were analyzed by t-test (P < 0.05) using
the R statistical package3. Conditions of normality of distribution
and homogeneity of variance were checked and met.

Accession Number
The Arabidopsis Genome Initiative locus identifier for the PID
gene is AT2G34650.

RESULTS

Spatiotemporal Expression Pattern of
PID
To better understand the role of PID-directed auxin transport
in leaf development, we first studied PID-expression during the
development of the Arabidopsis leaf. pPID::GUS lines showed
high levels of PID expression in the shoot apical meristem and
in the newly formed primordia. Later during leaf development,
expression became restricted to the vasculature of expanding
leaves (Figure 1A). The spatial and temporal activity of the
PID promoter pointed toward a stage-specific role in leaf
development.

Characterization of PID Mutants
Semi-quantitative RT-PCR at 9 DAS (days after stratification) on
the leaves of wild type (WT) and two PID overexpression (PIDOE)
lines, P10 and P21, showed a clear increase in PID expression
in both lines (Supplementary Figure 1). qPCR analysis on single
pid mutants (pid-14, SALK_082564, SALK_009478) detected a
decreased to nearly absent PID expression in the seedlings at

2www.arabidopsis.org
3https://www.r-project.org/

7 DAS (Figure 1B). A time series of qPCR analyses confirmed
the overexpression in both PIDOE lines and revealed that in early
growth stages (9 and 12 DAS) overexpression was highest in P21.
Interestingly, in expanding and mature tissues (16 and 22 DAS)
PID transcript level was highest in P10 (Figure 1C).

IAA Measurements
Since PID is an auxin transport regulator we measured
IAA (indole-3-acetic acid) concentrations throughout the
development of the first pair of leaves from 9 to 25 DAS in
PIDOE lines and at two time points in pid knockout lines (due to
comparatively weaker phenotypes; see later). pid knockouts had
no significant difference in free or conjugated IAA levels in the
leaves compared to the WT at 16 DAS, while both knockouts
(pid-14 and SALK_009478) showed elevated free IAA levels at
22 DAS. However, the total IAA pool (free IAA + conjugates)
remained unchanged compared to the WT (Figures 2A,B). PID
overexpression, on the other hand, led to increased free IAA and
IAA-conjugate levels in the leaves. Over time, free IAA levels
dropped in the WT, whereas this was not obvious in both PIDOE

lines (Figure 2C). After D16, the free IAA levels also started
to drop in the PID lines, in P21 almost to WT levels, whereas
they remained significantly higher in P10. In the early days, P21
had comparatively higher IAA-conjugate levels and interestingly,
later on, it was intermediate to P10 and WT (Figure 2D).

Auxin Response and Transport in the
Leaves of WT and PID Overexpression
Lines
Since PID overexpression has a positive effect on auxin levels,
this could consequently alter auxin signaling across the leaf. To
investigate the effects of PIDOE on auxin signaling we compared
the DR5::GUS and DR5rev::GFP sensors in the wild type and
PID overexpression backgrounds. Analysis of the leaves clearly
showed that PIDOE resulted in a more pronounced accumulation
of GUS and GFP signal in the top of the leaf blade and around the
leaf margins, compared to WT plants (Figures 3A,C,E,G,I,K).
In addition, the signal was clearly visible in the root apex of the
WT, but was lower to nearly absent in the collapsed roots of
both P10 and P21 lines (Figures 3B,D,F,H,J,L). Quantification
of signal intensity from the leaves of DR5rev::GFP lines proved
the increased GFP signal in the PID overexpression background
(Figures 3M,N).

