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Sesame (Sesamum indicum L.) is one of the oldest oilseed crops widely grown in Africa
and Asia for its high-quality nutritional seeds. It is well adapted to harsh environments
and constitutes an alternative cash crop for smallholders in developing countries.
Despite its economic and nutritional importance, sesame is considered as an orphan
crop because it has received very little attention from science. As a consequence, it lags
behind the other major oil crops as far as genetic improvement is concerned. In recent
years, the scenario has considerably changed with the decoding of the sesame nuclear
genome leading to the development of various genomic resources including molecular
markers, comprehensive genetic maps, high-quality transcriptome assemblies, web-
based functional databases and diverse daft genome sequences. The availability of
these tools in association with the discovery of candidate genes and quantitative trait
locis for key agronomic traits including high oil content and quality, waterlogging and
drought tolerance, disease resistance, cytoplasmic male sterility, high yield, pave the
way to the development of some new strategies for sesame genetic improvement. As
a result, sesame has graduated from an “orphan crop” to a “genomic resource-rich
crop.” With the limited research teams working on sesame worldwide, more synergic
efforts are needed to integrate these resources in sesame breeding for productivity
upsurge, ensuring food security and improved livelihood in developing countries. This
review retraces the evolution of sesame research by highlighting the recent advances in
the “Omics” area and also critically discusses the future prospects for a further genetic
improvement and a better expansion of this crop.

Keywords: Sesamum indicum, Omic resources, molecular breeding, large-scale re-sequencing, improvement

INTRODUCTION

Since the beginning of agriculture, humans have been selecting and cultivating crops that would
serve their taste, energy, and health requirements (Nagaraj, 2009). Oilseeds are crops in which
energy is stored mainly in the form of oil and are a very important component of semi-tropical
and tropical agriculture, providing easily available and highly nutritious human and animal food
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(Weiss, 2000). Among the important oilseed crops widely grown
in the world such as rapeseed, peanut, soybean, sunflower,
sesame (Sesamum indicum L.) provides one of the highest and
richest edible oils (Pathak et al., 2014). Sesame is a diploid
species (2n = 2x = 26), an annual plant principally grown
for its seeds. The seed contains 50–60% oil which has an
excellent stability due to the presence of natural antioxidants
such as sesamolin, sesamin, and sesamol (Anilakumar et al.,
2010). The chemical composition of sesame oil characterized
by a low level of saturated fatty acids (SFAs) (less than 15%)
and the presence of antioxidants has been reported to have
health promoting effects such as lowering cholesterol levels and
hypertension in humans (Noguchi et al., 2001; Sankar et al.,
2005), neuroprotective effects against hypoxia or brain damage
(Cheng et al., 2006) and reducing the incidence of certain cancers
(Hibasami et al., 2000; Miyahara et al., 2001). With increasing
knowledge on the dietary and health benefits of sesame, the
market demand for its seed and oil has enlisted a continuous
steep increase. Likewise, sesame by virtue of low irrigation
requirement, adaption to different types of soil and weather
conditions, not being labor intensive and being instead a highly
remunerative crop, is ideally suited to replace low-yield crops,
especially in the current scenario of global warming affecting
crop productivity in more and more traditional agricultural
areas. As a result, sesame production is rapidly increasing
over the years and is becoming an alternative important cash
crop for smallholders, thus helping to alleviate rural poverty
(Figure 1). In 2014, more than 6 million tons of sesame seeds
have been produced under nearly 11 million ha classifying
sesame at the ninth rank among the major oil crops (Food
and Agriculture Organization Statistical Databases [FAOSTAT],
2015).

Despite its importance, sesame is considered as an orphan
crop because it has received very little support from science,
industry and policy makers. As a consequence, it lags behind
the other major oilseed crops as concerns genetic improvement
(Dossa, 2016). Cultivated sesame still has some wild characters
including seed shattering, indeterminate growth habit and
asynchronous capsule ripening leading to a very weak seed
yield (300–400 Kg/ha) (Islam et al., 2016). Furthermore,
sesame is often grown in harsh environments and exposed
to various biotic and abiotic stresses that heavily impair its
productivity (Witcombe et al., 2007). Hence, it has become
crucial to enhance sesame germplasms for higher productivity
and seed quality to efficiently cope with the growing demand of
its oil.

Limited progress has been made in these directions through
conventional breeding methods due to a lack of genomic tools
and resources for deep insights into the underlying molecular
background of the important agronomic traits. In addition,
few scientific groups are engaged in sesame research worldwide
resulting in a slow pace of sesame improvement strategies.
However, in recent years, significant breakthroughs in the
“Omics” area have taken sesame research into another higher
stage. This has then thus propelled us to review the notable
achievements made so far in this field as well as the future
perspectives to speed-up sesame improvement.

