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Colchicine is one of the oldest plant-based medicines used to treat gout and one of
the most important alkaloid-based antimitotic drugs with anticancer potential, which
is commercially extracted from Gloriosa superba. Clinical trials suggest that colchicine
medication could prevent atrial fibrillation recurrence after cardiac surgery. In addition,
therapeutic colchicine is undergoing clinical trials to treat non-diabetic metabolic
syndrome and diabetic nephropathy. However, the industrial-scale biomanufacturing of
colchicine have not yet been established. Clearly, further studies on detailed biorhizome-
specific transcriptome analysis, gene expression, and candidate gene validation are
required before uncover the mechanism of colchicine biosynthesis and biorhizome-
based colchicine biomanufacturing. Annotation of 32312 assembled multiple-tissues
transcripts of G. superba represented 15088 unigenes in known plant specific gene
ontology. This could help understanding colchicine biosynthesis in G. superba. This
review highlights the biorhizomes, rhizome specific genes or gene what expressed
with high level in rhizomes, and deep fluid dynamics in a bioreactor specifically for the
biomanufacture of colchicine.
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INTRODUCTION

Alkaloids are one of the most chemically diverse nitrogenous small molecules which are
synthesized from amino acids. Many bioactive alkaloids are extracted from plants which have
been used for human medicine (Schläger and Dräger, 2016). The Colchicaceae family has a
unique colchicine alkaloid biosynthetic mechanism (Chacón et al., 2014). Gloriosa superba L. is a
member of Colchicaceae, and is a very successful commercial source of pharmaceutical colchicine
(Sivakumar, 2013). Colchicine has several molecular functions (Kwon et al., 2017; Prins et al.,
2017). First, colchicine has very strong binding affinity for tubulin that prevents the microtubule
assembly and thereby inhibits cell division (Herdman et al., 2016). This antimitotic mechanism
has been used in chemotherapy to prevent cancer cell growth (Johnson et al., 2017). In addition,
colchicine enhances the interleukin-8 production which could inhibit the human pancreatic cancer
(Yokoyama et al., 2017). However, the anticancer applications of colchicine have been limited due
to high clinically acceptable concentrations (Lin et al., 2016). Colchicine has been successfully
used in plant cytogenetics to double chromosome numbers. For instance, colchicine inhibits the

Abbreviations: BCR, bubble column reactor; BTBR, balloon type bubble reactor; CO, CONSTAN; DW, dry weight; ESTs,
expressed sequence tags; FDA, food and drug administration; FT, Flowering Locus T; GI, GIGANTEA; GO, gene ontology;
KEGG, Kyoto encyclopedia of genes and genomes; NAT, N-acetyltransferase; NMR, nuclear magnetic resonance; NMT,
N-methyltransferase; OMT, O-methyltransferases.
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formation of spindle fibers at anaphase, resulting in replicated
homozygous chromosomes as in cabbage and broccoli (Yuan
et al., 2015). Second, colchicine has been widely used for centuries
to treat gout (Wilson and Saseen, 2016; Abhishek et al., 2017).
Colchicine treatment could decrease systemic inflammation
(Akodad et al., 2017). Indeed, colchicine had antifibrotic effects
in diabetic nephropathy (Solak et al., 2017). Finally, clinical data
suggested that colchicine treatment could inhibit cardiovascular
diseases, among others (Frommeyer et al., 2017).