Pleiotropic Growth Defects of PID
Overexpression Lines and pid Mutants
Rosettes and leaves of knockouts showed distinct morphological
changes (Figures 4A–C) including a slightly bigger rosette area
(15% in SALK_009478; Figure 4A and Supplementary Figure 2A)
and the presence of one or two additional leaves compared
to wild type as previously reported by Bennett (1995) in the
allelic pid mutant lines (Figure 4B). The blade areas of the
first pair of leaves of the knockout mutants were similar to the
WT (Figure 4C). Cellular image analysis showed no significant
differences between WT and the knockouts in terms of cell
number per leaf and average cell area (Figures 4D,E). pid-14,
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FIGURE 1 | Spatio-temporal expression of PID in Arabidopsis plants. pPID::GUS line with expression in shoot apical meristem and the proliferating leaves at 9 DAS
(i, ii); and at 14 and 17 DAS in the expanding leaves (iii, iv) (A). Expression profiling of T-DNA insertion mutants and overexpression lines of PID. SyBr green qPCR
assay using the seedlings of pid mutants at 7 DAS (B) and leaves of PID overexpression lines at different time points (C). Asterisks mark the difference between WT
and mutants (B). Data are averages ± SE (t-test, P < 0.05); n = 3; Scale bar 100 µm (i) and 500 µm (iii, ii, iv).

FIGURE 2 | Indole-3-acetic acid (IAA) measurements. Analysis of free (A) and conjugated IAA (B) in wild type and pid mutants. Analysis of free (C) and conjugated
IAA (D) in PIDOE , P10 and P21 from proliferating, expanding and mature first pair of leaves. Error bars represent averages ± SE (t-test, P < 0.05). Asterisks mark
significant differences between different lines and the wild type (gray: WT vs. P10, black: WT vs. P21 in C,D).

SALK_082564 and SALK_009478 occasionally showed three
cotyledons (Supplementary Figure 2B). In the mutants with three
cotyledons, the first leaf pair developed alternate to cotyledons
instead of opposite as in the normal phyllotaxy (Supplementary
Figure 2C). Homozygous lines of pid-14 (Bennett, 1995; Haga
et al., 2014) and SALK_082564 were sterile and had a pin-like
inflorescence (Supplementary Figures 2D,E). However, as leaf

growth was not drastically affected in these knockout lines, they
were not included in the subsequent detailed leaf development
studies.

In contrast, both PIDOE lines, P10 and P21, had significantly
smaller rosettes (82 and 67%, respectively) than the WT at
22 DAS, (Figures 4F,G). Leaf series of the three lines also
indicated that fewer leaves were formed on the individual
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FIGURE 3 | Effect of PID overexpression on auxin signaling in Arabidopsis. GUS assay with DR5::GUS (A,B); DR5::GUS in PIDOE P10 (C,D) and P21 background
(E,F) at 9 DAS in the leaves and roots. Confocal images with DR5rev::GFP signal in control (G,H) and DR5rev::GFP × PIDOE P10 (I,J) and DR5rev::GFP × PIDOE P21
(K,L). Measurements of intensity of GFP signal (M) and count of nuclei expressing GFP using the leaves from various mutant lines (N). Asterisks indicate significant
differences between the transgenic lines and the wild type. Error bars represent ± SE (t-test, P < 0.05). Scale bar 100 µm for GUS assay and 50 µm for confocal
images.

rosettes, 10 ± 2 in WT and 6 ± 1 in PIDOE lines (Figures 4H,I).
In addition, using leaves 1 and 2, which are indistinguishable
in their morphology and have synchronized growth, we showed
that P10 and P21 had 60 and 52% smaller mature leaf
blade areas than the WT (Figure 4J). Petioles were small in
PIDOE lines, mainly due to fewer cells and not to their sizes
(Supplementary Figures 3A–C). Transverse sections of leaves
in the expansion phase revealed that increased PID levels
not only affected leaf growth in the horizontal plane of the
blade, but also in the dorsoventral direction. Transverse sections
showed a clear increase in thickness of the leaf in P10 and a
slighter increase in P21, compared to the WT (Supplementary

Figures 3D–F). While the number of layers remained unchanged,
spongy palisade cells were clearly enlarged in the dorsoventral
direction (Supplementary Figures 3G,H). Consistent with earlier
observations (Kleine-Vehn et al., 2009) both overexpression lines
showed a thick vasculature system (Supplementary Figures 3I–L).

