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Vitis vinifera (grapevine) is one of the most important fruit crops, both for fresh
consumption and wine and spirit production. The term terroir is frequently used in
viticulture and the wine industry to relate wine sensory attributes to its geographic origin.
Although, it can be cultivated in a wide range of environments, differences in growing
conditions have a significant impact on fruit traits that ultimately affect wine quality.
Understanding how fruit quality and yield are controlled at a molecular level in grapevine
in response to environmental cues has been a major driver of research. Advances in
the area of genomics, epigenomics, transcriptomics, proteomics and metabolomics,
have significantly increased our knowledge on the abiotic regulation of yield and quality
in many crop species, including V. vinifera. The integrated analysis of multiple ‘omics’
can give us the opportunity to better understand how plants modulate their response
to different environments. However, ‘omics’ technologies provide a large amount of
biological data and its interpretation is not always straightforward, especially when
different ‘omic’ results are combined. Here we examine the current strategies used to
integrate multi-omics, and how these have been used in V. vinifera. In addition, we
also discuss the importance of including epigenomics data when integrating omics
data as epigenetic mechanisms could play a major role as an intermediary between
the environment and the genome.
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INTRODUCTION

Grapevine is one of the most economically important fruit crops, and it is largely used for wine
production (FAO, 2012). Most the chemical compounds that give its unique characteristics to wine
are synthesized during berry development (Conde et al., 2007). However, fruit/wine composition
is strongly influenced by the interactions between the plant’s genome and the local growing
conditions (including the vine management system), and the oenological practices of each winery
(Figure 1), which could explain why it is so difficult to replicate a wine from a region outside that
area.

Terroir is defined as the interactions between the plants, the environment and human factors
(Gladstones, 2011) and it is frequently used to relate wine sensory attributes to its geographic origin
(Van Leeuwen and Seguin, 2006). Although the relevance of terroir is still under debate (Anesi et al.,
2015), a better understanding of how the environment affects grape berry composition can have a
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FIGURE 1 | A conceptual view of some of the terroir factors that contribute to vine balance, fruit composition and wine quality. ∗Vine genome/s refers to the
possibility of the scion and rootstock used in a vineyard could be from different varieties/species (Modified from: Smart et al., 1985 and reproduced with permission
from the copyright holder).

significant effect on viticulture. To achieve such an
understanding, it is necessary to identify the elements that
drive terroir and analyze the interaction between them and the
grapevine.

DECODING Terroir

Terroir has been long studied, through the characterization of
the different environmental factors affecting berry composition
and wine quality, and climate exerts the strongest effect on
berry composition (Robinson et al., 2012). Soil physicochemical
properties as well have been identified as an influential factor
defining the uniqueness of berry composition by vines grown
in a specific climate (Cheng et al., 2014; Zerihun et al., 2015).
Grapevine microbiome community may play an important role
determining wine quality (Burns et al., 2015; Bokulich et al.,
2016). Efforts have been made to study the grapevine microbiome
landscape in relation to the vegetative growth cycle of the
plant (Pinto et al., 2014), the post-harvest treatment of berries

(Salvetti et al., 2016) and provenance (Bokulich et al., 2016)
(For a review on microbiome analysis see Ibrahim and Kumar,
2017). Less work has been done to elucidate the molecular
mechanisms involved in the plant response to terroir. A strategy
to better understand the genome and environment interaction
is to use ‘omics’ technologies. Omics refers to high throughput
technologies that generate a large amount of data for each sample,
allowing a deeper insight of the mechanisms regulating biological
systems.