EVOLUTIONARY HISTORY OF SESAME
RESEARCH

Sesame is a very ancient crop thought to be one of the oldest
oil crops known by humankind (Bedigian and Harlan, 1986;
Ashri, 1998). Its research history followed three major periods
viz. the “germplasm collection and genebank constitution” era,
the “classical breeding and genetics” era, and currently the
“Omics” era (Figure 2). During the first era (before year 2000),
genetic materials of cultivated sesame as well as wild related
species were collected from many growing areas, morphologically
characterized and different seedbanks have been set up in several
countries (Hiltebrandt, 1932; Kinman and Martin, 1954; Bedigian
and Harlan, 1986; Bisht et al., 1998). Meanwhile during that
period, questions related to the origin and domestication process
of the cultivated sesame were the source of long debate and
investigations (Hiltebrandt, 1932; Nayar and Mehra, 1970).

The second era in sesame research (2000–2013) was
characterized first, by the employment of classical breeding
methods including induced mutation and screening of genotype
for desirable characters (Wongyai et al., 2001; Uzun et al., 2003;
Boureima et al., 2012). Afterward, sesame research has witnessed
a rapid development of genetic tools particularly molecular
markers and their application in genetic diversity studies and
marker assisted breeding (Dixit et al., 2005; Wang et al., 2012b;
Wei X. et al., 2014). In addition, during that period of time,
several studies have been undertaken on sesame oil properties
that shed more light on the nutritional, pharmaceutical and
engineering applications of this untapped crop (Miyahara et al.,
2001; Cheng et al., 2006; Saydut et al., 2008; Anilakumar et al.,
2010).

Finally, since 2013, the sesame research enters the “Omics”
era. With the completion of the nuclear and chloroplast genome
sequencing as well as the release of various transcriptomic data,
enormous genomic resources have been generated and being
applied for sesame improvement.

GENETIC RESOURCES

The Sesamum genus belongs to the Eudicotyledon clade, Lamiales
order, Pedaliaceae family (Mabberley, 1997) and S. indicum is the
well-known and widely grown species within this genus (Ashri,
1998). Kobayashi et al. (1990) proposed 36 species belonging to
this genus including 22 species found exclusively in the African
continent, five in Asia, seven commonly found in Africa and
Asia and one species each in Brazil and a Greek island. Later
on, based on works of Bedigian, the list of Sesamum species has
been revisited to 23 species (IPGRI and NBPGR, 2004) (Table 1).
Beside S. indicum, the species S. radiatum is also cultivated in
some African countries as leafy vegetables.

Because most of wild species of the Sesamum genus exist only
in Africa, sesame has been thought to be originated from this
continent (Hiltebrandt, 1932). However, according to evidence
in studies Bedigian’ (2003, 2004), it is assumed that the crop has
been domesticated from its wild relative species S. malabaricum
native to south Asia and spread west to Mesopotamia before 2000
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FIGURE 1 | Sesame seed production in the world. (A) Evolution of sesame seed production and area under cultivation from 2000 to 2014. (B) Evolution of sale
prices of sesame seed from 2000 to 2014. (C) Production share of sesame seed by continent in 2014. (D) Map of production quantities of sesame seed by country
based on cumulative data from 2000 to 2014. (Source: Food and Agriculture Organization Statistical Databases [FAOSTAT], 2015).

B.C. (Fuller, 2003). Sesame harbors a huge diversity probably
because of an adaptation to the various environments where
its presence has been recorded coupled with long-term natural
and artificial selections (Bedigian and Harlan, 1986; Wei et al.,
2015). In total, five major centers of diversity have been proposed
for sesame including India, China, Central Asia, the Middle-
East and Ethiopia (Zeven and Zhukovsky, 1975). Thanks to
the meaningful efforts of the scientific community in sesame
germplasm collection, characterization and conservation, huge
genetic materials of cultivated sesame along with wild related
species are currently preserved in several genebanks around the
world mainly in Asia (Zhang Y. et al., 2012) (Table 2). The
principal genebanks of sesame held in India (NBPGR National
Gene Bank), in South Korea (National Agrobiodiversity Center,
Rural Development Administration; Park et al., 2015), in China
(Oil Crops Research Institute, Chinese Academy of Agricultural
Sciences; Wei et al., 2015) and in United States (USDA, ARS,
PGRU), have preserved about 25,000 genetic materials (Table 2).
Moreover, several small-scale genebanks exist in some African
countries including Nigeria, Ethiopia, Sudan, etc. Since these
genebanks harbor important quantity of genetic resources, it
is important to establish core collections (CC) which is a
favored approach for the efficient exploration and utilization