Kinematic Growth Analysis
To understand the cellular basis of the leaf phenotype due to the
altered auxin levels, we performed a kinematic analysis of the
first leaf pair. From 6 to 28 DAS, we measured rosette area of
WT and the two PIDOE lines from approximately 100 seedlings
(performed in duplicates). P10 had a 20% larger rosette than WT
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FIGURE 4 | Phenotypes of PID overexpression lines and pid mutants in Arabidopsis. Rosette area of pid knockouts at 22 DAS (A). Leaf series at 25 DAS (B). Leaf
blade area in pid knockouts (C). Cell number (D) and average cell area (E) in first pair of leaves in pid knockouts. Figure showing mature rosettes at 22 DAS in WT
and PID overexpression lines (F). Rosette area measurements at 22 DAS (G). Leaf series (H) and leaf series measurements at 25 DAS starting from oldest (first L1,
L2) to youngest leaves (L9-L11; I). Leaf area measurements for the first leaf pair (J). Asterisks indicate significant differences with the wild type. Error bars
represent ± SE (t-test, P < 0.05). Scale bar = 10 mm.

in the early growth phases (Figure 5A), most likely due to its
bigger seed size (Supplementary Figure 4). At 28 DAS, however,
P10 (60.0 ± 5.5 mm2) and P21 (110.1 ± 6.5 mm2) rosettes were

smaller than those of the WT (406.8 ± 25.7 mm2). From the
same seedlings that were used for the rosette measurements, six
average sized leaves were harvested daily for measurement of
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FIGURE 5 | Kinematic growth analysis of the first leaf pair of Arabidopsis wild type and PID overexpression lines. Rosette area, n = 40–50 (A). Leaf blade area,
n = 24–26 (B). Average cell number in a leaf, n = 6 (C). Average cell area, n = 6 (D). Relative leaf expansion rate (E). Cell division rates (F). Insets show the same on
a linear scale. Error bars represent averages ± SE of two replicate experiments.

leaf blade area (Figure 5B) and calculation of leaf expansion
rate (Figure 5E). At 28 DAS, there was a 55 and 52% reduction
in the size of mature leaves in P10 and P21 compared to the
WT, respectively. Differences in leaf expansion rates were most
prominent between 10 and 15 DAS, where the WT exhibits higher
expansion rates than both PIDOE lines, resulting in the larger leaf
area (cf. Figures 5B,E).

The detailed cellular analysis showed that during the early
stages of leaf development, cell proliferation was fairly similar
in the three lines. The differences lay in the duration of cell
formation, as P21 stopped to proliferate from 10 DAS onward
(Figure 5C), cell formation in P10 was arrested around 12 DAS,
whereas the WT still produced new cells until 15 DAS, resulting
in more pavement cells in mature WT leaves compared to the
two PIDOE lines. This difference was also reflected in the cell
division rate where between 10 and 17 DAS the WT still exhibited
a significant division rate, whereas the rates in the PIDOE lines
were close to zero in this period (Figure 5F). Surprisingly we
observed an overall reduction in the stomatal index, i.e., the
ratio of guard cells and the total number of epidermal cells, in
the PIDOE lines, suggesting an affected meristemoid cell division
process (Supplementary Figure 5). From 12 DAS on, cell size of

PIDOE lines lagged behind those of the wild type. The difference
in cell area between WT and P10 extended to the mature phase.
The pavement cell area of P21 leaves, however, catched up from
16 to 17 DAS onward (Figure 5D).

In addition, the convexity of epidermal pavement cells differed
between the WT and the two PIDOE lines between 12 and
22 DAS (Figure 6A). As defined by Hectors et al. (2010) convexity
is the cell area in relation to the area of its convex hull.
More complex cell shapes have lower convexity values and it
approaches 1 for spherical cells. We used CellP software for
calculating cell convexity for the jigsaw-shaped adaxial pavement
cells. Epidermal cells in PIDOE leaves were less complex, but this
could be associated with a smaller average size rather than the
effect of PID overexpression on cell shape differentiation. Indeed,
the relationship between cell area and convexity appears to be
unaffected in both PIDOE lines (Figure 6B).