Medical studies indicated that patients administered with
the dose of 0.6 mg colchicine per day would show plasma
concentration after single dosing of approximately 2 ng/ml,
which has been shown to promote gout inhibition, while 6 ng/ml
is required to observe gastric cancer inhibition (Terkeltaub
et al., 2010; Lin et al., 2016). Overdoses can have devastating
consequences or toxicity (Medani and Wall, 2016). Notably,
appropriate G. superba crude extract doses could prevent
unintended contraindications which have been reported in
traditional treatments (Capistrano et al., 2016; Kande Vidanalage
et al., 2016). The pharmaceutical quality control NMR analysis of
enantiomer and synthetic racemic mixture of colchicine has been
recently reported (Menéndez-López et al., 2017). G. superba seed
and field grown rhizomes contain a unique colchicine scaffold
with a high concentration of colchicine, approximately 0.9 and
0.3%, respectively (Sivakumar, 2013). Therefore, public biosafety
is important in field cultivation, handling, and processing to
prevent accidental poisoning of workers. Despite colchicine being
highly studied in the medical sector, little is known about
the biosynthesis in plants and biosynthetic genes have not yet
been identified. Due to lack of this knowledge, there has been
limited success in increasing the yield of G. superba rhizomes.
Nevertheless, stable high colchicine accumulation is challenging
and the cultivation is labor-intensive, time consuming, and
expensive (Vanitha and Manimalathi, 2013). Use of natural
colchicine has been increasing substantially in the pharmaceutical
industry, thus, alternative biomanufacturing platforms must be
developed (Sivakumar, 2017).

Plant cell and root culture systems have been typically used
in biotech industry to biomanufacture therapeutic molecules
(Sivakumar et al., 2011; Tekoah et al., 2015). Despite considerable
metabolic engineering or synthetic biotechnology efforts, the
yield of bioactive alkaloid molecules are still very low in
these systems because, in part, the lack of knowledge of
the biosynthetic mechanism, pathways, and gene expression
(Li and Smolke, 2016). G. superba and colchicum species root,
callus and cell cultures have been conducted in vitro, but these
cultures have yielded insignificant concentrations of colchicine
(Daradkeh et al., 2012; Ghosh et al., 2015; Nikhila et al.,
2017). Clearly, further advancement is needed to effectively
overcome these barriers. Notably, in vitro bulbs are capable
of producing montanine and hemanthamine alkaloids (Zayed
et al., 2011). Since, rhizomatousness is one of the key lifecycle
features in the perenniality of G. superba, the biorhizome
can be used as an alternative colchicine production system.
For instance, rhizomes are the predominant field propagation
system for commercially grown G. superba (Phatak and Hegde,
2014; Padmapriya et al., 2015). Each G. superba daughter

rhizome arises from a bifurcated mother rhizome, and each
rhizome fork possesses one apical vegetative meristem (Mallya
Suma et al., 2014). The apical rhizome buds are dynamic
asexual organs which involve complex cross-talk between
different regulatory levels, and grow into a complete plant
which eventually becomes self-supporting (Salvato et al., 2015).
There is very little gene expression information regarding
rhizome development and cascade mechanisms involving
biosynthesis of small molecules (Li et al., 2014). However,
G. superba in vitro tuber cultures accumulate 0.01–0.1% DW
of colchicine (Selvarasu and Kandhasamy, 2012; Kumar et al.,
2015). Dormancy mechanisms may counteract biosynthesis of
colchicine in field grown rhizomes, but this impediment has been
overcome in the G. superba biorhizome. This review highlights
new biotechnological biorhizome-based biomanufacturing to
improve the therapeutic colchicine production in G. superba
(Figure 1).

BIORHIZOME

Biotechnological biorhizomes are asexually produced rootstocks
grown in vitro, whose buds develop new shoots, adventitious
roots, and daughter biorhizomes to serve as reproductive as
well as storage organs (Figure 1C). They may be used to
biosynthesize high-value pharmaceutical molecules. Biorhizomes
are unique and efficient biosynthetic mechanisms in rhizomatous
plants, and an advanced biotechnological platform compared
to root and cell cultures (Sivakumar, 2017). Notably, the
size of the shoot is directly related to the age and size
of the biorhizome, perhaps because the rhizome is not
only energy source but hormones source for the developing
shoot (Winkel et al., 2011). The coordinating mechanism
of the shoot and rhizome could balance the inorganic and
organic carbon via photosynthesis and respiration, respectively
(Sakamaki and Ino, 2006; Srinivasan et al., 2016). Biorhizomes
continuously synthesize colchicine. This functional characteristic
of continuous colchicine production is a decided advantage for
biomanufacturing compared to root culture, in which colchicine
production is quite low (Sivakumar, 2013). The biosynthesis
of colchicine exploits the immobilization of the biosynthetic
machinery within a differentiated specialized biorhizome.