of novel variations in genetic resources (Hodgkin et al., 1995).
In this vein, researches on sesame CC establishment have been
conducted resulting in 362 accessions for Indian germplasm
(Bisht et al., 1998), 453 accessions for Chinese germplasm
(Zhang et al., 2000) and 278 accessions for Korean germplasm
(Park et al., 2015). These are the reservoirs of genetic resources
for the present and future sesame improvement programs.
Unfortunately, utilization of these wealthy genetic resources
for sesame improvement is very limited and most of diversity
existing in the germplasm remains unexplored (Dossa et al.,
2016a). Furthermore, it becomes apparent that sesame genetic
resources from Asia have been well characterized and preserved
in contrast to African germplasm which also harbors a valuable
diversity (Dossa et al., 2016a). Therefore, further exertions are
needed to gather locally available sesame accessions and wild
related species from Africa and constitute an extensive genebank
for their efficient conservation and exploitation.

“OMICS” RESOURCES

The genetic and molecular biology study of sesame began very
late with only one genetic map published and no report on
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FIGURE 2 | Evolutionary history of the scientific research on sesame.

TABLE 1 | Revised list of Sesamum species and their chromosomes number (2n).

2n = 26 2n = 32 2n = 64 2n = indeterminate

S. alatum Thonn. S. capense Burm.f. ssp.
lepidotum Schinz

S. radiatum Schum. & Thonn. S. abbreviatum Merxm.

S. capense Burm.f. S. angolense Welw. S. calycinum Welw. ssp. calycinum

S. indicum L. S. angustifolium Engl. S. calycinum Welw. ssp. baumii (Stapf) Seidenst. ex. Ihlenf

S. malabaricum Burm. S. laciniatum Wild. S. calycinum Welw.ssp. pseudoangolense Seidenst ex.Ihlent

S. latifolium Gillet S. marlothii Engl.

S. prostratum Retz. S. parviflorum Grabow-Seidenst

S. pedalioides Heirn

S. rigidum Peyr. ssp. rigidum

S. rigidum ssp. merenksyanum Ihlenf. & Seidenst

S. schinzianum Aschers. ex. Schinz

S. triphyllum Welw. ex. Aschers

S. triphyllum Welw. ex. Aschers. var. grandiflorum (Schinz) Merxm

Source: IPGRI and NBPGR, 2004.

TABLE 2 | List of worldwide major genebanks available for sesame species.

Country Institut Accession numbers Website

India NBPGR National Gene Bank ∼10,000 www.nbpgr.ernet.in

South Korea National Agrobiodiversity Center, Rural
Development Administration

∼7,698 http://www.rda.go.kr/foreign/ten/

China Oil Crops Research Institute ∼7000 http://www.sesame-bioinfo.org/phenotype/index.html

United States USDA-ARS- PGRU ∼1,226 www.ars.usda.gov
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quantitative trait loci (QTL) mapping before 2013. However,
over the last few years, some significant progress has been
made in the development of large-scale genomic resources
including informative molecular markers, ultra-dense genetic
maps, transcriptome assemblies, multi-omics online platforms
etc. In addition, the release of the draft genome of sesame (Wang
et al., 2014a) triggered functional analyses of candidate genes
related to key agronomic traits. With these invaluable efforts,
sesame holds some important genomic resources and platforms
for its improvement which for the time being are inexistent in
some important oilseed crops such as groundnut. Similarly like
pigeonpea (Pazhamala et al., 2015), chickpea, millets (Varshney
et al., 2009, 2010), sesame has graduated from an “orphan crop”
to a “resource-rich crop”.