Endoreduplication Index
In Arabidopsis, the size of pavement cells shows a positive
correlation with DNA-ploidy levels, determined by the number
of endocycles (successive rounds of DNA replication in the
absence of mitosis) they have undergone (Melaragno et al.,
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FIGURE 6 | Cell shape and endoreduplication in wild type and PID
overexpression lines. Comparison of pavement cell convexity in the abaxial
epidermal layer at different time points between WT, P10 and P21 (A).
Convexity and cell area correlation between different genotypes over time (B).
Comparison of ploidy status (EI = 0∗2C+1∗4C+2∗8C+3∗16C) of various lines
by means of number of endocycles undergone by nuclei (C). Error bar ± SE
(t-test, P < 0.05). Gray and black asterisks represent significant difference of
P10 and P21 compared to the WT, respectively.

1993). Therefore, we measured ploidy levels and the number of
endoreduplication cycles using flow cytometry at different time
points during development. Consistently, the endoreduplication
index was reduced in PIDOE lines compared to WT throughout
development (Figure 6C). In contrast, in P21, ploidy levels
were initially lowest, but increased to wild type levels from the
expanding stage onward, paralleling the development of cell size
(Figure 5D) and reflecting the PID expression and IAA levels in
P21 at that stage (Figures 1C, 2C,D).

Transcriptome Analysis by RNA
Sequencing
To understand the transcriptional changes induced by increased
auxin levels that led to reduced cell division and expansion,
we performed RNA sequencing on proliferating (9 DAS) and
expanding (16 DAS) leaves of PIDOE and WT (Supplementary

Data 1). Collectively, 3805 genes were differentially expressed at
least in one condition using FDR-corrected p-value < 0.05 and
log2 fold change > 0.75, between PIDOE and WT (Supplementary
Data 2). There was only little overlap in number of genes
differentially expressed between P10 and P21 (Figure 7A).
Clustering of differentially expressed genes was done by QT-Clust
analysis (Pearson correlation; cluster diameter-0.8, minimum
cluster size-15). Clusters 1, 2, 4, 5, and 6 show that the effect of
P21 was strongest in proliferating tissues (at 9 DAS) and Clusters
1 and 2 reflect the prominent effect of P10 in the expanding
tissues (at 16 DAS) (Figure 7B). These patterns therefore closely
correlate with PID expression (Figure 1C) and IAA accumulation
(Figures 2C,D) at these stages.

PageMan gene enrichment analysis for significantly induced
and repressed genes showed that upregulated biological
categories included carbohydrate metabolism and glycolysis,
photorespiration, cell wall modifications (cellulose and
hemicellulose synthesis etc.), secondary metabolite synthesis,
biotic-abiotic stress, signaling and transport. Pathways that
were enriched among downregulated genes included the TCA
cycle, redox, nucleotide and amino acid metabolism (Figure 8).
In general, hormone metabolism-related genes indicated
upregulation of jasmonic acid, gibberellins and ABA metabolism
(Supplementary Data 2; Saini et al., submitted results).

Auxin Related Transcriptional Changes in
the PID Overexpression Lines
To understand the reason for high auxin levels and response
in PIDOE lines, we studied the transcriptional changes of genes
related to auxin homeostasis and signaling in more detail
using the first leaf pair. None of the auxin biosynthesis genes
(based on the review, Woodward and Bartel, 2005) showed
changes in their expression levels except YUC8, which was
downregulated at 16 DAS in both PIDOE lines, whereas genes
related to conjugation pathways varied over time and between
the lines (Figure 9). An IAA deconjugating gene, IAA-LEUCINE
CONJUGATE HYDROLASE (ILR1), showed upregulation in
P10 at 16 DAS. The auxin-inducible GRETCHEN HAGEN3
(GH3) class of genes encodes IAA-amido synthetases, which
convert excess free IAA to IAA-amino acid conjugates, and
therefore controls endogenous auxin levels (Staswick et al.,
2005). Downregulation of GH3.6 at 9 DAS and upregulation
of GH3.9 at 16 DAS (∼2-fold in P10 and ∼4-fold in P21)
indicated that the shift between deconjugation and conjugation
between the two time points could have contributed to the
gradually increasing and then decreasing levels of free IAA.
Also, INDOLE-3-BUTYRIC ACID RESPONSE (IBR1 and IBR3)
genes, required for conversion of IBA to IAA (Korasick et al.,
2013), were upregulated in P10 at 16 DAS. The differences in
upregulation of conjugation and deconjugation genes between
the two lines could account for differences in their IAA pool in
later stages, as shown in Figures 2C,D.

