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Phenotyping plays an important role in crop science research; the accurate and

rapid acquisition of phenotypic information of plants or cells in different environments

is helpful for exploring the inheritance and expression patterns of the genome to

determine the association of genomic and phenotypic information to increase the

crop yield. Traditional methods for acquiring crop traits, such as plant height, leaf

color, leaf area index (LAI), chlorophyll content, biomass and yield, rely on manual

sampling, which is time-consuming and laborious. Unmanned aerial vehicle remote

sensing platforms (UAV-RSPs) equipped with different sensors have recently become

an important approach for fast and non-destructive high throughput phenotyping and

have the advantage of flexible and convenient operation, on-demand access to data

and high spatial resolution. UAV-RSPs are a powerful tool for studying phenomics and

genomics. As the methods and applications for field phenotyping using UAVs to users

who willing to derive phenotypic parameters from large fields and tests with the minimum

effort on field work and getting highly reliable results are necessary, the current status and

perspectives on the topic of UAV-RSPs for field-based phenotyping were reviewed based

on the literature survey of crop phenotyping using UAV-RSPs in the Web of ScienceTM

Core Collection database and cases study by NERCITA. The reference for the selection

of UAV platforms and remote sensing sensors, the commonly adopted methods and

typical applications for analyzing phenotypic traits by UAV-RSPs, and the challenge for

crop phenotyping by UAV-RSPs were considered. The review can provide theoretical

and technical support to promote the applications of UAV-RSPs for crop phenotyping.
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INTRODUCTION

Crop production must double by 2050 to meet the predicted
production demands of the global population (Ray et al., 2013).
The crop yield demands are predicted to increase by 2.4%
annually, but the average rate of increase is only 1.3%, with
yields stagnating in up to 40% of land under cereal production
(Fischer and Edmeades, 2010). To ensure improved agricultural
productivity, to adapt to the impacts of climate change, and to
prevent the resistance of pests and diseases to control measures,
scientists must better understand the connection between a
plant’s observable characteristics (phenotype) and its genetic
makeup (genotype). By establishing the connection between
genotype and phenotype, it is possible to select high-yield stress-
tolerant plants and improve agricultural production to satisfy the
requirements of the growing human population (White et al.,
2012; Li L. et al., 2014; Thorp et al., 2015). In the last two
decades, gene sequencing of crops has proceeded at a rapid
pace, but the translation of these data into the identification
of desirable traits is constrained by the lack of knowledge of
the associated phenotypes (Furbank and Tester, 2011; Zaman-
Allah et al., 2015). To relieve this bottleneck and to fully benefit
from the available genomic information, reliable, automatic,
multifunctional, and high-throughput phenotyping platforms
should be developed to offer plant scientists new insight into
all the aspects of living plants. In recent years, rapid high-
throughput phenotyping platforms (HTPPs) have been discussed
(Yang et al., 2013; Araus and Cairns, 2014), and most are
fully automated facilities in greenhouses or growth chambers
with precise environmental control. Although HTPPs enable the
capture of detailed, non-invasive information throughout the
plant life cycle, the results from controlled environments are
distinct from the actual situations that plants will experience
in the field, making it difficult to extrapolate the data to the
field.

Abbreviations: AIC, Akaike information criterion; BGI2, Blue green pigment
index2; BPN, Back propagation neural network; CAAC, Civil aviation
administration of China; CARI, Chlorophyll absorption reflectance index; CCC,
Crop canopy cover; CHM, Crop height model; CSI, Canopy structure index; DEM,
Digital elevation model; DSM, Digital surface model; DVI, Difference vegetation
index; EASA, European aviation safety agency; EVI, Enhanced vegetation index;
FAA, Federal aviation administration; FBP, Field-based phenotyping; FBPPS,
Field-based phenotyping platforms; GNDVI, Green normalized difference
vegetation index; HTPPs, High-throughput phenotyping platforms; INS, Inertial
navigation system; LAI, Leaf area index; LIDAR, Laser intensity direction and
ranging; LNC, Leaf nitrogen concentration; MLR, Multivariate linear regression;
NASA, National aeronautics and space administration; NDVI, Normalized
difference vegetation index; NERCITA, National engineering research center for
information technology in agriculture; NLI, Nonlinear index; OSAVI, Optimized
soil-adjusted vegetation index; PLSR, Partial least squares regression; POS,
Positioning and orientation system; PRI, Photochemical reflectance index; PSRI,
Plant senescence reflectance index; PVI, Perpendicular vegetation index; RDVI,
Renormalized difference vegetation index; RVI, Ratio vegetation index; SAR,
Synthetic aperture radar; SAVI, Soil-Adjusted Vegetation Index; SLR, Stepwise
linear regression; SMLR, Stepwise multiple linear regression; SR, Simple ratio;
SVR, Support vector machines regression; TCARI, Transformed CAR Index;
TD, Temperature difference; TVI, Triangular vegetation index; UAV, Unmanned
aerial vehicle; UAV-RSP, Unmanned aerial vehicle remote sensing platforms; VDI,
Vegetation drought index.

Field-based phenotyping (FBP) is a critical component of crop
improvement through genetics, as it is the ultimate expression
of the relative effects of genetic factors, environmental factors,
and their interaction on critical production traits, such as yield
potential and tolerance to abiotic/biotic stresses (Araus and
Cairns, 2014; Neilson et al., 2015). FBP is increasingly recognized
as the only approach capable of delivering the required
throughput and an accurate description of trait expression
in real-world cropping systems. The performance of breeding
programs on crop yield and productivitymust be evaluated under
natural conditions (Gonzalez-Recio et al., 2014; Gonzalez-Dugo
et al., 2015; Rahaman et al., 2015). Currently, the most commonly
field-based phenotyping platforms (FBPPs) use ground wheeled
or aerial vehicles deploying multiple types of sensors to measure
plant traits on a timescale of a few seconds per plot. For FBPPs
based on ground vehicles, the process is time-consuming if there
are too many plots needed to collect data (Zhang and Kovacs,
2012). For example, more than 40 h were required to cover the
20,000 plots with a single vehicle traveling at 2 km per h to
measure traits on single rows (White et al., 2012). Using multiple
vehicles and multiple sets of sensors to take measurements in
all plots simultaneously would increase the costs (Zhang and
Kovacs, 2012; Cobb et al., 2013). Moreover, FBPPs with ground
vehicles cannot be used for cross-regional work due to the
lack of maneuvrability. In the recent years, the cable-suspended
field phenotyping platform was developed for rapid and non-
destructive estimation of crop traits. For the cable-suspend field-
based phenotyping platform, there’s advantages of safety, high
precision, independent of soil conditions and minimal tactile
interference of plants. However, as it has to be located at certain
sites, the coverable area of cable-suspend field phenotyping
platform is relatively low, which limit its applications for the
large-scale phenotyping (Kirchgessner et al., 2016). Some of these
limitations can be addressed using satellite-based or aerial remote
sensing approaches.

Satellite imaging technologies have become an extremely
useful tool for collecting data for various agricultural applications
(Li L. et al., 2014; Sankaran et al., 2015b). However, the major
limitations of using the currently available satellite sensors are
the high cost, the lack of spatial resolution for the identification
of desirable traits, the risk of cloudy scenes and the long revisit
periods (Issei et al., 2010; Gevaert et al., 2015). Alternatives based
on manned airborne platforms have demonstrated capabilities
for large-scale crop condition monitoring due to the high spatial
and spectral resolutions of the sensors. However, in the case of
breeding, and except for large seed companies, the high operating
costs and the operational complexity have limited the use of
these platforms to research activities (Chapman et al., 2014).
Low-altitude and flexible UAV-RSPs are an important, affordable
tool for crop phenotyping (Berni et al., 2009b; Liebisch et al.,
2015)and precision agriculture (Hunt et al., 2005; Zhang and
Kovacs, 2012; Ballesteros et al., 2014; Gomez-Candon et al., 2014;
Candiago et al., 2015), and they provide a low-cost approach to
meet the critical requirements of spatial, spectral, and temporal
resolutions. In order to assess the precision and efficiency
for field-based phenotyping in small plots by different remote
sensing techniques, a direct comparison of three remote sensing
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approaches including UAV, proximal sensing, and satellite-based
imagery was studied, which demonstrated that the UAV-based
remote sensing performed best for acquiring canopy temperature
and NDVI in breeding (Tattaris et al., 2016).Therefore, UAVs
are becoming critical in crop phenotyping for high-throughput
phenotyping of large numbers of plots and field trials in a near
real-time and dynamic manner. UAVs can be used to execute
autonomous tasks through the use of radio remote control
equipment and an auto-control system, which can be divided
into several types according to the flight mode (Sankaran et al.,
2015b). Digital cameras, multispectral cameras, hyperspectral
sensors, infrared thermal imagers, and light detection and
ranging (LIDAR) are commonly deployed UAV-RSP sensors. The
applications of these sensors for FBP include visible imaging for
canopy surface modeling, crop height and biomass estimation
(Mathews and Jensen, 2013; Diaz-Varela et al., 2014; Zarco-
Tejada et al., 2014), visible–near-infrared spectroscopy to identify
physiological status (Sugiura et al., 2005; Overgaard et al., 2010;
Swain et al., 2010; Nigon et al., 2015), thermal imaging to detect
water stress (Gonzalez-Dugo et al., 2013, 2014), LIDAR point
cloud to measure plant fine-scale geometric parameters with
high precision (Wallace et al., 2012), and microwave images for
estimating soil moisture and canopy structure parameters by
combining different spectral bands (Acevo-Herrera et al., 2010;
Issei et al., 2010).