ANALYSIS OF Terroir EFFECT ON
GRAPE COMPOSITION USING
TRANSCRIPTOMICS

Using transcriptomics is possible to study the grape’s complete
set of RNA transcripts encoded by the genome using high
throughput methods (Hale et al., 2005). Dal Santo et al. (2013)
performed gene expression analysis in a single Corvina clone
cultivated in 11 different vineyards for three consecutive years.
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Samples strongly clustered by season, known as a vintage effect,
rather than common environmental conditions. However, the
genes that showed more variation in expression between years
were those involved in secondary metabolism, (mainly the
biosynthesis of phenylpropanoids). Only when samples from a
single vintage (i.e., 2008) were analyzed, it was observed that
5% of the studied annotated coding genes were differentially
regulated under different growing conditions and agronomical
practices. Anesi et al. (2015) complemented this study by
analyzing the transcriptome and metabolome of the same
cultivar. They identified metabolites that could describe a terroir
signature for each vineyard. Moreover, it was possible to correlate
terroir-sensitive metabolites with changes in the transcript level
of genes involved in the biosynthesis of these metabolites. Similar
results were obtained by Dal Santo et al. (2016) as they identified
a clear correlation between gene expression and accumulation
of phenylpropanoids and flavonoids in the variety Garganega
grown at four different vineyards. Small RNA profiles have
been analyzed to understand the interaction between genotype
and environment in the varieties Sangiovese and Cabernet
Sauvignon. In silico analysis suggests that microRNAs may
be involved in berry development and the accumulation of
secondary metabolites (Paim Pinto et al., 2016). Transcriptional
analysis of berries from different regions has also shown that
transcripts from the abscisic acid (ABA) biosynthesis pathway
are among the most terroir sensitive genes (Sun et al., 2015).
ABA is a plant hormone that regulates important steps in plant
growth and development as well as play a key role in plant
biotic and abiotic stress response (Cutler et al., 2010). ABA
concentrations affect anthocyanin and flavonol accumulation
(Koyama et al., 2010), suggesting a possible mechanism through
which the environment affects grape berry composition and wine
flavor and aroma.

ANALYSIS OF Terroir EFFECT ON
GRAPE COMPOSITION USING
METABOLOMICS

Metabolomics is defined as the identification and quantification
of metabolites using high-throughput techniques (Cevallos-
Cevallos et al., 2009). This technology can screen higher numbers
of products than more traditional approaches (Pereira et al.,
2006; Atanassov et al., 2009; Hong, 2011), while the use of
non-targeted metabolomics approaches allows the identification
of un characterized metabolites (Panighel et al., 2015). Terroir
can be explored by analyzing berry metabolite composition
through different analytical methods (For a review in grape
and wine metabolomics see Cozzolino, 2016). Son et al. (2009)
identified that differences in berry metabolomes associated
to environmental regional differences (radiation and rainfall)
could explain the observed differences in wine composition.
Similar results were obtained by Tarr et al. (2013) who
distinguished the metabolic signatures of different grapevine
varieties. Metabolomic analysis has also been performed to
identify chemical compounds that can be associated to regional

wine quality traits (Gambetta et al., 2016, 2017). Roullier-
Gall et al. (2014) assessed the metabolomics profiles of two
different terroirs, which were just 2 km apart, over three vintages.
Although vintage had the greatest effect in the berry’s metabolite
composition, differences in fruit chemical composition associated
to nearby terroirs could be detected when vintages were
individually analyzed. This suggests that subtle geographical
differences have a significant effect on grape/wine composition
even when variability within vineyards can be relatively high
(Mulas et al., 2011).

MULTI-OMICS INTEGRATION

The aim of integrating multi-omic data is to reduce the
gap between data generation and the ability to analyze and
understand the biological mechanisms behind an organism’s
response to environmental cues. The objective of multi-omic
data integration is to combine different types of data to
construct a model that can be used to predict complex
traits and phenotypes (Figure 2). This approach also allows
the identification of biomarkers and of previously unknown
relationships between the datasets (Rajasundaram and Selbig,
2016). Through the integration of environmental information
with genomic, epigenomic, transcriptomic, and metabolomic
data, we hypothesize that it will be possible to better understand
the effect of terroir at a molecular level. The use of a multi-omic
approach will also help reduce the incidence of false positives
generated from single source data sets (Aho, 2013; Ritchie et al.,
2015). However, integration of multi-omics data is not a trivial
task, because the diversity of characteristics of the data generated
from the different high throughput technologies (machine
sensitivity, error rate, data structure) makes its combination
challenging.