Among the genes related to polar auxin transport, PIN1
showed a threefold increase in P10, PIN7 showed a twofold
increase in P21 at 9 DAS and in P10 at 16 DAS, whereas the influx
protein LAX3 showed a threefold decrease in P10. This could be
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FIGURE 7 | Transcriptome analysis of wild type and PID overexpression lines at 9 and 16 DAS. Overlap between differentially expressed genes as a result of PID
overexpression in P10 and P21 at two time points as shown by Venn diagram (A). Clustering of gene expression patterns by QT-Cluster analysis of significantly
changed genes. The number of genes in each cluster and cluster numbers are mentioned at the upper left corner (B).

interpreted as a potential change in influx and efflux of auxin
from cells in PIDOE leaves.

AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA), GH3, SMALL
AUXIN UP RNAs (SAUR), LATERAL ORGAN BOUNDARIES-
DOMAIN (LBD) are known as primary auxin responsive genes
and are directly regulated by Auxin Responsive Factors (ARFs;
Okushima et al., 2007; Paponov et al., 2008, 2009; Lee et al.,
2009). All the significantly changed ARFs (ARF1, ARF2, ARF3,
ARF18, and ARF5) and IAAs (IAA1, IAA11, IAA16, IAA19,
IAA24, IAA28, except IAA26) showed upregulation at different
time points in at least one of the genotypes. LBD1 and LBD26
showed a strong upregulation, while LBD38 and LBD39 showed
strong downregulation in both PIDOE lines (Figure 9). The
general upregulation of auxin response genes correlates with
the elevated auxin levels and observed increased DR5 activity
(Figures 2, 3).

Transcriptional Changes in Cell Division
and Expansion-Related Genes
To understand the effect of PID-induced auxin accumulation on
cell division and expansion at the transcriptional level, changes
in the expression levels of core cell cycle and cell wall-related
genes were investigated. The RNA sequencing data showed
modulations of many core cell cycle genes (based on Vandepoele
et al., 2002; De Almeida Engler et al., 2009), including the
downregulation of major cyclins (CYCA2;4, CYCB2;2, CYCD5;1,
and CYCH;1), Cyclin Dependent Kinase subunit 2 (CKS2),
ANAPHASE-PROMOTING COMPLEX (APC10 and APC8), the
E2F pathway genes, and KIP RELATED PROTEIN KRP3 and
KRP7, with the exception of upregulation of KRP1 and KRP2
(Supplementary Table 2). Together these results suggest that
PID-induced alterations in auxin levels could have affected the
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FIGURE 8 | PageMan representation of differentially expressed genes in two PID overexpression lines. Overrepresented biological pathways in PIDOE lines at
different time points are highlighted in blue. Upregulation and downregulation is as indicated in the legend above.

cell cycle through these genes, which could be interpreted as the
reason for suppressed proliferation during development.

In plants, the extent of cell expansion largely depends on
the biomechanical properties of their cell walls. The expression
levels of numerous cell wall-related genes (based on Mapman
notation; bin 11; Thimm et al., 2004) were affected in the
same sense in both PIDOE lines, though with a different
magnitude (Supplementary Table 3). Genes related to cellulose
and hemicellulose were upregulated in both lines. One of the
cellulose synthase genes involved in secondary wall formation,
CesA4 (IRX5) (Taylor et al., 2003), was upregulated in P10 at
16 DAS. Some cellulose synthase-like gene family (Csl) were
also among upregulated genes such as CslA, CslC, CslE, and
CslG family members in P21 at 9 DAS and P10 at 16 DAS.
Dynamic changes in cell area of PIDOE lines, especially in
P21 after 16 DAS, and the thicker leaves in P10 could also

be due to the changes in the cell wall modification proteins
such as xyloglucan endotransglucosylase/hydrolases (XTHs) and
expansins (Cosgrove, 2000; Nishitani and Vissenberg, 2007;
Van Sandt et al., 2007). Indeed, changes in alpha and beta
expansins and XTHs were observed in our transcriptome data
(Supplementary Table 3).