The crop phenotype is an expression of the genotype
and the environment in which it grows, including geometric
traits (e.g., plant height, LAI, lodging, crop canopy cover),
canopy spectral texture (spectral features), physiological traits
(e.g., chlorophyll, biomass, pigment content, photosynthesis),
abiotic/biotic stress indicators (e.g., stomatal conductance,
canopy temperature difference, leaf water potential, senescence
index), nutrients (nitrogen concentration, protein content), and
yield. Different methodological approaches based on spectra,
canopy temperature, and visible light have been proposed to
evaluate these traits in the field (Araus and Cairns, 2014). The
geometric traits of a crop can be estimated by building the digital
surface model (DSM) or digital elevation model (DEM) and
conducting image classification analysis, which can be used to
estimate the plant height, lodging area proportion, emergence,
etc. (Hunt et al., 2005, 2010; Li J. W. et al., 2015). The absorption
and reflectance characteristics of crops can be used to retrieve
the physiological characteristics of a crop (Overgaard et al., 2010;
Swain et al., 2010; Nigon et al., 2015). The canopy temperature
is closely related to crop transpiration, which can reflect the leaf
water potential, stomatal conductance, etc. under abiotic and
biotic stress conditions. The combination of hyperspectral and
thermal infrared data enables crop yield prediction (Berni et al.,
2009b; Gonzalez-Dugo et al., 2015).

This review considers the latest technological aspects of
remote sensing from the state-of-the-art of UAVs to estimate
plant phenotyping parameters at the field-scale. The paper is
organized as follows: (1) a literature survey of UAV remote
sensing for field-based crop phenotyping in the last decade,
(2) an overview of low-altitude UAVs and deployed sensors,
(3) advances and applications of UAV remote sensing in
field-based phenotyping, and (4) the limitations and future

perspectives of UAV remote sensing for field-based crop
phenotyping.

LITERATURE SURVEY

There are 96 articles related to the keywords of “UAV,”
“UAS,” “Drone,” “Unmanned Aerial Vehicle,” “Unmanned
Aerial System,” “Unmanned Aircraft,” “Low Altitude Platform,”
“Crop,” Plant,” “Crop breeding,” “Remote Sensing,” “Field-Based,”
“Phenotyping,” and “Phenomics” in the Web of ScienceTM

Core Collection Database (THOMSON REUTERSTM) until
May 17, 2017. However, there are only six articles that
explicitly include “Phenotyping” or “Phenomics” in the titles
and keyword (Zaman-Allah et al., 2015; Gomez-Candon et al.,
2016; Haghighattalab et al., 2016; Holman et al., 2016; Shi et al.,
2016; Watanabe et al., 2017). The other literatures are closely
related to crop phenotyping usingUAV-RSPs but do not explicitly
mention crop phenotype; the research focuses on one or more
crop traits. The number of published articles for each year is
shown in Figure 1A. There’s only one published articles during
the period of 2005–2006. Most of the research focusing on field-
based crop phenotyping has been performed since 2007 and has
rapidly increased each year. A total of 85 articles were published
during the period of 2012–2017, accounting for 88.5% of the
total literature related to FBP using UAV-RSPs. The citations
of retrieved articles during the period of 2007–2017 are given
in Figure 1B, showing that the number of citations from 2012
to 2017 accounts for 94.4% of the total citations during that
period. Considering the above literature statistics, field-based
crop phenotyping has become a research hotspot.

The journals that published at least three articles related to
the topic of this review paper are shown in Table 1. The journal
with the greatest amount of related research 〈〈Remote Sensing〉〉
published 17 articles, accounting for 17.7 % of all retrieved
articles. The articles published in the journals of 〈〈Precision
Agriculture〉〉 and 〈〈International Journal of Remote Sensing〉〉
are 8 and 7, respectively. Most of the related articles have been
published in journals focused on remote sensing and agriculture,
which is consistent with the fact that the agricultural model and
remote sensing technology are the core science and technology
for FBP by UAV-RSP. The retrieved articles were statistically
analyzed using the analytical tool “CiteSpace” (Chen, 2004), and
an analysis of the keyword frequency is shown in Figure 2. The
most frequently used keywords include “Precision agriculture,”
“ unmanned aerial vehicle,” “UAV,” “Remote sensing,” and
“vegetation index,” while “Phenotyping” and “Phenomics” were
less frequently used. Even the research objectives of surveyed
literatures focused on the crop growth monitoring, the crop
phenotype includes numerous crop traits, such as traits related
to the crop spectrum, structure, physiology, ecology, biotic stress,
and abiotic stress (Pask et al., 2012). Thus, all the retrieved articles
belonged to crop phenotyping by UAV-RSPs.

Based on the above analysis, the development of UAV-RSPs
for crop phenotyping has gradually become a hot topic and
can provide theoretical and technical support for precision
agriculture and crop breeding. In addition, there are rare reports
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FIGURE 1 | (A) Yearly literature count and (B) annual accumulated citation frequency for each article. The search was conducted on May 17, 2017.

TABLE 1 | Relevant journals that have published more than three papers related
to UAV remote sensing for field-based crop phenotyping.

Journals Numbers of papers

Computers and electronics in agriculture 3

IEEE Journal of selected topics in applied earth
observations and remote sensing

3

International journal of agricultural and
biological engineering

4

International journal of applied earth
observation and geoinformation

3

International journal of remote sensing 7

Journal of applied remote sensing 5

Plos one 3

Precision agriculture 8

Remote sensing 17

Sensors 3

The search was conducted on May 17, 2017.

on FBP using UAV-RSPs in crop breeding (Issei et al., 2010;
Torres-Sanchez et al., 2014, 2015). There is an urgent demand to
develop strategies to rapidly and non-destructively acquire crop
phenotypic data based on the current agricultural remote sensing
technology. High-throughput field-based crop phenotyping can
relieve the bottleneck of “linking genotype and phenotype” to
accelerate the efficiency of crop breeding.

UAV PLATFORMS AND DEPLOYED
SENSORS

Overview of UAV-Based Phenotyping
Platforms
FBP using UAV-RSPs is based on an unmanned aircraft equipped
with multiple sensors, using communication technology and
GPS positioning technology to rapidly and non-destructively
acquire high-resolution images about the crop canopy in the field.
Remote sensing retrieval models are then used for phenotyping
field trials after data processing (Sugiura et al., 2005; Li W.

et al., 2016). The typical UAVs used for FBP include multi-
rotors, helicopters, fixed-wing, blimps and flying wing (Table 2;
Sankaran et al., 2015b) and are selected based on the purpose
and budget. Blimps have the advantages of hovering ability,
higher effective loads and the ability of vertical take-off and
landing; however, they are slow because of the large size,
and their stability is poor under windy conditions, making it
difficult to obtain accurate information (Liebisch et al., 2015).
Unmanned helicopters have the advantage of being able to take-
off and land vertically, fly sideways, and hover. The helicopter
payload is larger than that of a multi-rotor UAV and can
support large sensors, such as LIDAR. However, the complex
operation, lack of free hover, high maintenance cost and noise
limit the application of helicopters (Sugiura et al., 2005; Swain
et al., 2010; Chapman et al., 2014). The fixed-wing UAV is
characterized by fast flying velocity and long flight time; however,
the bottleneck for the fixed-wing application of FBP is the lack
of free hover ability and the image blur caused by higher speeds
and altitudes (Herwitz et al., 2004; Link et al., 2013). Multi-
rotor UAVs have the advantages of low cost, the ability to hover,
low take-off and landing requirements and are most frequently
used for FBP. However, the greatest limitations of multi-rotor
UAVs are the relatively short flight time, lower payload and
the sensitivity to weather (Zhang and Kovacs, 2012; Pena et al.,
2013; Uto et al., 2013; Nasi et al., 2015). Traditional UAV
manufactured body materials are metals, such as aviation steel
and aluminum (Colomina and Molina, 2014; Salami et al., 2014;
Pajares, 2015). To reduce the UAV weight, enhance the body
strength and prolong flight time, a variety of lightweight, high-
strength composite materials have been widely used, including
glass fiber and carbon fiber, and have become themain alternative
materials for the body of UAVs. For the engine, the UAV engines
can be divided into two categories: oil and electric engine.
The oil engines have the advantages of strong wind resistance
and long working time, while there’re disadvantages of being
bulky, producing big vibration and having poor reliability, which
lead to the image blur (Xiang and Tian, 2011; Sankaran et al.,
2015b). The electric engines have the advantages of safe, small
vibration, easy to maintain and low cost, which make it become
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FIGURE 2 | Frequency of keywords usage within total searched articles. The bigger font size, the more high frequency of usage, same as circle size corresponding to
each keyword.The different color line just show connections among keywords or searched papers, respectively.

an important way for crop phenotyping by UAV; however, the
short flight endurance time and weak wind resistance limited its
use for crop phenotyping at large scale. A series of propulsion
systems with the advantages of small volume, low vibration
and new energy sources have become available and have greatly
enhanced the UAV payload space and capacity. Hale engines and
low-altitude silent propulsion systems are necessary to satisfy
the requirements of small- and medium-size UAVs (Verhoeven,
2009).

The UAV body, flight control system, remote control, sensors
and oil/electric energy are the minimum required components
for a UAV-RSP; while the ground station that enables the flight
route planning and flight parameters setting, is an optional tool.
The flight control system of a UAV is the core of the whole flight
process, including take-off, flying in the air, executing tasks and
recovery, and is one of the key technologies of a UAV system.
Taking the UAV-RSP that was used for field phenotyping in
crop breeding by NERCITA in China for example to illustrate
the components of a UAV-RSP (Figure 3). The route planning
tool of a UAV can set the flight height, flight speed, flight
location andmissions, and the flight details are transmitted to the
flight control system through a data transceiver, which enables
automatic take-off, the implementation of a default route, guided
flight, and automatic landing.