Molecular Markers
Molecular marker technologies have significantly speeded up
modern plant breeding in enhancing the genetic gain and
reducing the breeding cycles in many crop species. Different types
of molecular marker systems have been developed and applied
to sesame genotyping and breeding efforts. The first class of
molecular markers including Random Amplified Polymorphic
DNA (RAPD; Bhat et al., 1999) and Amplified Fragment Length
Polymorphism (AFLP; Laurentin and Karlovsky, 2006) were
designed and employed mainly for genetic diversity studies.
The second class of markers involved basically Simple Sequence
Repeat (SSR) types such as Inter-Simple Sequence Repeats (ISSR;
Kim et al., 2002), Expressed Sequence Tags-SSR (EST-SSR; Wei
et al., 2008, 2011; Badri et al., 2014; Sehr et al., 2016), cDNA-SSR
(Spandana et al., 2012; Wang et al., 2012b; Zhang H. et al., 2012;
Surapaneni et al., 2014; Wu et al., 2014b), Genome sequence-SSR
(gSSR; Dixit et al., 2005; Wei X. et al., 2014; Uncu et al., 2015;
Dossa, 2016; Yu et al., 2016), Chloroplast SSR (cpSSR, Sehr et al.,
2016). By compiling all developed SSR marker resources, there
are in total more than 7,000 validated and 100,000 non-validated
SSR markers available for sesame research. Interestingly, a new
study is underway to set up an online database gathering
all SSR information and providing an integrated platform for
functional analyses in sesame. Many of these markers were used
for genetic and association mapping, molecular breeding and
genetic diversity studies in sesame (Wei et al., 2013; Li et al.,
2014; Liu et al., 2015; Uncu et al., 2015; Dossa et al., 2016a).
Finally, in recent years with the next generation sequencing
(NGS) technology, the third class of molecular markers came into
existence. SNPs are more useful as genetic markers than many
conventional markers because they are the most abundant and
stabile form of genetic variation in most genomes. Therefore,
the available high-throughput methods for SNP discovery and
genotyping have been employed in sesame research including
Restriction site-Associated DNA sequencing (RAD-seq; Wu et al.,
2014a; Wang et al., 2016a), Specific Length Amplified Fragment
Sequencing (SLAF-seq; Zhang et al., 2013), RNA-Seq (Wei L.
et al., 2014), Whole-Genome Sequencing (WGS; Wang et al.,
2014b; Wei et al., 2015; Zhang et al., 2016), Genotyping by
sequencing (GBS; Uncu et al., 2016). Another important marker
system referred as insertion/deletions (Indels) has also been
reported in sesame (Wei L. et al., 2014; Wu et al., 2014a).

As a whole, molecular marker technologies in sesame are
witnessing considerable progress and it is obvious that sesame is
no longer lagging far behind major crops in this field.

Genome Sequence Resources
A high-quality reference genome sequence provides access to
the relatively complete gene catalog for a species, the regulatory
elements that control their function and a framework for
understanding genomic variation. As such, it is a prerequisite
resource for fully understanding the role of genes in development,
driving genomic-based approaches to systems biology and
efficiently exploiting the natural and induced genetic diversity
of an organism (Feuillet et al., 2011). Researchers from Oil
Crops Research Institute of the Chinese Academy of Agricultural
Sciences, BGI and other institutes have successfully cracked the
nuclear genome of sesame, generating 54.5 Gb of high-quality
data from the elite cultivar “Zhongzhi No.13” using the Illumina
Hiseq2000 platform. This has been the major breakthrough in
the sesame research for decades (Wang et al., 2014a). The high-
quality draft genome encompassing 27,148 genes distributed on
16 Linkage Groups (LG) with 274 Mb of size, has become the
reference genome for biology study in sesame1. This genome
with a contig N50 of 52.2 kb and a scaffold N50 of 2.1 Mb
has been recently upgraded to reach 13 pseudochromosomes,
94.3% of the estimated genome size and 97.2% of the predicted
gene models in sesame (Wang et al., 2016a). In parallel, another
genome sequencing project was initiated under the auspices of
the Sesame Genome Working Group (SGWG). By 2013, they
assembled from the variety “Yuwhi 11” a genome size of 293,7 Mb
out of the 354 Mb estimated in sesame and predicted the function
of 23,713 genes2. More recently, two new genome sequences
from sesame landraces (“Baizhima” and “Mishuozhima”) have
also been released, increasing the genome sequence resources
available for this crop (Wei et al., 2016).

In addition, works carried out by a team of National
Bureau of Plant Genetic Resources from India resulted in the
genome sequencing of the Indian variety3 “Swetha.”. Of note,
nearly 1000 sesame accessions and mapping population have
been re-sequenced providing tremendousum and inestimable
genome-wide information (Zhang et al., 2013a, 2016; Wang
et al., 2014b, 2016a; Uncu et al., 2015, 2016; Wei et al.,
2015). Nowadays, gene family study, gene fine-mapping, gene
cloning and molecular breeding, genome wide association studies
(GWAS), genome variation and evolution studies are feasible
(Wei et al., 2015, 2016; Dossa et al., 2016b,d; Yu et al., 2017).
Novel breeding approaches such as genomic selection (GS) could
be implemented in sesame and accelerate the crop improvement.