Transcriptional Regulation of Leaf
Development in PID Overexpression
Lines
According to a proposed model, MONOPTEROS (MP) and
PIN regulate vein formation under the influence of auxin,
where MP acts upstream of PIN and could also be regulating
PIN expression directly or indirectly (Wenzel et al., 2007).
MP and NONPHOTOTROPIC HYPOCOTYL 4 (NPH4) work
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FIGURE 9 | Effect of PID overexpression on the expression of genes involved in various auxin-related pathways. Schematic representation of auxin related
pathways, on which affected genes are indicated in red, based on RNA-seq data from both PIDOE lines. Heat map shows auxin-related genes affected by PID
overexpression. Abbreviations: Trp, tryptophan; IAOx, indole-3-acetaldoxime; IAN, indole-3-acetonitrile; IPA, indole-3-pyruvate; IAM, indole-3-acetamide; IAAld,
indole-3-acetaldehyde. Yellow and blue colors in the heat map represent up- and downregulation of genes, respectively.

synergistically in development of the midvein and differentiation
of secondary and tertiary veins. HOMEOBOX GENE 8
(ATHB8) controls preprocambial development and procambium
differentiation required for vascularization (Hardtke et al., 2004;
Wenzel et al., 2007; Donner et al., 2010). Both PIDOE lines,
and especially P10, showed a thick vasculature (Supplementary
Figure 3) that could be explained by the upregulation of
PIN1, MP, NPH4, and ATHB8 at 16 DAS. Transcription factors
KANADI, YABBY family members, and ETTIN/ARF3, are
required for the identity of the abaxial domain of the leaf
(Pekker et al., 2005; Stahle et al., 2009; Bonaccorso et al.,
2012) while ASYMMETRIC1 (AS1) and a kinase ERECTA are
required for adaxialization in the leaf (Xu et al., 2003). All these
gene families are upregulated in PIDOE lines, with exception of
the downregulation of YAB1/FILAMENTOUS FLOWER (FIL1),
which suggests that PID might influence leaf lamina growth
either directly or indirectly (Figure 4).

DISCUSSION

PIDOE lines showed severe shoot growth phenotypes
(Christensen et al., 2000) leading us to hypothesize that the
cause and severity of the leaf phenotypes were due to affected
auxin transport in the leaves, causing auxin retention in the top
leaf blade because of changed polarity of PINs in the epidermal

cells in the leaves. Previously, Zhao et al. (2001) reported elevated
endogenous auxin levels and downward curled narrower leaves
in the yucca mutants. Here we showed similar responses in
PIDOE lines and exploited the role of PIDOE as auxin modulator.
In our opinion these PIDOE lines proved to be a good tool to
study auxin dose-dependent processes. Such subtle changes in
auxin levels are not easily achieved, and this provides a good
opportunity to study their effect on development.