Sensors Deployed by Small UAVs
UAV platform equipped with visible light imaging sensors,
spectral sensors, infrared thermal sensors, fluorescence sensors,
LIDAR et al. can obtain the color, texture, geometric contour of

crops, which can be used to monitor plant height, LAI, biomass
and other physiological traits of crops in different growth stages
(Zhang and Kovacs, 2012; Rahaman et al., 2015; Table 3). As the
equipped sensors are restricted by the UAV’s payload capacity,
which must meet the criteria of high precision, light weight, low
power consumption and small size. Considering the cost, UAV
payload and technological development of commercial products,
digital camera (RGB), multispectral camera, infrared thermal
imager, hyperspectral camera, LIDAR, three-dimensional camera
and synthetic aperture radar (SAR) are the main sensors
equipped by UAV-RSPs so far (Chapman et al., 2014; Sankaran
et al., 2015b). The UAV-RSPs adopted by NERCITA were shown
in Figure 4.

Digital Camera
UAVs equipped with digital cameras can quickly acquire
grayscale or color images to estimate crop height, leaf angel
distribution, LAI, lodging and leaf color et al. (Ballesteros et al.,
2014; Bendig et al., 2014; Chapman et al., 2014). RGB camera
is the most commonly deployed by UAV in crop phenotyping
research. The sensor has the advantages of low cost, light weight,
convenient operation, simple data processing, and relatively low
working environment requirements. Data can be collected under
both sunny and cloudy conditions, but exposure should be set
on the basis of the weather conditions to avoid inadequate
or excessive image exposure. Unfortunately, this method is
insufficient to accurately analyse crop phenotypic information for
physiological traits due to the limitation of the less visible light
bands.
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TABLE 2 | Typical types of UAVs used for field-based crop phenotyping.

Specification Description

Multi-rotor Helicopter Fixed-wing Blimps Flying wing

Model DJIS1000+ AXH-E230 Bat-3 CB3000 Pathfinder-Plus

Manufacturer DJI technology AVIX MLB Co. Beijing CSCA Co. AeroVironment

Materials Carbon fiber, High strength
performance engineered
plastics

Carbon fiber, aluminum
alloy

Carbon fiber,
engineered plastics

Kevlar fibers, fiber
optic, electrical cores

Carbon fiber, Nomex, Kevlar, plastic
sheeting, plastic foam

Cost Low Medium Medium High very high

Power/Motors Eight electric, 0.5 kw max each One BLDC motors Two-stroke engine One oil engine Eight (8) solar-electric, 1.5 kW max
each

Gross weight/kga 6 15 56 300 318

Payload capacity/kgb 7 15 9 10 67.5

Speed/m s-1 12 23 33 15 14

Endurance/hc 0.25 0.8 6 12 15

Altitude ceiling/m 500d 3,000 3,000 120 25,000

aTotal weight with a battery; bThe payload including battery; cEndurance with maximum payload; dThe maximum flight height in China (the flight control system was restricted by the

national regulations to set the flight height lower than 500 m).

FIGURE 3 | The components of a UAV adopted by NERCITA for field phenotyping in crop breeding. (A) An eight-rotors UAV named DJI Spreading Wings S1000+;
(B) DJI flight control system named WOOKONG-M; (C) DJI Lightbridge 2 remote control; (D) Self-developed gimbal; (E) User interface of DJI Ground Station.
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The orthoimage or DSM/DEM is the ultimate product of
aerial photography. For the digital images, as there’s significant
effect of interior orientation elements and camera distortion
on image quality, the inspection and distortion processing of
images according to the camera models are required. Then the
homogeneous treatment for images is needed to enable the
consistency of brightness, grayscale, and texture among images.
The second step is to match the images according to the feature
points of each image, the scale-invariant feature transform
(SIFT) and random sample consensus (RANSAC) algorithm
were adopted to process and optimize images. Finally, as the
UAV can’t acquire the images at large scale due to limitations
of imaging devices and techniques, in order to evaluate the
crop growth status throughout the study area, the orthoimage
need to be generated using automatic splicing software, such
as Photoscan, after aerial triangulation (Colomina and Molina,
2014). As each pixel value of images can be calculated from the
reflectance or radiance of specific bands, then the color indices
can be extracted with high-resolution images acquired by UAV
to identify the vegetation features (Holman et al., 2016; Du and
Noguchi, 2017).

Multispectral/Hyperspectral Imaging Sensor
UAVs with spectral imaging sensors can obtain the spectral
absorption and reflectance characteristics of crops, which can
be used to monitor the crop planting area and crop growth,
to evaluate the biological and physical characteristics of a crop,
and to predict crop yield (Overgaard et al., 2010; Lebourgeois
et al., 2012; Honkavaara et al., 2013; Candiago et al., 2015; Nigon
et al., 2015). Multispectral and hyperspectral imaging sensors
are the commonly deployed by UAV. Multispectral imaging
sensors are defined as hardware that are capable of sensing
and recording radiation from invisible as well as visible parts
of the electromagnetic spectrum, which have been widely used
for crop phenotyping due to the advantages of low cost, fast
frame imaging and high work efficiency; however, they are
limited by the low number of bands, low spectral resolution,
and discontinuous spectrum (Berni et al., 2009b; Issei et al.,
2010; Overgaard et al., 2010; Diaz-Varela et al., 2014; Candiago
et al., 2015). Hyperspectral imaging sensors are cameras that can
obtain a large number of very narrow bands and continuous
spectra. Compared with multispectral imagers, hyperspectral
imagers have the advantages of more band information and
higher spectral resolution and can accurately reflect the spectral
characteristics of the crop in the field and the spectral differences
between crops (Zarco-Tejada et al., 2012, 2013; Colomina
and Molina, 2014). In recent years, hyperspectral imaging has
become a common way to acquire crop traits, such as crop
water content, leaf nitrogen concentration, chlorophyll content,
LAI, and other physical and chemical parameters, to facilitate
crop yield prediction. Hyperspectral imaging technology is the
future trend for crop phenotyping research using UAV-RSPs;
however, the applicability of the physical inversion model based
on hyperspectral remote sensing, the complex mechanisms of
mixed spectral decomposition models for many kinds of field
components (crop, soil, etc.) and an element extraction method
require further research (Overgaard et al., 2010; Thorp et al.,

FIGURE 4 | The UAV-RSPs adopted by NERCITA for field phenotyping in crop
breeding. (A) A DJI Spreading Wings S1000+ equipped with hyperspectral
imager (Cubert UHD185), thermal infrared imager (Optris PI400) and digital
camera (Sony DSC-QX100); (B) A RIEGL RiCOPTER equipped with LIDAR
(RIEGL VUX-1UAV) (Consent obtained from the individual for the publication).

2015). The pre-processing of spectral images mainly contains
the radiometric calibration, geometric correction, image fusion
and image enhancement. Then the spectral reflectance can be
extracted using software, such as ArcGis, ENVI, etc. to build
vegetation indices for retrieving crop phenotypic traits (Nasi
et al., 2015).

Thermal Infrared Imaging Sensor
Thermal infrared imaging sensors that using infrared detectors
and an optical imaging lens to receive infrared radiation
energy in the photosensitive element infrared detector can
produce time series or single-time-point analysis based data,
which have been widely used for crop growth monitoring and
water stress detection (Gonzalez-Dugo et al., 2013, 2015). As
the stomatal conductance, photosynthetic characteristics and
transpiration rate are closely related to canopy temperature, the
infrared thermal imaging technology can be used to determine
the response of crops under stress conditions (Baluja et al.,
2012). The conventional method for the determination of crop
canopy temperature is using a handheld infrared thermometer,
which is difficult to perform in the crop canopy temperature
under different experimental conditions simultaneously, making
it difficult to compare the difference in canopy temperature
between treatments because the crop canopy temperature
changes over time. In addition, the selection of the area for
measurement is subjective and random (Berni et al., 2009b).
UAVs equipped with infrared thermal imagers can quickly
and non-destructively acquire the crop canopy temperature,
which can effectively identify the temperature differences in
the crop canopy under different environmental conditions. The
thermal sensitivity is generally less than 80 mK. However, as the
canopy temperature is sensitive to the environmental conditions,
eliminating the influence of background temperature, including
the incoming solar radiation, the ambient air temperature and the
wind speed, is required (Sugiura et al., 2007; Deery et al., 2014).
The most commonly adopted methods for achieving the goal
include using sheet backgrounds to eliminate the background
temperature, determining the percentage of bare soil and covered
leaves in each image (Jones et al., 2009), and masking the data
over a known background temperature (Chapman et al., 2014).
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As directly using the surface temperature of crop canopy for
retrieving stomatal conductance or water potential is risky for the
reason of influence soil pixels. In addition, canopy temperature
on its own is not sufficient to derive stress, evapotranspiration or
other similar parameters (Ortega-Farias et al., 2016). Therefore,
it is needed to perform the whole energy balance, taking into
account air temperature, wind speed, wind direction, etc. For the
thermal infrared image processing, different methods including
eliminating all pixels outside the expected temperature range for
the leaves and using automated thresholding algorithms such
as the Otsu method have been adopted to automatically extract
canopy temperature (Gonzalez-Dugo et al., 2013). However, the
presence of mixed pixels (pixel containing signals from both
soil and vegetation) is a big problem for heterogeneous canopy
(Baluja et al., 2012). The influence of mixed soil pixels can be
reduced with thermal infrared data fusion with RGB image.
However, the data fusion for image pre-processing is consuming
and subjective.