Beyond the nuclear genome sequences of sesame, the
chloroplast genome has also been decrypted first, in a
black-seeded cultivar “Ansanggae” (Yi and Kim, 2012) and
subsequently, in a white-seeded cultivar “Yuzhi11” (Zhang et al.,
2013b). These studies indicated that Sesamum (Pedaliaceae
family) is a sister genus to the Olea and Jasminum (Oleaceae

1https://www.ncbi.nlm.nih.gov/biosample/SAMN02981519
2https://www.ncbi.nlm.nih.gov/biosample/SAMN04574066
3https://www.ncbi.nlm.nih.gov/biosample/SAMN02357081
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FIGURE 3 | Transcriptome data available and tissues/traits investigated.

family) clade and represents the core lineage of the Lamiales
families.

Transcriptome Assembly
Transcriptome or EST sequencing is the first step to access
the gene contents of a species and has emerged to be an
efficient way to generate functional genomic data for non-
model organisms. Like genome sequence resources, sesame holds
several transcriptome data generated from various organs of the
plant (Figure 3). The first transcriptome profiling began with
works of Suh et al. (2003) who obtained 3,328 ESTs from a
cDNA library of 5–25 days old immature sesame seeds. This
study shed light on the metabolic pathways involved in lignan
biosynthesis in sesame including sesamin and sesamolin. Wei
et al. (2011) sequenced five tissues using for the first time the
high-throughput Illumina paired-end sequencing technology.
Likewise, works of Wei et al. (2012), Zhang H. et al. (2012),
Wang et al. (2014a) yielded various transcriptome resources
related to sesame growth and developmental stages using
various sequencing technologies including Illumina HiSeq 2000
and GAII. These studies increased our understanding on
the genomic background underpinning sesame growth and
development.

On the other hand, given that sesame productivity is
seriously hampered by different biotic and abiotic stresses, studies
have been designed to unravel the molecular basis of stress
tolerance and find out some potential genes to impart stress
tolerance in sesame genotypes. The transcriptional response

of root tissues to waterlogging stress was investigated in
sesame root (Wang et al., 2012c). More recently based on the
Illumina 2500 platform, a time-course transcriptome profiling
in two sesame genotypes displaying contrasting tolerance levels
provided substantial gene expression data for sesame responses
to waterlogging stress (Wang et al., 2016b). Another important
abiotic stress impairing sesame productivity is drought stress
which is still poorly characterized at the molecular level
(Dossa et al., 2016b). For this purpose, Dossa et al. (2017)
explored gene expression changes in two sesame genotypes
(tolerant and sensitive) based on Illumina HiSeq 4000 sequencing
platform, under progressive drought and after re-watering so
as to find out some potential genes associated with drought
tolerance. Currently, efforts are underway to decipher sesame
molecular responses to salt stress, another important abiotic
stress.

Concerning the biotic stress very little research has been
undertaken at the molecular level, urging more investigations
for the development of disease resistant crop. RNA-seq study
has been performed on resistant and susceptible sesame cultivars
inoculated with Fusarium oxysporum f. sp. sesami to clarify the
molecular mechanism of sesame resistance to Fusarium Wilt
which is one of the main worldwide diseases in sesame, resulting
in 15–30% losses of yield (Li et al., 2012; Wei et al., 2016).

Finally, transcriptome profiling approach has also been
deployed to explore other important traits. For example, Liu
et al. (2016) compared two near-isogenic lines [W1098A with
dominant genic male sterility (DGMS) characteristic and its
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fertile counterpart, W1098B] to identify differentially expressed
genes related to male sterility.

To sum up, huge transcriptome data based on state-of-
the-art sequencing technologies from various tissue samples
and experimental conditions are now available in sesame
and have increased our knowledge on sesame biology. These
resources could assist in upgrading the current reference genome
in the near future. In this way, a functional transcriptome
database should be built to facilitate the exploitation of these
incommensurable resources.