APPROACHES TO DATASETS
INTEGRATION

Analysis of large data sets from different origins has been
done using two main approaches: network models (NMs) and
pathway analysis (PA). Both share the basic idea of storing the
data in a clear and meaningful way. NMs use concepts from
mathematical graph theory, to represent biological components
(e.g., genes) as nodes and their interactions (physical, genetic
or functional) as their links (For a review on NM applied to
plant biology see Fukushima et al., 2014). NMs are classified
as homogeneous or heterogeneous depending on the number
of different levels of information integrated (Gligorijević and
Pržulj, 2015). Homogenous approaches integrate datasets
with the same type of nodes and therefore cannot analyze
the connectivity between multiple datasets simultaneously.
However, complex biological questions such as the molecular
regulation of fruit composition in grapevine are increasingly
being addressed through the integration of multiple layers
of cellular information (Wong and Matus, 2017), including
but not restricted to genomics, transcriptomics, proteomics
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FIGURE 2 | Data integration workflow for four omics technologies in addition to environmental data, and fruit and wine quality data (Modified from Wanichthanarak
et al., 2015 and reproduced with permission from the copyright holder).

and metabolomics, using heterogeneous methods. Bayesian
networks (BNs) and Kernel-based methods (KBMs) are
heterogeneous approaches commonly used for data integration
(Zhang, 2009; Gligorijević and Pržulj, 2015). BNs are efficient
detecting relationships hidden in noisy datasets but they are
computationally demanding (Gligorijević and Pržulj, 2015)
and are therefore, better suited for the interrogation of small
datasets in hypothesis driven questions (Gligorijević and Pržulj,
2015) (i.e., the analysis of terroir on defined pathways such
as those leading to the biosynthesis of metabolites related to
fruit quality). KBMs are not as computationally demanding
and so can integrate large molecular, structural and phenotypic
datasets (Mizrachi et al., 2017), making them ideal for data
driven terroir exploratory studies, biomarker discovery or for
the reclassification of previously identified drivers of quality (Qi
et al., 2008).

On the other hand, pathway analysis requires well
documented biochemical pathways where omics data is
combined to seek overrepresented groups (Wanichthanarak
et al., 2015). For example, multiple co-inertia analysis (MCIA)
can detect explanatory omic features even when they are not
present in all datasets (Meng et al., 2014), which makes it
attractive for the integration of terroir data from different
studies. Random Forest implemented for pathway analysis (Pang
et al., 2006), can be used to predict fruit/wine quality traits
associated to terroir integrating multi-omic and phenotypic data
as shown recently for potato (Acharjee et al., 2016).

Most of these multi-omics analysis approaches are pipelines
that perform task sequences which share statistical methods
(Bersanelli et al., 2016). Correlation analyses are the most
common approaches performed to find relationships between
the omics data. Simple correlation analyses, like Pearson or
Spearman correlation, are widely used for multi-omics data

integration (Rajasundaram et al., 2014; Rajasundaram and Selbig,
2016). Partial least square/projections to latent structures (PLS)
and its extension, orthogonal partial least square (OPLS) (Tobias,
1995) have also been used for data integration from multi-
omics results. Even though their predictive power is similar,
OPLS results are much easier to interpret and outliers are
quickly detected. OPLS can be used as a discriminate analysis
(OPLS-DA), to identify differences between the overall data
properties while removing systematic variation (Kirwan et al.,
2012). However, these methods provided little insight when they
are used in complex biological systems (highly multicollinear
systems) (Wanichthanarak et al., 2015).

Modifications to these methods have been implemented to
facilitate the interpretation of the data, for example, sparse PLS
(sPLS) (Chun and Keles̨, 2010) can better predict phenotypes
through multi-omics data integration than previous methods
(Rajasundaram et al., 2014). Orthogonal 2PLS (O2PLS), capable
of dealing with unrelated systematic variation between datasets
(Bouhaddani et al., 2016), has been successfully used for
data integration of transcriptomics and metabolomics results
from aspen under different light treatments (Bylesjö et al.,
2007). Srivastava et al. (2013) used orthogonal projections to
latent structures (OnPLS), an extension of O2PLS, to integrate
transcriptomics, proteomics, and metabolomics data to construct
a model that could identify biological relevant events in the
oxidative stress response in poplar.