LIDAR
LIDAR is a surveying method that measures distance to a target
with emitting laser light. It is an active remote sensing device
that uses the laser as the transmitting light source and adopts
the photoelectric detection method. LIDAR is composed of a
transmitter, receiver, tracking frame and information processing
module, which has the advantages of high point density, high
spatial resolution, smaller and lighter than traditional microwave
radar, and good performance for low-altitude detection (Wallace
et al., 2012). As the emitted pulse interacts with the canopy
portions of it are returned by different elements, and the time
delay between them provide the information about the horizontal
and vertical canopy structure parameters. Simple LIDARs only
measure first and last returns, while full-waveform ones return
the photon density for a range of time delays. The limitations of
LIDAR include the high cost, narrow beam, large data processing,
and laser pulse can be totally absorbed by water, which greatly
affect the popularity and application of LIDAR technology.
LIDAR has been applied to estimate biomass and plant height
of trees, and there are few applications of crop phenotyping
using LIDAR (Ota et al., 2015). The methods used for extracting
structural parameters in the forest are not suit for crop, because
the plant height of crop is too low and the pattern of leaves
aggregation was plant centered. Thus, it’s necessary to explore
strategies for extracting crop structural parameters by LIDAR.

SAR
SAR is an imaging radar used for conducting coherent processing
of the received echo in different locations to obtain high-
resolution data. SAR is a type of active microwave sensor that
can be categorized into two types, focused and non-focused.
SAR can obtain high-resolution radar images similar to optical
images in very low visibility weather conditions and can work
around the clock, which can be used for crop identification,
crop acreage monitoring, key crop trait estimation and yield
prediction, providing strong technical support for large-scale
crop growth monitoring by remote sensing (Rosen et al., 2006;
Wang et al., 2014).

In summary, UAVs deploy sensors with the advantages of
flexible and convenient operation, on-demand access to data and
high spatial resolution as an important means to rapidly and
non-destructively acquire field-based crop phenotypes. However,
because the remote sensing information from a single sensor
is limited, combining multi-sensors to acquire and integrate
data is necessary for field-based crop phenotyping by UAV-
RSPs. In addition, as the image quality can be influence by wind
speed, flight altitude and speed, sensor performance, aircraft
vibration and image correction method etc., exploring strategies
for acquiring images with high quality is necessary. The ability
to efficiently process “big” remote sensing data acquired by UAV
remains a challenge, as well as the ability to develop robust and
fast algorithms according to the sensors used.

Universal Data Processing Methods
The pre-processing of remote sensing images is the basis for
retrieving crop phenotype by UAVRemote Sensing. As there exist
geometric and radiation distortion for remote sensing images,
which were caused by the atmosphere, sensor characteristics,
UAV attitude et al. Thus, it’s necessary to eliminate the geometric
and radiation distortion before retrieving crop phenotype by
remote sensing images. Geometric and radiometric correction
are two basic pre-processing techniques for UAV remote sensing
data.

Geometric Correction
There usually contains geometric deformation for the original
images obtained by the UAV remote sensing platform due to
the influence of the attitude and speed of UAV platform, the
displacement of surface elevation model and the change of
observed projection. Thus, the geometric correction of UAV
remote sensing images is a prerequisite for subsequent data
processing and analysis. The commonly adopted methods for
geometric correction can be divided into two categories: (1)
Geometric correction based onUAVPOSData (Yang et al., 2015);
(2) Geometric correction based on high precision differential
GPS (Saskia et al., 2017). The ground control points must be
set for the traditional method, while the geometric correction
can be achieved using low precision POS data of the UAV
without setting ground points, which can improve the efficiency
of UAV remote sensing images processing. DEM has been widely
used in monitoring crop height and biomass, which usually
can be generated with methods, such as moving surface fitting,
multi-faceted function and finite element method for DEM
interpolation (Liang et al., 2013).

Spectral Radiation Processing
The electromagnetic energy received by the UAV deployed
sensors is inconsistent with the physical reflectance or the
spectral radiation brightness of the target due to the atmospheric
conditions, the physical characteristics of the sensor, the sun’s
position and the angle of measurement (Zhao et al., 2014).
Therefore, in order to correctly reflect the spectral reflectance
or radiation characteristics, radiation correction is required
to eliminate or correct the various noise attached to the
sensor’s output radiant energy in the process of remote sensing
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imaging. Spectral radiation calibration refers to the process
of converting a digital number (DN) of images acquired by
UAV deployed sensors into physical parameters (Liang, 2008),
such as radiation brightness, reflectance or surface temperature,
which includes relative calibration and absolute calibration.
The commonly adopted reflectance conversion methods include
linear regression model, flat field model, internal mean method,
logarithmic residual model and dark target method et al. The
atmospheric correction can be neglected as the atmosphere
between the surface and the sensor has a weak influence
on the radiation of the sensor entrance with the relatively
low flight attitude of micro-UAV (Hernandez-Lopez et al.,
2012). The spectral reflectance or vegetation indices derived
from hyperspectral images were influenced by the angular
view of UAV-deployed sensors. Radiative transfer models can
be act as useful tools for correcting angular influences over
vegetated environments (Burkart et al., 2015). Spectral feature
extraction is the process of the decomposition, reconstruction
and selection of the spectral measurement, which can be divided
into three categories, namely the statistical reduction method,
the characteristic spectral line method and the spectral line
method according to the characteristic expression formula (Li,
2012). The statistical reduction method is the most widely used
method for spectral feature extraction, which has the advantages
of easy to operate and use, while there’s the disadvantage
of lack of physical meaning. The commonly used statistical
reduction methods include principal component analysis,
wavelet transform, manifold learning and supervised correlation
vector machine, support vector machine and discriminant
analysis (Laliberte et al., 2011). The essence of the method is
the decomposition, reorganization and selection of the celestial
radiant energy in order to remove redundant noise, and convert
the signal into the pattern easy to process in the subsequent
application. The advantage of the feature spectrum method is
that the good physical meaning, but it is often computationally
intensive and inefficient. The results lack of representation for the
spectral characteristics when there’s more spectral times and less
observation data. There’s also the advantage of strong physical
meaning for the spectral line method, however, it’s sensitive to
the spectral complexity and instrument calibration (Liang et al.,
2013).

Universal Modeling Methods
Themain adoptedmethods for crop phenotyping by UAV remote
sensing include image analysis, physical modelmethod, empirical
statistic method and advanced data analysis method, such as
machine learning (Liang et al., 2013; Bendig et al., 2015). As
the modern imaging techniques can allow for the visualization
of multi-dimensional and multi-parameter data, the high-
resolution images acquired by UAV remote sensing platform
have been used for estimating crop structure characteristics
using image analysis method (Torres-Sanchez et al., 2015). The
objected-based image analysis method works with groups of
homogeneous and contiguous pixels, which can help to solve
the problem that the spectral similarity of crop and weed
pixels in early growth stages (Sankaran et al., 2015b). The
general description of the procedure for image analysis include

image acquisition, segmentation and classification (Mathews,
2014). Imaging analysis algorithms are the primary drivers for
extracting statistical data to quantify the phenotype. Typical
segmentation algorithms are based on a color model and
threshold value (Li L. et al., 2014). In order to accelerate the
working efficiency, the automatic object-based methods have
been highlighted as the UAV can acquired massive image
data. The thresholding OBIA algorithm is essential for the
automatic vegetation classification (Torres-Sanchez et al., 2015).
As the physical inversion model, such as radiative transfer
model, refer to complex problems of the leaf and canopy
structure, radiation transmission, the combination of radiative
transfer mechanism and spectral absorption characteristics of
biochemical component is required to retrieve crop phenotype.
For example, the PROSAIL model combined with spectral
data were used for monitoring the LAI of wheat (Bendig
et al., 2015). The crop phenotypic traits, such as crop canopy
cover, LAI, chlorophyll content, plant nutrient, water content,
biomass and yield et al., can be rapidly acquired using empirical
statistical models with various vegetation indices. The commonly
adopted empirical statistical methods for high-throughput field
phenotyping include multiple linear regression, partial least
squares regression and stepwise linear regression (Richards,
1990). Using advanced data analysis methods, such as principal
component analysis (PCA), artificial neural network (ANN),
support vector machine (SVM), and wavelet analysis (WA)
et al., can be act as an important method to improve the
prediction accuracy of the retrieval models. However, there’re
disadvantages of the lack of explicit regression relations, the time-
consuming calculation process, which greatly limit its efficiency
and application scope (Zhao et al., 2014). The empirical statistical
models are widely used and effective in the research of UAV
Remote Sensing for field-based phenotyping according to the
literature survey, but the applications were limited by the
higher demand on practical surveying data and lack of physical
meaning. For the machine learning, the obvious drawback is the
lack of the ability to interpret data, which make it difficult to
exploit the advantages of machine learning.

ADVANCES OF UAV REMOTE SENSING IN
FIELD PHENOTYPING

The crop phenotype is defined as the physiological and
biochemical characteristics and traits that are influenced by the
genetic information of the crop and environmental factors, and it
can be divided into different levels, such as groups, individuals,
organs, tissues and cells (Cobb et al., 2013; Yang et al., 2013;
Araus and Cairns, 2014). The crop phenotype is closely related to
crop production and crop breeding. Rapid and non-destructive
acquisition of the phenotypic information of crops in the field
is an important prerequisite for studying the genetic inheritance
law and accelerating the efficiency of large-scale crop breeding
(Yang et al., 2013). The traditional methods for measuring
crop traits, such as biomass, LAI and yield, depend on manual
sampling, which is time consuming, inefficient, and inaccurate
(Berni et al., 2009b; Rahaman et al., 2015; Li W. et al., 2016).
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There are definite advantages for field-based crop phenotyping
based on UAV-RSPs, including high technical efficiency, low cost,
suitability for complex field environments, timely field work,
high-resolution data acquisition, rapid identification of growth
information, synchronous image acquisition, and high operating
efficiency. UAV-RSPs have been widely used for field-based
crop phenotyping as an important tool for high-throughput
phenotyping to assist crop research (Table 4). However, there’s
still the lack of validation of field-based phenotyping by
UAV remote sensing with massive germplasm (over 1,000
plots).