Development of Genetic Maps and
Breeding Populations
A genetic linkage map is a prerequisite to better understand the
inheritance of traits at the genome-wide level (Verma et al., 2015).
It helps to identify molecular markers associated with relevant
traits that can be used in breeding programs. The first genetic
map in sesame was constructed in 2009 using a combination
of 220 EST-SSR, AFLP and Random Selective Amplification of
Microsatellite Polymorphic Loci (RSAMPL) markers (Wei et al.,
2009). It was built from a F2 population COI1134 × RXBS and
encompassed 30 LGs covering a genetic length of 936.72 cM
with an average marker interval of 4.93 cM (Table 3). At that
period, the number of informative molecular markers was limited
hence, the development of linkage maps with a good resolution
was challenging. Subsequently, this map has been improved to
obtain 14 LGs spanning a genome distance of 1,216 cM. In total,
653 markers were successfully mapped with a marker density
of 1.86 cM per marker interval. Thanks to the good resolution
reached in this linkage map, QTL identification for seed coat
color has been conducted for the first time in sesame (Zhang
et al., 2013c). During the same period, another linkage map was
released based on Specific-Locus Amplified Fragment sequencing
(SLAF-seq) technology (Zhang et al., 2013). This map based on
an F2 population Shandong Jiaxiang Sesame × Zhongzhi No.13,
comprised 1,233 SLAF markers that are distributed on 15 LGs,
and was 1,474.87 cM in length with average marker spacing of
1.20 cM. The density of this map was higher than the previous
ones and it was the first linkage map to integrate SNP markers
in sesame. Surprisingly, all these three published linkage maps
lacked common markers. Furthermore, an important knot is
that they were constructed from temporary population (F2) that
renders repeated phenotyping unfeasible, hence were not ideal
for quantitative traits mapping. In this regard, another high-
throughput sequencing technology named RAD-seq, has been
adopted by Wu et al. (2014a) to map in a high-density linkage
map nearly 1,230 markers and identified several QTLs linked
to grain yield-related traits based on a recombinant inbred line
(RIL) population from Zhongzhi14×Miaoqianzhima.

Zhang et al. (2014) also developed a RIL population from
Zhongzhi No.13 × Yiyangbai to analyzed QTLs related to
waterlogging tolerance. Furthermore, linkage analysis strategy
has been applied in an inter-specific population Ezhi1 (S. indicum
L., 2n = 26) × Yezhi2 (S. mulayanum Nair, 2n = 26) and a RIL
from 95 ms-5A × 95 ms-5B to study genic male sterility (GMS)
traits (Zhao et al., 2013; Liu et al., 2015).

Although the resolution in sesame genetic mapping steeply
increased over the years, none of the published maps included
the same number of LGs as the number of chromosomes known
in sesame. It was just recently that the significant works of
Wang et al. (2016a), Zhang et al. (2016), and Mei et al. (2017)
have permitted to reach this milestone. The first map was
based on 430 RILs from Zhongzhi No.13 × ZZM2748 (semi-
dwarf) and included 1,522 bins anchored on 13 LGs spanning
1090.99 cM genome length with a mean interval distance of
0.72 cM between adjacent bins. This bin map was used to identify
several QTLs for sesame plant height and seed coat color (Wang
et al., 2016a). The second one was constructed on the basis of
a F2 population from Yuzhi11 (indeterminate growth) × Yuzhi
DS899 (determinate growth). This SNP map was comprised of
3,041 bins including 30,193 SNPs in 13 LGs with an average
marker density of 0.10 cM. At present, this is densest linkage
map in sesame and was efficiently applied for map-based gene
identification (Zhang et al., 2016). The third one was built on
150 BC1 from Yuzhi4 × Bengal Small-seed and encompassed
9,378 SLAF markers anchored onto 13 LGs spanning a total
genetic distance of 1,974.23 cM with an average genetic distance
of 0.22 cM.

Worth noting, a recent linkage map has been constructed
from a RIL population Acc. No. 95–223 × Acc. No. 92–3091
and yielded 13 LGs encompassing 914 cM with 432 markers
including 420 SNPs and 12 SSRs (Uncu et al., 2016). Besides,
a haplotype map (Hapmap) has been constructed from 705
worldwide accessions providing 5,407,981 SNPs information
with an average LD decay rate of 88 kb in the whole sesame
genome. This genotyped worldwide panel has been selected as a
“training population” which constitutes a tremendous resource
for GWAS, Genomic Selection (GS) and evolution studies in
sesame (Wei et al., 2015).

Definitively, from the first low-resolution genetic map
constructed in 2009 to the ultra-dense and high-resolution
recent ones, there is evidence that the genetic research
in sesame has impressively improved and has reached a
new dimension. Nonetheless, in order to use these map
resources to their maximum advantage, it would be ideal to
construct a consensus map that will provide a framework
of unprecedented marker density and genome coverage for
fine QTL analysis, association mapping, thus facilitating the
application of molecular breeding strategies in diverse sesame
germplasms. In this regard, an effective collaboration between
the different sesame working teams will help achieve this
goal.

Online Functional Database Resources
Owing to the multitude genomic sequence resources being
released for sesame research, several integrative online databases
have been created to gather sesame information and providing
user-friendly platforms for researchers to easily study the
molecular function of genome components, for comparative
genomics and breeding applications (Table 4). The first web-
based functional platform on sesame was set by the Sesame
Genome Project but it does not supply detailed sesame genomic
or genetic data at the time. Hence, after the release of the
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TABLE 3 | Genetic mapping and association mapping studies in sesame.