PID Overexpression Lines Show
Alterations in Auxin Homeostasis and
Signaling
To validate our hypothesis of auxin involvement in growth
defects in PIDOE lines, we studied four different auxin related
pathways; biosynthesis, conjugation, transport, and signaling.
Since transport of auxin in the leaves can’t be assayed easily we
relied on other indirect means/interpretations. IAA is the most
abundant form of auxin in vascular plants including Arabidopsis.
Free IAA is the active form of auxin and represents only a small
percent of the total IAA, which mostly includes IAA conjugated
to sugars, amino acids and peptides. PIDOE lines showed high
levels of both free and conjugated forms of IAA in the first pair
of leaves compared to the WT leaves (Figure 2). Auxin regulates
leaf blade and cell expansion in a dose-dependent manner,
where supraoptimal concentrations are inhibitory (Thimann,
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1939; Evans et al., 1994; Keller et al., 2004). High auxin levels in
PIDOE lines could also affect growth in a similar manner. RNA-
seq data showed downregulation of a YUC8 gene involved in
auxin biosynthesis, while the expressions of other biosynthesis
genes were unchanged. Both PIDOE lines lack the characteristic
auxin overproducing phenotypes, like the presence of plentiful
lateral and adventitious roots, elongated hypocotyl and petioles,
and epinastic cotyledons (Boerjan et al., 1995; Benjamins et al.,
2001; Zhao et al., 2001). However, leaves were curled downward
and the PIDOE lines also show a lack of apical dominance, a
phenotype often related to auxin homeostasis mutants (Estelle
and Somerville, 1987; Christensen et al., 2000; Benjamins et al.,
2001). Therefore, downregulation of auxin biosynthesis and
upregulation of conjugation and deconjugation-related genes in
the RNA-seq data indicate a feedback mechanism to maintain
homeostasis between overloaded free IAA and conjugated
forms. Overall, the total IAA concentration of P10 remained
significantly higher than that of the WT, whereas in P21 the
higher IAA concentration dropped to nearly WT levels when the
tissues were mature. This result is consistent with the changes
in the expression levels of PID in the P21 line similar to qPCR
transcript abundance data, suggesting that a certain level of PID
is required to maintain high auxin levels.

PIN localization determines the direction of auxin flow in
plants (Wisniewska et al., 2006). Extensive research proves that
PID regulates auxin fluxes by regulating subcellular localization
of PIN proteins, where PID overexpression causes apicalization
of PIN protein at the cellular membranes in various cells in
Arabidopsis, including the leaf epidermal cells (Friml et al.,
2004; Kaplinsky and Barton, 2004). This apical polarity bias
causes upward (shootward) auxin flow, compromising the auxin
maxima at the root tip, which causes root meristem collapse
(Benjamins et al., 2001; Friml et al., 2004; Armengot et al., 2016).
Partial rescue of root phenotypes in PIDOE lines after application
of an auxin transport inhibitor, NPA (N-1-Naphthylphthalamic
Acid) further supports this statement (Benjamins et al., 2001).
Here, we propose that apical PIN polarity in the leaves causes
auxin retention, especially in the top leaf region (Figures 2, 3),
which could have disturbed the source to sink relationship
between shoot and root causing various developmental defects.
This problem of drainage or efflux caused by PINs provides
a reason for the accumulation of auxin in the top marginal
parts of the leaves, at least partially, if not entirely, since PID
only transiently phosphorylates PINs, and the proportion of PID
co-localize with PIN at the plasma membrane is inversely related
to the PID concentration (Barbosa et al., 2014; Fozard et al.,
2013). Additionally, PID also phosphorylates ABCB1 and thus
affects its auxin efflux function as well (Henrichs et al., 2012),
so its not clear to what extent the leaf phenotypes reported in
PIDOE lines can be directly attributed to PIN proteins alone.
Nevertheless, IAA measurements and visualization of auxin
signaling point to a failure of auxin export from the leaves in
the PIDOE lines. Wild type plants treated with NPA mimicked
this genetic effect by blocking the auxin transport and similarly
also showed a clear reduction in rosette growth with increasing
concentrations (Supplementary Figure 6). As mentioned earlier
increased efflux from the root tips causes root meristem collapse

since PID enhances efflux of auxin from the cells (Benjamins
et al., 2001; Friml et al., 2004; Lee and Cho, 2006; Zourelidou
et al., 2014). According to Benjamins et al. (2001), effect of the
primary root meristem collapse by PID overexpression is later
compensated by the formation of lateral roots, that start to act
as new auxin sinks. This is plausible especially in P21 where
the formation of lateral roots (Benjamins et al., 2001) may have
resulted in changes in auxin distribution between the shoot and
roots. This could additionally explain the lowering of auxin levels
in the leaves in later developmental stages in P21. P10, on the
other hand, showed very few lateral roots (Benjamins et al., 2001)
and thus, accordingly, maintained high auxin in the leaves. From
these experiments, it can be concluded that PID altered the auxin
flow in the PID overexpressing plants.