At the molecular level, regulation of biorhizome formation
is very complex but genes controlling shoot production might
be involved (Balbuena et al., 2012; Kim et al., 2013). There is
evidence that rhizome morphogenesis in Lotus is regulated by
photoperiod (Hu et al., 2011; Cheng et al., 2013b). Hormone
auxin are involved in the initiation and development of rhizomes
in Lotus. Many genes exhibit significant changes in their
expression during development, however, genes associated with
auxin hormone signaling appear to trigger rhizome induction
(Masuda et al., 2007; Cheng et al., 2013a; Novak and Whitehouse,
2013). In bamboo, about 26 genes are highly expressed in the
rhizome buds, which are related to auxin biosynthesis and
signaling. The transcriptional factor REVOLUTA was highly
expressed in rhizome buds of bamboo, which plays an important
role in meristem initiation (Wang et al., 2010). In potato,
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FIGURE 1 | Illustration of workflow for Gloriosa superba biorhizome biomanufacturing. (A) Biorhizome induction from callus (50 ml flask) – the chemical structure is
colchicine; (B) Biorhizome scaled-up in a 5 L airlift bioreactor (height: 16 inches; diameter 8 inches); (C) Harvested biorhizome from bioreactors.

calmodulin-binding protein plays a regulatory role in signal
transduction for tuber formation (Reddy et al., 2002). For
instance, FT, Lov Kelch protein 2, CONSTAN, and GIGANTEA
genes have been involved in the transduction of photoperiodic
signals which might be promoting the rhizome budding in
potato (Navarro et al., 2011; Yang et al., 2015). There were
14 other important rhizome formation-related genes, including
a MADS-box that could be involved in rhizome enlargement
(Cheng et al., 2013b). Genes encoding phytochrome B, CO, GI,
and FT were identified in Lotus rhizomes, with differing gene
expression and regulation in the shoot and rhizome (Yang et al.,
2015). The transcription factor families such as AP2-EREBP,
bHLH, MYB, NAC, and WRKY play an important role in
regulating secondary metabolic pathways in rhizomes (Yang
et al., 2012). In addition, miRNAs were differentially expressed
in aerial shoots and rhizomes (Zonga et al., 2014). Thus, at the
transcriptional level, shoots and biorhizomes are sharing the
functional coordination.

Genomic and transcriptomic data generally suggest that
gene transcripts involved in translation, transcription regulation,
and metabolism were abundant in the rhizome, while in the
leaf the gene transcripts for photosynthesis, stress response,
and translation were the most dominant (Huang et al., 2016).
Hence, the biorhizome is a unique system for identifying
rhizome-specific genes for elucidating the colchicine pathway,
and the biorhizome can be used as a biofactory to produce
pharmaceutical colchicine. Interestingly, colchicine biosynthesis
appears to be upregulated in the biorhizome relative to that
in adventitious root culture. Gene expression patterns in the
rhizome were quite diverse, while the primary and secondary
metabolisms were upregulated (Chen and Li, 2016; Gurung et al.,
2016). Apparently, the biorhizome biomass and the colchicine
biosynthesis are interconnected with shoot production, but more
colchicine was produced in the biorhizome than the shoot.
For instance, the leaves and stems accumulate less than 0.1%
colchicine whereas the biorhizome accumulate over 0.5% (DW)
colchicine (Sivakumar, 2017). Indeed, the sprouts upregulate
the colchicine production in the biorhizome. In bioreactor
culture, the roots-detached biorhizome continuously grows
and synthesizes colchicine, whereas shoots-detached biorhizome

loses its function to synthesize biomass or colchicine. Despite
this, metabolic adaptation or a gene network could enhance the
translocation of colchicine from the shoots to the biorhizome,
which is important for the plant’s survival.