DATA INTEGRATION IN V. vinifera

In plant science, most of data integration of omics results
comes from model plants; however, there is an increase in
publications on multi-omics data integration in V. vinifera.
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One of the first publications in multi-omics data integration in
V. vinifera was the work of Zamboni et al. (2010). Integrating
transcriptome, proteome and metabolome data, they identified
stage specific biomarkers for berry development. Data integration
was performed using two strategies, one hypothesis driven (i.e.,
a hypothesis was tested) and the other hypothesis free (i.e.,
discovery driven), in both cases principal component analysis
(PCA), O2PLS and O2PLS-DA were used.

Using five different omics technologies and correlation
analysis (PCA and Pearson correlation) together with
biochemical pathway analysis (KEGG, PlantCyC and VitisCyC),
Ghan et al. (2015) could differentiate biochemical characteristics
from five different cultivars. Moreover, Anesi et al. (2015) studied
the terroir effect in V. vinifera cultivar Corvina in seven different
sites over a 3 years period using metabolome and transcriptome
data. Using correlation analyses (PCA, PLS-DA and O2PLS-DA)
they could identify a terroir signature in the berry metabolome
composition for each growing site. Network analyses have been
recently adopted to integrate grapevine multi omics results
(Wong and Matus, 2017). For example, Palumbo et al. (2014)
using network-based methods, identified “fight-club” nodes
(genes with negatively correlated profiles) that may be relevant
for the control of berry transition between development and
ripening.

There are also online resources available that can help analyze
omic data from V. vinifera. For example, VitisNet (Grimplet
et al., 2009, 2012) offers manually annotated molecular networks
(16,000 genes and 247 networks) where omics data can be
loaded to visualize changes in the transcriptome, proteome
and metabolome for a given experiment. VTCdb (Wong et al.,
2013) is a gene co-expression database for V. vinifera that
allows exploring transcription regulation. With more than
29,000 genes (95% of the predicted grapevine transcriptome) to
query co-expression networks, VTCdb offers the possibility to
analyze the transcriptional network of grapevine development,
metabolism and stress response. VitisCyc (Naithani et al., 2014)
is a grapevine metabolic pathway database that also allows omics
data to be uploaded (transcriptome, proteome and metabolome)
and to analyze changes in metabolic networks in each experiment.
VESPUCCI (Moretto et al., 2016) is a manually annotated gene
expression compendium exploratory tool that can be used to
investigate grapevine’s gene expression patterns.

PHENOTYPIC PLASTICITY THROUGH
EPIGENETIC MODIFICATIONS

Epigenetics is the study of heritable phenotypes that occur
through modifications that alter DNA activity without modifying
its basic nucleotide structure (Feil and Fraga, 2012). Many
epigenetic mechanisms, acting in an interactive and redundant
fashion (Grant-Downton and Dickinson, 2005; Berger et al.,
2009), have been described to date, with DNA methylation
probably being the best-studied of all (Rapp and Wendel,
2005). DNA methylation affects chromatin condensation in
a rapid and reversible manner (Grativol et al., 2012). In
turn, the regional level of chromatin condensation affects the

transcriptional state of nearby genomic features such as genes
and transposable elements (Zhang et al., 2006). Global changes
in DNA methylation associated to local environments can be
analyze using a myriad of methods (Kurdyukov and Bullock,
2016). Bisulfite modification of genomic DNA combined with
whole genome sequencing (BS-Seq) is the gold standard for
methylation analysis because it can assess an entire methylome
with single base resolution (Krueger et al., 2012). However, due
to their lower cost, other approaches such as next generation
sequencing following the capture of the methylated fraction of
the genome or its fragmentation using methylation sensitive
restriction enzymes (Bock et al., 2010; Li et al., 2010; Kitimu
et al., 2015) are better suited to study large number of samples.
Both generate quantitative and qualitative information of the
methylation status of a reduced but significant representation of
the total genome.

Environmental signals are one of the elements that can have
a major effect in modifying the DNA methylation patterns
leading to gene expression changes that ultimately affect the plant
phenotype (Feil and Fraga, 2012). The idea that the environment
could modify the epigenetic status, and these modifications
passed to the offspring (Tricker et al., 2013) or maintained as
epigenetic memory on long lived organisms (Latzel et al., 2016),
has attracted attention from scientists studying mechanisms
involved in adaptation to local environments (Consuegra and
Rodríguez López, 2016) and how these could be used to enhance
crop performance (Rodríguez López and Wilkinson, 2015). There
are many reported examples of how the environment affects
the epigenome in natural environments and how epigenetic
variations in plant populations could help to overcome the lack of
genetic diversity (Fonseca Lira-Medeiros et al., 2010; Verhoeven
et al., 2010).