Auxin signaling reporters in the PIDOE lines (DR5::GUS and
DR5rev::GFP) support the accumulation of auxin (Figure 2) and
changes in auxin response in the leaves (Figure 3). Since DR5
reporter and thus auxin response is different between leaves and
roots, it cannot be said if PID is a negative or positive regulator
of auxin signaling or if perhaps the effect is tissue-specific.
Moreover, PID is previously implicated to affect auxin signaling
based on the presence of overlapping phenotypes between pid
mutants and mutants of MP (ARF5), ETTIN (ARF3), and SHORT
HYPOCOTYL 2 (IAA3) (Christensen et al., 2000). Upregulation
of MP, and ARF3 in PIDOE lines besides other ARFs and
Aux/IAAs in our RNA-sequencing data also suggest a link.

PID Overexpression May Affect Leaf
Growth by Perturbing Cellular Processes
Single pid knockout mutants showed only marginal phenotypic
alterations in their leaves (Bennett, 1995: this work). This
may be due to functional redundancy between PID and its
homologs (Cheng et al., 2008). On the other hand, kinematic
growth analysis showed that the growth in PIDOE was restricted
throughout development and due to inhibited cell division and
cell expansion. Six different processes occurring during leaf
development influence its final size: the number of cells recruited
from the shoot apical meristem at the time of primordium
initiation, duration of cell division and expansion, the rate of
cell division and expansion, and finally meristemoid division
in the cells of the stomatal lineage (Gonzalez et al., 2012).
PIDOE also displayed a shorter cell proliferation phase (more
so in P21), however, the duration of the expansion phase
seems not to be affected, as all three genotypes reached cell
size maturity from 24 DAS onward. Reduction in stomatal
index points toward problems in meristemoid division as
well. On top of this, cell division and expansion rates are
clearly affected in both PIDOE. Since PIDOE affected multiple
processes, contributions of individual cellular process underlying
the phenotype become difficult to pinpoint. Since (1) P21
had a more drastic reduction in cell number than P10 due
to the higher PID overexpression at that time and (2) P10
showed a smaller cell area at maturity compared to P21,
when a decrease in the PID transcript levels were noticed
in P21, it can be said that the severity to both processes is
dependent on PID-dosage and its resulting effects on auxin
levels.
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Transcription Data Present Insights into
Cellular and Organ Level Phenotype
RNA sequencing provided insights into the mechanisms behind
the phenotype. However, there was little overlap between the
two-overexpression lines (Figure 7A). This could be partially
due to the differences in PID expression levels and thus
auxin levels at the mentioned time points of the sampling
for the RNA-sequencing and partly to the fact that even
transient changes in auxin affect a plethora of events at
the cellular and molecular level. This is evidenced by the
affected functional categories in PageMan ontology tool in
our data (Figure 8) and in previous reports (Nemhauser
et al., 2006; Paponov et al., 2008). This being superimposed
on changes on developmental rates of the organ, involving
large transcriptional reprogramming (Beemster et al., 2005),
can explain the observed differences between the two
lines.

Variations in transcript levels of several leaf growth and
development-related genes were detected in PIDOE lines and they
correlatively suggest a role of PID in defining leaf form and
size. Cell sizes and leaf growth are often correlated with cellular
DNA content (Donnelly et al., 1999; Massonnet et al., 2011).
The P21 line showed changes in endoreduplication index (EI)
over time, and this can also be coupled/related to changes in
leaf (and cell size) growth and the PID expression levels at that
time. High auxin levels suppress the progression of endocycles,
and is also coupled to the progression of cell differentiation,
which is marked by a sudden increase in cell size (De Veylder
et al., 2007; Ishida et al., 2010). This is also vividly evident in
P10 since it has a reduced endoreduplication index and cell area.
P21, on the other hand, showed the opposite scenario because
of the lower auxin levels compared to P10 when approaching
maturity.

CONCLUSION

Our results provide an insight into the influence of PID on auxin
levels and distribution. PID is known as positive regulator of PAT.
Here we showed that PID via its effect on auxin accumulation and
distribution might also indirectly influence auxin metabolism

and signaling and thus indirectly have a regulatory effect on leaf
development as well.
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