Indeed, the shoots-detached biorhizome induces the new
daughter biorhizome in bioreactor culture. This phenomenon
suggests that shoots play a key molecular mechanisms in
biorhizome and colchicine biosynthesis. This characteristic could
be associated with changes in the fundamental expression
pattern of genes, and alterations in various biochemical and
physiological processes that would be crucial for growth and
survival of biorhizomes. Genes involved in stress response were
greatly upregulated in the rhizome (Yang et al., 2016). For
instance, the rhizome encodes a mobile signaling protein, which
could control the biorhizome formation (Lee et al., 2013).
This suggests that biorhizome might have a complete set of
the stress response pathway enzymes. In addition, increased
levels of dissolved nutrients, oxygen and hormone in bioreactor
culture could stimulate daughter biorhizome development.
However, G. superba biorhizome transcriptome analysis and gene
expression patterns need to be understood to ascertain and
unravel the underlying biorhizome regulatory network.

TRANSCRIPTOME ANALYSIS

The turmeric and ginger ESTs revealed that over 770 gene
transcripts expressed in rhizomes, which are absent in other
tissues. These transcripts were enriched for genes associated
with rhizome development and regulation. The bioactive small
molecules such as curcuminoids and gingerols synthesizing
candidate genes were highly expressed in the rhizomes (Koo
et al., 2013). Recently, deep sequencing transcriptome data
was used to identify various unigenes involved in genome
cellular component, biological process, molecular function,
and proanthocyanidin biosynthesis in rhizome (Chen and Li,
2016). Notably, the benzylisoquinoline alkaloids biosynthetic
genes were highly upregulated during bulb development in
Corydalis yanhusuo (Liao et al., 2016). This suggests that rhizome
has unique small molecule biosynthetic mechanism. However,
there is no molecular information revealing the colchicine
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biosynthetic pathway in biorhizome. Advanced genomic,
proteomic, metabolic, and bioprocess engineering efforts
are required to overcome this barrier. Annotation of 32312
assembled transcript sequences, for multi-tissues including
dormant rhizomes of G. superba, from the medicinal plant
database1 represents 15088 unique genes having homology
to known plant specific protein GO terms. For instance, in
the cellular component domain, the terms cell (2795 genes,
18.5%, GO:0005623) and cell part (2795, 18.5%, GO:0044464)
were mostly assigned. Within the biological function domain,
the assignments were mostly enriched in the terms metabolic
process (5306, 35.2%, GO:0008152) and cellular process
(4746, 31.5%, GO:0009987). For the molecular function
domain, the most evident matches were to the terms binding
(7026, 46.6%, GO:0005488) and catalytic activity (5038,
33.4%, GO:0003824) (Figure 2). In addition, the G. superba
transcriptome contains desired colchicine pathway candidate
genes such as of N-methyltransferase, O-methyltransferases,
P450s, and N-acetyltransferase (Sivakumar, 2017). Further
studies on detailed biorhizome transcriptome analysis, gene
expression, and candidate gene validation could uncover the
mechanism of colchicine biosynthesis and development in
G. superba biorhizomes, and facilitate metabolic engineering and
industrial-scale biomanufacturing of colchicine.

1http://www.medplantrnaseq.org

BIOMANUFACTURING

Many human medicines are now biomanufactured by genetic
engineering or recombinant DNA technology (Tekoah et al.,
2015; Roh et al., 2016). Therapeutic small molecules with
bioactive natural isomers are derived from biomanufacturing as
part of a living system or cells (Sivakumar et al., 2006; Neville
et al., 2017). The pharmaceutical quality control colchicine
profile is important in raw plant tissue, necessitating that the
colchicine molecule drug should not be altered. Therefore,
the biomanufacturing is not only to transform a biorhizome
system to produce therapeutic colchicine, but also to develop a
safer production and quality control as mandated by regulatory
agencies. Biomanufacturing colchicine from biorhizomes could
lower upstream bioprocessing costs, incorporate economy of
scale, speed production, reduce pesticide contamination of drugs.