One of the most well-known examples in which the
environment affects the phenotype through epigenetic
modifications is vernalization (Feil and Fraga, 2012).
Through this process, plants in temperate regions mitigate
the deleterious effects of low winter temperatures on flower
and fruit development by breaking dormancy only after having
been exposed to a cold period (Kumar et al., 2016). Unusual
environmental conditions during dormancy such as high winter
temperatures have been shown to exert a negative effect on fruit
quality and yield on perennial crops requiring a vernalization
period (Sugiura et al., 2012). Recent work in apple shows how
methylation and expression levels of key genes involved in
flowering and fruit set are modified by the level of chill received
during bud dormancy (Kumar et al., 2016), indicating that the
environmentally induced changes observed in fruit quality could
be regulated by DNA methylation.

Together these studies suggest that the environment can have
a long lasting phenotypic effect in plants through epigenetic
changes without the need for genetic variation, and that
epigenetic mechanisms could be working as intermediaries
between environmental variation and the plant genome, and in
this way, potentially contributing to plant phenotypic plasticity.
Moreover, this mechanism could give plant populations a way
of adapting to the local growing conditions (Platt et al., 2015;
González et al., 2016). However, to our knowledge, almost
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all epigenetic studies done in V. vinifera have focused on
the identification of commercial clones (Imazio et al., 2002;
Schellenbaum et al., 2008; Ocaña et al., 2013) and on the
assessment of in vitro culture on the epigenome (Baránek et al.,
2015), there is, therefore, a lack of information of how the
environment affects a grapevine’s epigenome and to what extent
this interaction affects fruit quality. Until now, there are no
studies looking at the epigenome to understand the control of
gene expression in V. vinifera and how environmental signals can
change the regulation of metabolic pathways through epigenetic
modifications. In our view, the inclusion of epigenomic data
on the analysis of the terroir effect will not only increase the
resolution of analysis but will also help us to understand the
regulatory mechanisms behind the observed differences.

CONCLUSION

There is no doubt that the elements affecting grapevine growth
and fruit composition are complex and multifarious. While the
concept of terroir is widely discussed, the underlying mechanisms
remain somewhat enigmatic. However, with the recent parallel
development of omics technologies and of statistical approaches
for their integration, we are reaching a point where it may be
possible to overcome this challenge. The geographic delimitation
of a terroir is the first challenge to overcome before its
molecular characterization. This delimitation could be achieved
1. Empirically, based in the number of significantly different
environmental subregions present in the study or/and 2. based
on the traditionally defined wine regions. Moreover, the masking
effect that environmental inter-annual variations can have over
single year measurements demands the incorporation of data
from multiple seasons to be able to determine terroirs with
enough confidence. Ideally such seasons should be, from a
weather perspective, variable within the range characteristic for
the region of study to be able to capture its “normal terroir.”

Understanding how the genome, environment and viticulture
practices interact to affect fruit quality will allow us the

opportunity to implement agricultural practices aimed to
obtain the desired fruit characteristics for every climate/cultivar
combination (Jones and Davis, 2000), leading to more efficient
use of resources and better management of vineyards. In addition,
grape growers can maximize the terroir effect on the grapevine
to highlight the uniqueness of their vineyards ultimately
increasing their industrial competitiveness. We propose that
the integration of multi-omic and environmental datasets will
contribute to a better understanding of the drivers of the
terroir effect in grapevine. Moreover, multiple dataset data
integration will increase our understanding of the molecular
mechanisms involved in the regulation of multifactorial genome
by environment interactions. Finally, it is increasingly recognized
that plants are involved in complex interactions their soil
and epiphytic microbiomes, which can affect their phenotype
(Mueller and Sachs, 2015). The ‘omics’ era gives us the
ability to explore the nature and consequences of biotic/abiotic
interactions and so, a future challenge will be to bring the concept
of the holobiont (the plant host plus its microbiomes) into the
analysis of terroir and its effect on grapevine growth and fruit
composition.
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