Crop Geometric Traits
Geometric traits, such as crop height (Bareth et al., 2016; Holman
et al., 2016), vegetation cover fraction (Weiss and Baret, 2017;
Yu et al., 2017), fraction of intercepted radiation (Guillen-
Climent et al., 2014; Duan et al., 2017), LAI (Corcoles et al.,
2013), lodging (Chapman et al., 2014), 3D structure (Aasen
et al., 2015; Weiss and Baret, 2017), leaf angle distribution
(Guo et al., 2015; McNeil et al., 2016), tiller densities (Du and
Noguchi, 2017), and emergence (Sankaran et al., 2015a), can
be rapidly obtained using the image analysis methods or the
spectral and texture information in the images acquired by a
UAV deployed imaging sensors (Tamouridou et al., 2017; Yu
et al., 2017). The densified three-dimensional point clouds can
be created using structure from motion (SFM) based on the
images acquired by a UAV equipped with a digital camera
(Turner et al., 2012; Holman et al., 2016). Then, the DSM and
DEM are extracted to generate crop surface models (CSMs)
(De Souza et al., 2017), which can be used for lodging area
estimation (Chapman et al., 2014) and plant height monitoring
(Li W. et al., 2016). The accuracy of plant height estimation
using DSM and DEM can be significant improved with the use
of Real Time Kinematic (RTK) GPS (Xiong et al., 2017). The
plant height of maize was estimated by UAV equipped a digital
camera with the R2 and NRMSE of 0.88 and 6.40%, respectively
(Li W. et al., 2016). In addition to estimating plant height using
DEM generated by digital images, the point clouds acquired
by LIDAR can also be used for estimating plant height. In
NERCITA’s ongoing study, 69 (Inbred) and 104 (Hybrid) maize
lines were selected for estimating plant height with UAV-based
LIDAR. The determination coefficients between the estimated
maize height by LIDAR and measured plant height can reach
to 0.94 in maize breeding (Figure 5), which showed a high
accuracy for plant height estimation in breeding. Flowering
dynamics act as an important phenotypic trait for paddy
rice, which is time-consuming and labor-intensive by manual
observation. The image analysis technique including scale-
invariant feature transform descriptors and machine learning
performed well for detecting flowering panicles with RGB images
(Guo et al., 2015). However, the applications of UAV for
counting flowering panicles haven’t been reported. Automated
characterization of flowering dynamics by UAV remote sensing
at large-scale is essential for accelerating the breeding process.
Thus, there’s still potential for wider applications of field-
based phenotyping by UAV with the advance of image

analysis method, low-cost sensor and effective image processing
software.

Classification of remote sensing images is an important part of
image feature analysis and can be used for leaf color monitoring
and crop identification (Geipel et al., 2014). Classification
methods can be divided into supervised and non-supervised
classification according to the level of user intervention required.
Supervised classification methods include maximum likelihood
discriminant, neural network classification, fuzzy classification,
minimum distance classification and Fisher classification, while
unsupervised classification methods include dynamic clustering,
fuzzy clustering, hierarchical clustering and splitting (Zhao and
Qian, 2004). Ground canopy cover (GCC) was recognized as
an important parameter related to the crop photosynthesis and
transpiration (Mullan and Reynolds, 2010). GCC is dynamic
during the crop growth stages. GCC reduced as a result of
leaf rolling or wilting under drought stress conditions (Sayed
et al., 2012), which can be used for studying the response of
crop varieties under abiotic/biotic stress. Thus, the dynamics
of GCC over time have been regarded as one of the targeted
phenotypic traits in crop breeding (Zaman-Allah et al., 2015;
Yu et al., 2017). Ground canopy cover can be estimated by
canopy reflectance, surface temperature and imagery (Booth
et al., 2005; Rajan and Maas, 2009). For example, Champan
acquired the GCC of sorghum with best linear unbiased
prediction using a UAV with a digital camera and showed
that the UAV-RSP has great potential for crop phenotyping in
specific breeding plots (Chapman et al., 2014). As the accuracy
of GCC estimation is relatively low using NDVI at early
growth stage due to the influence of soil. The pixel-level data
extracted from images with high resolution acquired by UAV
performed better for GCC estimation (Sankaran et al., 2015b).
The large amount of data acquired by UAV-RSPs deploying
multi-source sensors can be rapidly and efficiently processed
through machine learning, which has been widely used in the
field of crop phenotyping under stress conditions. Identification,
classification, quantification and prediction are themain steps for
analyzing the physiological traits under conditions of biotic and
abiotic stress based on machine learning (Zhao and Qian, 2004;
Singh et al., 2016).

LAI reflects the growth status of the crop population, and
it is closely related to crop yield. Methods for estimating
LAI by remote sensing include statistical models and optical
models. Vegetation indices can be built after processing the
spectral reflectance data acquired by UAV-based spectrometers
using statistical methods to estimate LAI, such as Normalized
Difference Vegetation Index (NDVI), Ratio Vegetation Index
(RVI) and Perpendicular Vegetation Index (PVI). For example,
the LAI in soybean breeding was estimated based on UAV-
based hyperspectral by NERCITA, with the determination of
coefficients and RMSE for calibration model of 0.70 and 0.67,
respectively, which showed a good precision (Lu et al., 2016).
In addition to estimate LAI with statistical models based on
vegetation indices, the radiation transmission model can also
be used for LAI estimation. For example, the PROSAIL model
combined with spectral data in the field was used to estimate the
LAI of wheat (Vega et al., 2015).
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FIGURE 5 | The estimation of plant height of summer maize. (A) Crop height model (CHM) from LIDAR in July 8, 2016 (red points indicates the measured sample
points), (B) Validation of maize height from LIDAR.

FIGURE 6 | The distribution of hyperspectral imaging in wheat breeding.

Crop Phenotyping Related Vegetation
Spectral Indices
The absorption and reflection characteristics differ between
spectral bands in the crop leaves, with strong absorption in the
visible band and strong reflection in the near-infrared band,
providing the physical basis of crop growth monitoring by
remote sensing. The reflection characteristics of crop leaves in
different bands can be acquired by the imaging spectrometer
(Figure 6). A large number of vegetation indices can be
constructed by the empirical treatment of spectral reflectance
data at different wavelengths, which can reflect the difference
between the reflectance of visible light, near-infrared and soil
background, indicating the crop growth status (Table 5). For
example, the relationship between LAI and the normalized
difference spectral index (NDSI) calculated from all possible two-
band combinations was evaluated and showed that the NDSI
consists of two sensitive bands and can be used to estimate LAI
with high accuracy (Figure 7; Gao et al., 2016). The spectral
characteristics of the crop canopy can be rapidly acquired by a

UAV-RSP equipped with multispectral and hyperspectral sensors
and can then be processed to build a vegetation index to monitor
key crop traits, such as canopy cover, LAI, chlorophyll content,
plant nutrients, water status, biomass and yield (Horler et al.,
1983; Raun et al., 2001; Gutierrez et al., 2010). The vegetation
indices built through the combination of spectra in the near-
infrared and red channels, such as NDVI, RDVI, and GNDVI,
can be used to monitor LAI and canopy cover (Danks et al.,
1984; Curran, 1985). The vegetation indices composed of a
combination of spectra in the red, blue and infrared channels,
such as OSAVI, EVI, RVI, PVI, and DVI, can be used to estimate
the chlorophyll content and leaf nitrogen content (Samseemoung
et al., 2012; Nigon et al., 2015). The vegetation indices composed
of a combination of spectra in the green and red channels,
such as the red green ratio index, can be used to determine
the carotenoid content. The vegetation indices built based on
the difference between two or more spectral channels, such as
DVI/EVI, which is sensitive to changes in the soil background,
can be used for crop biomass monitoring. The vegetation
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TABLE 5 | Typical vegetation indices used for field-based phenotyping with UAV platform.

Vegetation index Formula Related crop traits References

BGI2 (Blue Green Pigment
Index 2)

R450/R550 LAI, chlorophyll Aasen et al., 2015

CSI (Canopy Structure
Index)

2sSR−sSR2 +sWI2 WI = R900/R970
SR = R800/R680

Water Aasen et al., 2015

DVI (Difference Vegetation
Index)

Rnir−Rred Nitrogen, chlorophyll Jordan, 1969

EVI (Enhanced Vegetation
Index)

2.5(Rnir−Rred)/
(Rnir+6Rred−7.5Rblue+1)

Chlorophyll Huete et al., 1997

GNDVI (Green Normalized
Difference Vegetation Index)

(Rnir−Rgreen )/(Rnir+Rgreen) LAI, chlorophyll, nitrogen, protein content, water
content

Gitelson et al., 1996; Garcia-Ruiz et al., 2013

NDVI (Normalized Difference
Vegetation Index)

(R※nir−Rred)/(Rnir+Rred) LAI, yield, biomass Aasen et al., 2015; Zaman-Allah et al., 2015

OSAVI (Optimized
Soil-Adjusted Vegetation
Index)

1.16(R800−R670 )/(R800+R670+0.16) Chlorophyll Gitelson et al., 1996; Berni et al., 2009b

PRI (Photochemical
Reflectance Index)

(R570−R530)/(R570+R530) Chlorophyll, nitrogen, water Suarez et al., 2009

PSRI (Plant Senescence
Reflectance Index)

(R680−R500)/R750 Chlorophyll, nitrogen Gitelson et al., 1996

PVI (Perpendicular
Vegetation Index)

(NIR−aR−b)/
√

1+ a2 Chlorophyll Richardson and Wiegand, 1977

RDVI (Renormalized
Difference Vegetation Index)

(R800 − R670)/
√

R800 − R670 LAI, biomass, nitrogen Tucker, 1979

RVI (Ratio Vegetation Index) Rnir/Rred Water content, yield, chlorophyll, nitrogen Rondeaux et al., 1996

TCARI (Transformed CAR
Index)

3*[(R700−R670 )−0.2*(R700−R550)
*(R700/R670)]

Chlorophyll PeÑUelas et al., 1993

VDI(Vegetation Drought
Index)

(R970−R900)/(R970−R900) Water stress Suarez et al., 2009

R※ means spectral reflectance.

indices composed of the ratio between two or more spectral
channels can indicate the difference between crop growth and
crop cover. For example, RVI was used for CCC monitoring.
Normalized difference vegetation indices, such as NDVI/RDVI,
can reflect crop growth and nutrition. The combination of blue,
red and near-infrared channels can eliminate the interference
of atmospheric aerosols on vegetation indices, such as OSAVI,
which can improve the accuracy of crop growth monitoring and
yield prediction. There’re advantages of easy computation, low
instrumental requirements for the empirical statistical analysis
method based on vegetation index, while the limitation include
the lack of crop physiological interpretation, and need to be
empirically fitted to each particular scenario. In addition to the
empirical statistical method for crop phenotyping, the semi-
mechanistic model, mechanism model and machine learning are
also useful methods. However, the most adopted method for
crop phenotyping by UAV remote sensing is mainly empirical
statistical model.