Ginseng adventitious root culture has been successfully scaled-
up in a BTBR (Sivakumar et al., 2005, 2011). Therefore,
to scale-up Gloriosa biorhizome a BTBR has been used
(Figures 1B, 3). Successful biorhizome scale-up in BTBR require
a deep fluid dynamics understanding, because the biorhizomes
are completely immersed in the media. For instance, many
engineering parameters are involved in the design of a BCR such
as; gas density, ρ̂g , liquid density, ρ̂l, viscosity, µ̂l, volumetric gas
flow rate, Q̂, interfacial tension between gas and liquid phases,
σ̂ , sparger pore size, D̂p, column diameter, D̂c, and length, L̂.

FIGURE 2 | Gloriosa superba gene ontology classification of assembled unigenes.
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FIGURE 3 | Multiphase flow mixing pattern in BTBR: (a,b) snapshots of air injection rates of 50 and 550 cc/min respectively within a 4-L working volume (water
seeded with Polyamide Seeding Particles). The arrows indicate the direction of the ascending air bubbles (a,b). (c,d) Corresponding Particle Image Velocimetry to
(a,b), respectively. The arrows represent the velocity field while the contours show the local vorticity intensity (c,d).

Such parameters will define mean diameter of the bubbles, D̂b,
gas holdup (ratio of the gas phase to the total volume), ε, and
superficial velocity defined as V̂s = Q̂/Âc (Kantarci et al., 2005).
Here, Âc is the cross-sectional area of the column. The flow
regimes in BCR are mainly classified according to the column
diameter, D̂c, and the superficial gas velocity, V̂s .

Two types of flow regimes are commonly observed in
BCR, namely homogenous (bubbly) and heterogeneous
(churn-turbulent). A heterogeneous slug flow regime could
also appear with small diameters at high gas flow rates. The
bubbly flows, which can be either perfect or imperfect depending
on the degree of the non-uniformity in bubble sizes that are
usually obtained at low superficial gas velocities (V̂s < 5 cm/s)
(Bouaifi et al., 2001). The bubbles’ rising velocity and distribution
in this regime is relatively steady, the mixing is gentle over
the entire reactor and there is no bubble coalescence and/or

break-up (Hua and Lou, 2007). Therefore, the bubble size is
almost fully dictated by the sparger design and system properties
(Ruzicka et al., 2001; Dhotre et al., 2004; Tang and Heindel,
2004; Thorat and Joshi, 2004). The gas holdup, ε, is found to
increase linearly with superficial gas velocity,V̂s. For higher
gas injection rates (V̂s < 5 cm/s), churn-turbulent regimes are
found, characterized by the coalescence/break-up of bubbles and
increased turbulence and circulation (Hibiki and Ishii, 2000;
Olmos et al., 2001; Buwa and Ranade, 2002; Michele and Hempel,
2002). This results in unsteady patterns and various bubble sizes
ranging from a few millimeters to a few centimeters. Heat and
mass transfer as well as liquid foaming may also introduce
additional complexities (Lin and Wang, 2001; Cho et al., 2002;
Li and Prakash, 2002; Chen et al., 2003; Krishna and Van Baten,
2003; Ruzicka and Thomas, 2003; Veera et al., 2004). Although
several studies have identified the boundaries of possible BCR
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flow regimes, flow regimes in dimensionless maps have not been
reported which is important for industrial design and scale-up.
To generate dimensionless maps, the following Buckingham-π
theorem analysis was used (Sopan Rahtika et al., 2017).