Authors Traits Marker systems Marker number Population Major results

Wei et al., 2009 – EST-SSR, AFLP
and RSAMPL

220 96 F2 First genetic map

Zhang et al., 2013b Seed coat color SSR, AFLP and
RSAMPL

653 BC1, BC2, F2 4 QTLs

Zhang et al., 2013c – SLAFseq 1,223 107F2 First dense genetic map

Wei et al., 2013 Seed quality traits SRAP, SSR and
AFLP

79 216 Chinese
collection

10 markers associated with oil, oleic acid,
linoleic acid and protein

Wu et al., 2014a Grain yield traits SNP 1,230 224 RIL 30 QTLs

Li et al., 2014 Oil and protein
content

SSR 112 369 worldwide
accessions

19 SSR linked to oil content and 24 SSR
associated with protein content

Wei et al., 2015 56 agronomic traits SNP 1,800,000 705 worldwide
accessions

549 associated loci and 46 causative genes
linked to key agronomic traits

Wang et al., 2016a Plant height and
seed coat color

SNP 1,522 bins 430 RIL 41 QTLs linked to plant height and 9 QTLs
linked to First genetic map with 13 LGs

Wei et al., 2016 Seed coat color SSR 400 550 F6 6 QTLs linked to seed coat color and
Identification of PPO gene related to black seed
coat color

Zhang et al., 2016 Determinate growth
habit

SNP 30,193 120 F2 First ultra-dense genetic map with 13 LGs
Identification of the determinacy gene SiDt

Uncu et al., 2016 – SNP and SSR 432 93 RIL Genetic map with 13 LGs

Mei et al., 2017 Number of flowers
per axil and
Branching habit

SLAF 9,378 150 BC1 High-density genetic map with 13 LGs,
identification of SiFA and SiBH linked to
Number of flowers per axil and Branching habit,
respectively

TABLE 4 | List of available online databases for functional genomics in sesame.

Database name Website Utility Reference

Sinbase http://www.ocri-genomics.org/Sinbase/index.html Genomics/Comparative
genomics/Genetics/Phenotypes etc.

Wang et al., 2014c

SesameHapMap http://202.127.18.228/SesameHapMap/ Genome wide SNP Wei et al., 2015

SesameFG http://www.ncgr.ac.cn/SesameFG Genomics/Evolution/breeding/comparative
genomics/Molecular
markers/Phenotypes/Transcriptomics

Wei et al., 2017

SisatBase http://www.sesame-bioinfo.org/SisatBase/ Genome wide SSR –

The Sesame Genome Project http://www.sesamegenome.org Genomics Zhang et al., 2013

Sesame Germplasm Resource
Information Database

http://www.sesame-bioinfo.org/phenotype/index.html Plant phenotype –

NCBI∗ http://www.ncbi.nlm.nih.gov/genome/?term=sesame Versatile –

ocsESTdb∗ http://www.ocri-genomics.org/ocsESTdb/index.html Seed expression sequence
tags/comparative genomics

Ke et al., 2015

PTGBase∗ http://www.ocri-genomics.org/PTGBase/index.html Tandem duplication/evolution Yu et al., 2015

PMDBase∗ http://www.sesame-bioinfo.org/PMDBase SSR information Yu et al., 2016

∗These database involved several species including sesame.

reference genome, a versatile online database referred to as
Sinbase4 was developed and provides digestible information
related to sesame genomics and genetics (Wang et al.,
2014c). This database included genomic component annotations
to allow users to study sesame more thoroughly; genetic
linkage groups for gene cloning; QTL for genetic linkage
analyses; colinear blocks and orthologous genes to perform
comparative and evolutionary analyses in sesame and other
related species. Additionally, extensive phenotyping data were

4http://ocri-genomics.org/Sinbase

supplied describing variations in sesame plant (growth habits,
branching styles, number of flowers and capsules per axil,
number of carpels in a capsule, flower colors, capsule length
etc.). Overall, 10 comprehensive online databases are currently
available to study sesame biology including five platforms
focusing solely in sesame on aspects related to genome functional
components, gene expression, SSR, SNP, Indels, Transposons,
QTL and functional genes, gene family, comparative genomics,
genetic maps, haplotype map, phenotypes, etc. (Zhang et al.,
2013a; Wang et al., 2014c; Ke et al., 2015; Yu et al., 2015, 2016;
Wei et al., 2016, 2017).
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FIGURE 4 | Deployment of newly developed “Omics” tools in sesame improvement strategies.