Crop Physiological Traits
The reflectance of plant leaves in visible light is affected by the
contents of chlorophyll, carotene and lutein in the palisade tissue,
whereas the reflectance of plant leaves in the near-infrared band is
closely related to the cell structure. A large number of vegetation
indices can be built after the empirical treatment of spectral

information and can be used to estimate many biophysical
properties, such as the chlorophyll, protein content, biomass,
malnutrition, crop vigor and water status (Ma et al., 2001; Prasad
et al., 2007). For example, the NDVI can reflect the effect of
background information on the canopy spectra to estimate crop
vigor, biomass, and yield (Hall et al., 2003; Gao et al., 2016).
GNDVI and NDWI were used to estimate the leaf chlorophyll
content and water status, respectively, (Prasad et al., 2007; Lelong
et al., 2008; Gonzalez-Dugo et al., 2014). The accuracy and
reliability of the estimation of crop physiological traits were
determined by the retrieval model. The most commonly used
modeling and analysis method for crop phenotyping by remote
sensing is regression analysis, including linear and nonlinear
regression. Linear regression methods, including multivariate
linear regression (MLR), stepwise linear regression (SLR), and
PLSR, are simple and feasible (Capolupo et al., 2015) and have
wide applications in quantitative analysis by remote sensing. For
example, MLR was used to estimate crop biomass (Rosen et al.,
2006; Swain et al., 2010), PLSR was used to estimate the LAI in
soybean breeding (Lu et al., 2016), and SLR was used to estimate
the leaf chlorophyll content (Berni et al., 2009b). However, the
primary objection to linear regression methods is the lack of
explanation of crop physiology. In recent years, using nonlinear
regression methods, including principal component analysis,
artificial neural network, support vector machine and wavelet
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FIGURE 7 | Coefficient of determination (R2) between LAI and NDSI
calculated from all possible two-band combinations at jointing and flowering
stages of wheat.

analysis, data mining has been widely employed to associate
hyperspectral information with physiological and biochemical
crop parameters (Gong, 1999; Liang, 2005; Wang et al., 2008).
However, because there is no explicit regression formula for
these nonlinear regression models, it is difficult to obtain a
universal analysis model, and the calculation process is more
time-consuming, which limits the efficiency and application of
these methods. Intercepted photosynthetically active radiation
(IPAR) act as an important indicator of photosynthesis and
biomass accumulation, methods based optical remote sensing,
such as 3D radiative transfer model, Forest Light Interaction
Model (FLIGHT) have been adopted to study the fraction
of photosynthetically active radiation intercepted (fIPAR) and
absorbed (fAPAR). The high-resolution multi-spectral images
acquired by UAV provide a rapid and non-destructive way for
fiPAR and fAPAR estimation in recent years (Guillen-Climent
et al., 2012).

Biomass is an important indicator of crop growth, which
can be used for crop monitoring and yield prediction. The
sensors including multispectral camera, hyperspectral imager,
LIDAR, combing the methods including empirical statistical
analysis of vegetation indices, estimation based on net primary
productivity, and crop growth model have been widely deployed
for biomass estimation (Hunt et al., 2005; Swain et al., 2010;
Wallace et al., 2012; Bendig et al., 2014). However, the method
for the estimation of crop biomass by UAV remote sensing
is mainly empirical statistical model. In order to improve the
accuracy of biomass estimation, the vegetation indices combing
plant height have been used for estimating crop biomass. For
example, the plant height from crop surface model combing
RNDVI were used for barley biomass estimation with the R2

of 0.84, while the best performance of estimating biomass by
single vegetation index got by GRVI and MGRVI with R2 of 0.60
(Ota et al., 2015). In addition to the retrieval model with single

FIGURE 8 | The relationship between plant height and aboveground biomass
of soybean (from Lu et al., 2016; permissions for reproduction have been
obtained from the copyright holders).

vegetation index, the multiple regression model with several
vegetation indices have also been adopted to estimate biomass,
which showed good accuracy. For example, in NERCITA’s
soybean breeding experiment, UAV-based hyperspectral remote
sensing was used to estimate soybean biomass in 126 plots by
NERCITA and provided a rapid and non-destructive method
to estimate crop biomass under complex field environments. As
there is a good relationship between soybean plant height and
biomass (Figure 8), the plant height combined vegetation indices
acquired by a Cubert UHD 185 hyperspectral imager were used
to build retrieval models using PLSR to estimate the soybean
biomass of a massive germplasm. As the relationship between the
canopy spectral characteristics and soybean biomass in different
growth stages showed significant differences, the method of
“segmentation modeling” was used to estimate soybean biomass
under different growth stages. The vegetation indices of OSAVI,
R726 and NDVI705 were used to build a retrieval model to
estimate the biomass in soybean breeding during the periods
of flowering and pod filling, with the determination coefficient
and RMSE of 0.71 and 0.39, respectively. While the RVI, VOG1,
NDVI, and Ratio of green peak and red valley (R1) were used
to build a retrieval model to estimate the biomass in soybean
breeding during the periods of filling and ripening, with a
determination coefficient and RMSE of 0.70 and 0.38 (Figure 9;
Lu et al., 2016).

Crop Abiotic/Biotic Stress
Plant physiology research under abiotic or biotic stress
conditions usually focuses on the changes of physiological
traits and biochemical substances and its agronomy mechanism.
Stress factors, including water deficit, low temperature, high
temperature, high salinity, environmental pollution, pests and
diseases, can have significantly adverse effects on crop growth
(Zhao and Qian, 2004; Zarco-Tejada et al., 2012; Nigon et al.,
2015). Studying the response of crops to different stress
conditions is important for crop cultivation and breeding.
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FIGURE 9 | The relationship between predicted and measured biomass in different growth stages. (A) The calibration and validation of biomass during the periods of
flowering and pod filling; (B) The calibration and validation of biomass during the periods of filling and ripening; from Lu et al. (2016); permissions for reproduction have
been obtained from the copyright holders.

As the membrane permeability of plant cells, the chlorophyll
content, and peroxidase change under stress conditions, thus,
some diseases can be detected by spectroscopy at early growth
stage. For example, the UAV-based multi-band imaging sensor
was deployed to acquire high-resolution aerial imaging for
Huanglongbing (HLB) detection, which yielding that there’s
significant difference for the 710 nm spectral reflectance and
the NIR-R index values between healthy and HLB-infected
trees (Garcia-Ruiz et al., 2013). The vegetation indices can
be extracted from images acquired by UAV to separate the
healthy oil palm and those infested with Phellinus Noxius by
visualization, analysis and identification of image processing
software, which provide a way for timely detection of pest or
disease infections (Samseemoung et al., 2011). The weed can also
be separated crops with UAV-deployed multispectral images. For
example, the Silybum marianum (L.) Gaertn weed was classified
using Maximum Likelihood classifier (ML) with multispectral
images acquired by a fix-wing UAV. The overall accuracy of
classification rates can reach up to 87.04% (Tamouridou et al.,
2017). As crop phenotypic information plays an important role
in revealing the resistance of crops to stress, rapid phenotyping
is essential for agricultural scientists to achieve their goals.
Remotely sensed infrared canopy temperatures can provide an

efficient method for rapid, non-destructive monitoring of whole-
plant response to water stress (Rashid et al., 1999; Gutierrez et al.,
2010), which has been widely used to screen drought tolerance
varieties. The evapotranspiration can be estimated with thermal
infrared images under stress conditions (Grieder et al., 2015).
The canopy temperature can also be used for predict crop yield
at some occasions. For example, there was a significant positive
correlation between lower canopy temperature and higher yield
under conditions of high temperature and drought (Reynolds
et al., 2007). The stomatal conductance decreased and the leaf
temperature increased with stoma closure under osmotic stress
caused by excess salinity and high temperature, which can be
used to estimate leaf water potential and stomatal conductance
(Bowman and Strain, 1988; Wang et al., 2003).

As the crop canopy temperature is related to photosynthesis,
the canopy air temperature difference (TD), which is the ratio
of the canopy temperature and air temperature, can be used to
predict crop yield, for example, there is a significant negative
correlation between the TD and yield of hybrid sorghum potato
(Chaudhuri and Kanemasu, 1982) and a significant positive
correlation between TD and wheat yield under water stress
conditions (Rashid et al., 1999; Bellundagi et al., 2013). The
water deficit index obtained from thermal imaging data can
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be used to determine the water status of crop leaves and to
estimate the stomatal conductance. The canopy temperature
plays an important role in screening drought-resistant varieties
by the International Maize and Wheat Improvement Centre
(Reynolds et al., 1994). Approximately 60% of the variation of
seed yield of different wheat varieties can be explained by high
temperature and drought conditions and canopy temperature,
which are negatively correlated with the yield of wheat (Olivares-
Villegas et al., 2007; Reynolds et al., 2007). Keep (2013) found
a difference in canopy temperature between soybean varieties
bred during the periods of 1920–2010, which was not affected
by the environment. In addition, there is a significant negative
correlation between canopy temperature and yield for 2 groups
of ripe varieties (Keep, 2013).