Following standard visualization techniques, the dynamics of
the flow was characterized in a BTBR in the absence of nutrients
and biorhizome to identify homogenous and heterogeneous
regimes (Chen and Fan, 1992). The 5 L BTBR was used with 2 and
4 L working volume of polyamide seeding particles (PSP)-water
solution at two different air injection rates (low injection rate
V̂s = 0.25 mm/s (Q̂ = 50 cm3/min) and higher injection rate
2.76 mm/s (Q̂ = 550 cm3/min) (Figure 3). Figure 3a suggests
that in 4 L the air bubbles at low injection rate ascend up a
fairly straight vertical path, concentrating mostly toward the
center of the BTBR. However, at higher injection rates, a more
chaotic flow forms (Figure 3b). In fact, upon leaving the sparger,
the air bubbles oscillate in various directions over time. It is
suggested that larger bubbles form at higher injection rate.
Figures 3c,d show the 4 L velocity field corresponding to the
experiments shown in Figures 3a,b, respectively. The formation
of two major vortices are evident of the BTBR at low injection
rate (Figure 3c). These major circulatory zones are disturbed
(and thus shrunk) at higher flow rate (Figure 3d). The generated
fluid mixing and circulation in a bioreactor can significantly
affect the quality/quantity of the biorhizome biomass. In order
to quantify the strength of the circulatory zones within the flow
may calculate the vorticity, ω̂, as ω̂ = v̂x̂ − ûŷ, where û and v̂
are the velocity components in x̂ and ŷ directions, respectively
(Figure 3a). Here, v̂x̂ and ûŷ are simply the amount of flow
shearing in x̂ and ŷ directions (Alba et al., 2014). The vorticity
contours (in unit 1/s) have also been added to the velocity vectors
shown in Figures 3c,d for comparison. The positive/negative
values of the vorticity, ω̂, correspond to clockwise/counter-
clockwise directions (Figures 3c,d). The positive and negative
vorticity zones are propagated throughout a much larger BTBR
domain at higher injection rate suggesting a more uniform
mixing (Figure 3d). Both the strongest clockwise (positive ω̂)
and counter-clockwise (negative ω̂) rotations were at higher
injection rates. The 2 L flow pattern and dimensionless mapping
are similar to 4 L. Further analysis is required to understand the
counter-intuitive dynamics and flow regimes of such a complex
system with biorhizome. Such flow analysis will not only be able
to address the geometric patterns of mixing but extend to the
nature of liquids, solutions, and injection gasses with various
combinations of density, viscosity and surface tension that
eventually will improve the biomanufacturing process design.

Critical culture conditions optimized in lab-scale (5–20 L)
bioreactor for nutrients, temperature, and culture density
may be emulated, at least in part, by that of colchicine
biomanufacturing from biorhizomes. Workflow for G. superba
upstream biomanufacturing has recently been reported for
colchicine (Sivakumar, 2017). However, large-scale data and
process validation are required for biorhizomes because
during scale-up many working parameters inevitably differ
from lab-scale to industrial-scale biomanufacturing. For
instance, the nutrient utilization, oxygen level, convective

media mixing, and growth factors become more challenging
and airflow rate, shear stress profile, and mass transfer are
significantly different from small- to large-scale (Roh et al.,
2016). Moreover, maintaining reproducibility of biorhizome
biomass and colchicine concentration requires homogenous
microenvironmental parameters such as nutrients, oxygen,
pH, and continuous removal of undesired molecules. These
parameters should ideally be monitored online by automated
computerized sensors, thereby standardizing the process control
during the biomanufacturing processes, as has been done in
industrial-scale bioreactors.

CONCLUSION

Biomanufacturing utilizes the molecular mechanism of
living systems and modifies their genome with upstream
and downstream processes to develop efficient therapeutic
products that help improve human health. Indeed, large-scale
biomanufacturing of biopharmaceuticals is a rapidly growing
sector of the bioeconomy. Biomanufacturing has utilized
regulatory guidance to advance biopharmaceuticals for
developing safe and effective medicine. The biorhizome
has unique biosynthetic mechanism over plant cell or root
cultures which could overcome small molecules production
barriers in biomanufacturing. Moreover, biorhizome platforms
could revolutionize colchicine upstream biomanufacturing,
but first must resolve colchicine pathway elucidation
challenges and biomass scale-up for the pharmaceutical
industry. For cost-effective robust colchicine biomanufacturing,
overproduction via metabolic engineering becomes an important
upstream manufacturing step. Reprograming of colchicine
biosynthetic pathway in biorhizome or synthetic biotechnology
requires detailed pathway elucidation. While studies with
large-scale airlift bioreactors for biorhizome manufacturing
have not been conducted, a suitable model for colchicine
biomanufacturing might be the industrial-scale process for
ginsenosides biomanufacturing. More insight into the molecular
mechanism of the biorhizome, its interactions with the shoot, as
well as mass transfer are needed to fully understand and optimize
the biosynthetic pathway for biomanufacturing of colchicine.
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