The conventional method of measuring the crop canopy
temperature in the field is using a handheld thermal imager,
which is inefficient. It is difficult to synchronously measure
agronomic characteristics in a large area within a short time
using a handheld thermal imager, but a UAV equipped with
a thermal imaging instrument can rapidly and easily acquire
thermal imaging data for crop growth monitoring in large areas
to indirectly monitor crop growth status. The use of UAVs
equipped with thermal imagers to monitor the crop canopy
temperature, stomatal conductance and leaf water status of
wheat, maize and sorghum showed high accuracy compared with
the data observed in the field, while such indicators of cotton
acquired by UAV-based thermal imagers showed lower accuracy
(Berni et al., 2009b; Zarco-Tejada et al., 2012; Colomina and
Molina, 2014).

Crop Potential Yield Prediction and
Nutrient Monitoring
Crop yield, which is closely related to the development and
differentiation of organs and the distribution and accumulation
of photosynthetic products, is the core focus of crop science
research. The traditional methods for crop yield estimation
are the use of manual surveys or establishing the relationship
between agronomic factors or climatic factors and crop yield
using statistical analysis methods (Overgaard et al., 2010;
Swain et al., 2010). Many observations and samplings in field
experiments are required to determine the parameters of the yield
prediction model, which is laborious and time-consuming. As
some factors are difficult to quantify, it is difficult to promote the
use of these models due to the poor adaptability to different areas.
Yield prediction by remote sensing is defined as building the
relationship between the canopy spectra and crop yield based on
the biological characteristics of crops for yield prediction using
spectral data at different crop growth stages (Swain et al., 2010).
Improving the accuracy and adaptability of the yield estimation
model is a prerequisite for the application of UAV remote sensing.
Crop yield can be predicted by combining the plant physiological
parameters with the vegetation indices. The commonly adopted
plant physiological parameters and remote sensing parameters
for building yield prediction models include the length of the
growth period, chlorophyll content, LAI, aboveground biomass,
spectral reflectance and vegetation indices (Filella et al., 1995).

Crop yield can be predicted by constructing a remote sensing
inversion model containing a variety of vegetation indices;
however, the accuracy of crop prediction using the structural
index is low due to the effects of terminal water stress (Chaudhuri
and Kanemasu, 1982). The canopy temperature, which is related
to yield to a certain extent, and carotenoids pigment indices,
such as the PRI and chlorophyll absorption reflectance index
(CARI), are suited to screening complex traits, such as crop
yield (Gonzalez-Dugo et al., 2015). For example, the wheat
yield was predicted based on canopy temperature as low
temperature increases the yield under adequate water supply
and water limitation conditions (Olivares-Villegas et al., 2007).
The chlorophyll content can also be used to predict crop yield
because there is a relationship between the chlorophyll content
and photosynthesis that is related to yield. The accuracy of yield
predictionmodels improves with increasing number of modeling
parameters; however, the yield prediction models using spectral
reflectance characteristics and canopy temperature usually focus
on 2∼3 bands and lack adaptability. Therefore, it is important to
build crop yield prediction models that combine crop physiology
and remote sensing parameters to improve the accuracy of yield
prediction by UAV-RSP.

In recent years, the spectral characteristics of components,
such as plant chlorophyll, nitrogen and water, were identified,
which enabled the estimation of the biochemical contents of
crops by remote sensing and estimation of crop nutrition under
different environmental conditions (Swain et al., 2007; Wang
et al., 2008). Leaf nitrogen concentration (LNC) is an important
indicator of nitrogen (N) status for assessing dynamic regulation
and predicting crop yield. Research progress of remote sensing
technology for LNC estimation have been achieved in the past
years. The adopted algorithms and vegetation indices for building
remote sensing analytical models significantly affect the accuracy
of field phenotyping using UAV-RSPs. As models for phenotypic
information analysis of massive cultivars in breeding plots using
unmanned aerial vehicle remote sensing are sensitive to climate
and soil conditions, developing strategies for LNC estimation
for different crops under different environmental conditions
is helpful for crop growth monitoring. In NERCITA’s study,
four chemometric techniques, including stepwise multiple linear
regression (SMLR), partial least squares regression (PLSR), back
propagation neural network (BPN), and support vector machines
regression (SVR), were adopted with 13 key spectral features to
build LNCmodels. The results indicated that partial least squares
regression (PLSR) and support vector machines regression (SVR)
performed better than the other two methods, with R2 values in
the calibration set of 0.82 and 0.81 and the normalized root mean
square error (NRMSE) values in the validation set of 5.48 and
5.94%, respectively (Li Z. et al., 2016).

DISCUSSIONS

UAV-RSPs and Deployed Sensors
UAV remote sensing platforms have become an effective way
to rapidly acquire ground information, especially in the field
of crop growth monitoring. It is necessary to adjust the flight
altitude and flight speed based on the actual conditions due
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to the complexity of the farmland environment. In contrast,
the flight speed and altitude must be lower to obtain detailed
information about fruit growth in the bush (Mathews and Jensen,
2013). Frequently used UAV-RSPs, especially multi-rotor UAVs,
such as the quadcopter UAV model md4-1000, are unmanned
gyroplanes. Gyroplanes have the advantages of adjustable flight
speed and height, the ability to take-off and land vertically,
freedom from site condition restrictions, and suitability for the
observation of precise farmland information (Hardin and Jensen,
2011). The flight altitude of multi-rotor UAVs ranges from 20 to
100 m, guaranteeing that the spatial data resolution of the optical
sensors can reach the centimeter level for accurate identification
of crop individuals. The flight altitude ranges from 300 to 1,000
m for most fixed-wing UAVs, and the biggest problem for the
fixed-wing UAVs is that a minimum flight speed before they
stall is required. The operation of fixed-wing UAVs is more
complicated than that of multi-rotor UAVs, which make it more
dangerous. The disadvantages limit the wide application of fixed-
wing UAVs for data acquisition in field phenotyping. Most UAVs
are equipped with automatic driving systems. The automatic
adjustment of flight height, position and attitude is conducted
using GPS/INS and the pressure gauge mounted on the UAV,
which can reduce the intensity of manual control and avoid the
impact of human factors on flight safety (Pajares, 2015). The
payload can reach 3–5 kg for the most multi-rotor and fixed-
wing UAVs. Additionally, the UAV body must be larger when
the payload exceeds 5 kg; it is necessary for the UAV to be
equipped with an ejection frame at the specialized site for take-
off and to conduct artificial judgment to open the parachute,
which increases the complexity and difficulty of operating fixed-
wing UAVs. In general, multi-rotor UAVs are more stable and
convenient and are more suitable as a platform for field-based
crop phenotyping. Nevertheless, the limited extension that rotary
wings can cover by speed and autonomy is the problem for
its application. In the future, multi-rotor UAVs will be able to
provide more than 1 h of continuous flight as battery technology
matures.

UAVs are currently equipped with optical sensors with
wavebands ranging from visible light to near-infrared, such
as multispectral sensors, conventional digital cameras, and
hyperspectral sensors. The problems with sensors deployed by
UAV-RSP are as follows: (1) the lack of sensors for field-based
crop phenotyping. The existing optical sensors are difficult to use
to obtain quantitative crop information and are usually employed
for qualitative analysis. For example, an 8-bit storage format is
used for imaging by the Tetracam ADC-lite camera, which can
result in a very small change in spectral difference between crops
and affect the accuracy of the subsequent quantitative analysis.
The commonly used digital cameras lack camera calibration and
radiometric calibration, which can affect the accuracy of the
geometric parameter analysis. Unmanned airborne hyperspectral
imaging, including linear push broom imaging and staring
imaging, has gradually gained the attention of experts and
scholars. The linear push broom imaging hyper-spectrometer
is more mature, while the staring hyperspectral imager was
developed for unstable platforms in the last 2 years. The biggest
problem with the linear array push broom spectrometer is that

it is difficult to guarantee accurate geometric calibration. The
spatial resolution of the spectrometer can reach the centimeter
level, but the vibration of the UAV platform and dynamic jitter
can cause obvious geometric distortion in the absence of high-
precision positioning and orientation system (POS) or inertial
navigation system (INS). The vibration can be reduced by a
shock absorbers, or an active stabilization platform. However,
it is difficult for the geometric calibration accuracy to reach the
centimeter level, which can seriously affect the application of this
type of sensor. Therefore, it is necessary to develop sensors to be
deployed by micro-UAV for field-based crop phenotyping. (2)
The current sensor acquisition control system and UAV flight
control system are not integrated. Currently, the UAV and the
deployed sensors are from different manufacturers. Therefore,
the flight control system of the UAV does not provide an interface
for the sensors, and the self-control system, acquisition and
storage unit are equipped by the sensors without the interface
and without a UAV flight control system. It is necessary to
dynamically control the sensors using the UAV flight control
system in the process of UAV remote sensing data acquisition to
meet the needs of data acquisition and to avoid redundant data
acquisition by the sensors.

Airspace Regulations for the Application of
UAVs
The UAVs have the advantages of flexible, real-time and non-
destructive for crop phenotyping, however, UAVs must follow
strict management rules to ensure their security as well as
the sustainable development of the UAV aviation industry. As
the flight plan needs to be permitted by aviation regulators,
which usually take more than 3 days in some countries. For
example, permissions from more than 3 regulatory agencies,
such as air force, civil aviation, police, are needed to conduct
UAV flight in China, which is time consuming. The flight plan
including the flight time, flight altitude UAV driver, flying area
and purpose of flight etc. must be submitted. As the plan for
the acquisition of UAV remote sensing information was usually
scheduled based on the weather and crop growth stages, it’s hard
to propose advanced declaration for conducting the research
of field phenotyping. In addition, the frequent flight may be
needed in the research, the repeated declarations are trouble.
Here we present a summary of the main regulation for UAVs in
different countries. As one of the most developed countries in the
aviation industry, the regulations of UAVs in the United States
are in a relatively advanced position. UAVs were admitted to
the National Aeronautics and Space Administration (NASA)
in the United States in 1990, and UAV regulation found a
balance between caution and openness by the Federal Aviation
Administration (FAA) with the increase in the civilian UAV
operating frequency. There are three types of UAVs that need
to be supervised: public aircraft, civil aircraft, and model planes.
The US FAA announced an online registration of commercial
drones and small UAVs in 2016, with equal registration costs for
recreational drones. The web version of the registration system
was designed to reduce the time required for a large number
of UAV operators to register commercial UAVs. Recently, the
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US FAA proposed a regulatory requirement that a UAV must
be in sight of its operator, which limits the wide application of
UAVs for large area crop surveys, long distance inspection of
pipelines and delivery. To address this limitation, an air traffic
management system was developed with the cooperation of
NASA, companies, universities and government agencies to allow
the operator to use a tracking system so that the UAV can fly
out of sight of the operator while avoiding sensitive areas, such
as airports and crowded areas. The European Aviation Safety
Agency (EASA) issued a notice of advanced system revision (A-
NPA2015-10) named “the framework of the UAV operation rules
and regulations” on July 30, 2015. The A-NPA provided a detailed
operational regulatory framework with low risk proposed by
EASA. The supervision by EASA was based on the performance
and risk of UAVs, which can be divided into three categories:
(1) open class (low risk); (2) franchise operation (medium risk);
(3) validation class (high risk). The regulatory framework of
EASA is based on the operational risk of the UAV. In addition to
the regulations based on risk management, there are regulations
based on certification for UAVs, which are similar to those for
manned spacecraft (Stöcker et al., 2017). The Civil Aviation
Administration of China (CAAC) stipulates that institutions and
individuals using UAVs must apply for specialized airspace based
on the “General Aviation Flight Control Ordinance” and must
obey flight activity management rules to ensure flight safety. The
management level of production and the possession and use of
UAVs greatly affects the market size of UAV applications, which
include UAV remote sensing and field-based crop phenotyping.

Methods and Accuracy of Field-Based
Crop Phenotyping
Methods for crop phenotype analysis from remote sensing
include direct monitoring, image classification, concurrent
comparison, empirical statistics modeling, physical reversion
modeling, machine learning, and time series analysis of remote
sensing parameters (Singh et al., 2016; Virlet et al., 2017).
However, the commonly adopted methods for crop phenotyping
by UAV remote sensing technology are empirical statistical
analysis at present. The other equally important methods for
the analysis of remote sensing data haven’t been widely used in
the research, only few articles present these methods for crop
phenotyping by UAV. The statements based on literature survey
and case study by NERCITA indicated that the high accuracy
for estimating field-based crop phenotypic traits can be attained,
however, the high accuracy just can be attained in special
occasions. The research that analyze LAI, canopy chlorophyll
content and leaf nitrogen content using remote sensing data has
been fully developed. The determination coefficient of retrieval
models can exceed 0.85 (Rosen et al., 2006; Berni et al., 2009b;
Ballesteros et al., 2014; Bendig et al., 2014), indicating that
the estimated phenotypic information is in good agreement
with the measured values. The reason for the high accuracy is
that the spectral characteristics of the leaves are related to the
abovementioned indicators and can be used to directly reflect
the growth information. Unfortunately, it’s hard to propose
the universal models or general methods for retrieving crop

phenotypic traits with good accuracy by remote sensing among
different types of crops so far.

As the vegetation index is an important cause of the
differences in remote sensing for retrieving crop phenotypic
traits, the combination of spectral bands can affect the retrieval
accuracy. The retrieval accuracy of complex traits based on
remote sensing in the surveyed literatures remains low. The
determination coefficient of retrieval models for predicting crop
yield and biomass is usually less than 0.70 (Overgaard et al.,
2010) due to the indirect relationship between remote sensing
information and complex crop traits. Complex crop traits are
influenced by the genome and environment, while the spectral
reflectance and vegetation indices (e.g., NDVI, RVI) are indirectly
related to these traits. Crop traits such as LAI and fraction of
absorbed photosynthetically active radiation are more related
to crop yield; however, it is difficult to use crop traits directly
related to spectral characteristics to predict crop yield due to the
heterogeneity of the earth’s surface, the influence of crop type and
environment, and the uncertainty of remote sensing extraction.

The basic research ideas for field-based crop phenotyping by
UAV-RSP are similar, including retrieving key crop traits, such
as crop structure, biochemical content, biomass, yield, lodging,
diseases and pests, from remote sensing data (Sankaran et al.,
2015b). Most retrieved crop traits are at the canopy scale and
can indicate crop growth; however, there is a need to acquire
physiological and ecological characteristics of individual plants
and even organs that cannot be resolved by UAVs. Therefore,
new sensors and physical reversion models are needed to
synchronously monitor the key phenotypic information of crops
at the micro and macro scales.

Challenge for “Big” Data Processing
Compared with the rapid development of sensor and hardware
platforms, the efficiency and function of image processing are
insufficient, especially the rapid processing ability of software
in the field. In addition, large amounts of data acquired by
hyperspectral imagers and LIDAR need to be processed (Zhao
and Qian, 2004). As image processing for hyperspectral and
LIDAR data is complex, there is an urgent need to develop
software with the ability to perform high-speed and accurate
image processing to improve the efficiency and accuracy of data
processing. The data processing flow is based on aerial remote
sensing image processing for most existing UAV remote sensing
processing software, without consideration of the specialized
characteristics of UAV remote sensing. The aspects reflecting
the difference between aerial remote sensing and UAV remote
sensing include few ground control points, a lack of strict
internal calibration parameters in the deployed sensors, and a
lack of a high-precision POS system for UAV remote sensing,
which prevents the existing aerial remote sensing processing
system from being directly applied to UAV remote sensing data
processing. Digital image processing software, such as Agisoft
PhotoScan Professional Edition (Agisoft LLC, St. Petersburg,
Russia) and Pixel4D (Lausanne Switzerland), which can be used
for geometric correction and mosaicking, has rapidly developed
in recent years; however, hyperspectral images and LIDAR data
cannot be processed using commercial processing software due
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to the lack of a special module for remote sensing information
analysis. The efficiency of data processing software must be
improved to satisfy the requirements of rapid and accurate data
processing and analysis.

The geometric correction and radiometric calibration
constitute the most demanding work for UAV remote sensing
data processing, which is time-consuming. A mature remote
sensing photogrammetry method was adopted for geometric
correction, which requires many points matching the same
name, point cloud generation and correction of ortho images.
In addition, it is difficult to batch process because the spectral
and spatial resolution of each sensor is different, which reduces
the processing efficiency. It is necessary to develop UAV remote
sensing output processing methods based on cloud computing
or high-performance computing to process remote sensing data
online and to avoid the low efficiency caused by data processing
using stand-alone software. Additionally, there is a need to
develop specialized analytical tools for sensors deployed in crop
phenotyping research using UAV-RSPs for wide applications by
crop breeders. The application of UAV-RSPs for field-based crop
phenotyping can promote the association analysis of genomes
and phenotypes to improve crop breeding efficiency.

CONCLUSION

Field-based crop phenotyping by UAV-RSPs has become a hot
research topic in recent years. Approximately 88.5% of the
surveyed literature focused on field phenotyping using UAV-
RSPs was published in the last 5 years. The current status and
perspectives of UAV-RSPs for FBP are follows:

(1) UAV-RSP can be as a powerful tool for field-based
phenotyping with the advantages of high operation
efficiency, low cost, suitability for complex field
environments, and high resolution. The multi-rotor UAV
is the mostly adopted UAV-based phenotyping platform in
the recent years. There’s potential for UAV-RSP acting as
an alternative to the traditional methods for crop growth
monitoring, yield prediction and variety selection. The
digital camera, multispectral camera, hyperspectral camera,
thermal infrared imager and LiDAR have been widely used
to field-based phenotyping. The adoption of multi-sensors
coupled with advanced data analysis methods for retrieving
crop phenotypic traits are the research hotspots in recent
years.

(2) The crop phenotype that can be acquired by UAV-RSP
include, but are not limited to, geometric traits, canopy
spectral texture, physiological traits, abiotic/biotic stress

response, plant nutrition, and yield. Unfortunately, there is
still a lack of validation for field-based phenotyping by UAV
with a large group of crop varieties. There exists difference
for the accuracy of field-based phenotyping using UAV
remote sensing among phenotypic traits, which was caused
by the variation of sensor type, climate, crop growth stages
and crop type. Research focused on crop phenotypic traits
that are directly related to the canopy spectral information
has been conducted and has shown good accuracy under
certain conditions, while there is low accuracy in the research
on the non-destructive acquisition of complex traits that are
indirectly related to the canopy spectral information.

(3) The limiting factors for UAV-based field phenotyping
include the low capability of UAVs, the strict airspace
regulations, the lack of methods for fast data processing
and models for estimating complex traits under different
environmental conditions. Improving the performance of
UAVs, reducing the cost of sensors, speeding up data
processing and developing strategies for analyzing crop
phenotype by remote sensing are future trends. Fortunately,
it is expected that with the advancement of UAVs with larger
payload and longer endurance, low-cost sensors, improved
image processing methods for “Big” data, and effective
airspace regulations, there’s potential for wider applications
about the UAV-based field phenotyping.
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