APPLICATION OF NEWLY DEVELOPED
“OMICS” TOOLS IN SESAME RESEARCH

With mounting development of versatile “Omics” tools
in sesame, their application and deployment for the crop
improvement strategies have also yielded conspicuous results.
Nowadays, these tools enable high efficiency and resolution
in genetic diversity study, gene-trait association analysis using
bi-parental or natural diverse populations, gene family study,
RNA-seq based candidate gene identification. Various traits of
the plant have been tagged by researchers including oil content
and quality traits, yield components, tolerance to drought and
waterlogging stresses, disease resistance, good plant architecture
etc. A glimpse of the diverse applications of “Omics” tools in
sesame research is presented in Figure 4.

Germplasm Characterization
The availability of molecular markers has paved the way for
several genetic diversity studies in sesame. Knowledge on
the genetic diversity and population structure of germplasm
collections is an important foundation for crop improvement
and a key component of effective conservation and breeding
strategies (Thomson et al., 2007). Pathak et al. (2014) have
previously reviewed in detail the numerous genetic diversity
studies conducted on sesame germplasms. It emerges that
sesame harbors a valuable diversity and incongruence between
geographical proximity and genetic distance has been reported
(Bhat et al., 1999; Laurentin and Karlovsky, 2006; Abdellatef

et al., 2008; Pham et al., 2009; Zhang Y. et al., 2012; Alemu
et al., 2013; Abate et al., 2015). However, few informative and
polymorphic markers were used in these studies and might not
accurately distinguish the samples. Since the genome sequence
of sesame becomes available, thousands of highly informative
markers including gSSRs, SNPs and Indels covering the entire
genome, have been developed and applied for genetic diversity
studies (Wang et al., 2014b; Wei X. et al., 2014; Wu et al., 2014b;
Wei et al., 2015; Uncu et al., 2015; Dossa et al., 2016a). These
studies in contrast, have proved certain patterns of association
between genetic similarity and geographical proximity in sesame.
Even though the exchange of sesame materials between diverse
locations especially through seed trading increases gene flow,
in most of cases, some locally unique gene pools still exist.
For example, Dossa et al. (2016a) investigated for the first time
the unknown sesame accessions from West Africa and found
that they were unique and distinct from all the rest. These
observations suggested that newly developed molecular markers
would bring more precision and efficiency in both genetic studies
and breeding programs. Furthermore, combination of molecular
and morphological characterizations has been employed to assess
the diversity in sesame germplasm. A total of 137 Turkish
germplasm has been characterized using both morphological
and molecular data which led to the selection of a core
collection useful for sesame preservation and breeding (Frary
et al., 2014). Ugandan sesame landraces were also investigated
and results showed incongruence between morphological data
and molecular data (Sehr et al., 2016). Similarly, Pandey et al.
(2015) analyzed a worldwide germplasm dominated by Indian
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accessions. They detected a high genetic diversity within the
germplasm but there was an insignificant correlation between
phenotypic and molecular marker information which highlighted
the importance to associate both genetic and phenotypic diversity
to efficiently inform on the extent of the variation present in
sesame germplasm.

Concerning wild related species, very few genetic studies
have been conducted for their characterization. Uncu et al.
(2015) uncovered a high rate of marker transferability between
S. indicum and S. malabaricum, supporting the designation of
the two taxa as cultivated and wild forms of the same species.
In earlier works, Nyongesa et al. (2013) found that, there is a
high genetic diversity within wild sesame species. The clustering
pattern of wild and the cultivated forms indicated that there
is no cross-pollination between them during domestication. In
addition, it was proved that the genetic diversity of sesame had
been eroded due to selection after domestication (Wu et al.,
2014b; Wei et al., 2015; Pathak et al., 2015; Mondal et al., 2016).
Therefore, future sesame cultivation would benefit from the
incorporation of alleles from sesame’s wild relatives. Wild species
of sesame possess genes for resistance to major biotic and abiotic
stresses and adaptability to different environments (Joshi, 1961).
Unfortunately, in contrast to several crops such as groundnut,
cotton, sunflower, rice, maize, wheat, tomato, soybean, etc., which
are profiting from their wild related species for the improvement
of cultivars (Zamir, 2001), the introgression of useful genes from
wild species into cultivars via conventional breeding has not
been so far successful in sesame mainly due to post-fertilization
barriers (Tiwari et al., 2011).

Functional Genomics Research for Key
Agronomic Traits
Oil and Quality Traits
Sesame is primarily grown for its oil-bearing seed. Beside the high
oil content, sesame seeds contain almost 18% proteins and among
the fatty acid compositions, oleic acid (39.6%) and linoleic acid
(46%) are the two main components with the ideal ratio of almost
1:1 (Anilakumar et al., 2010). Wherefore, numerous studies have
early attempted to decipher the genetic basis of the oil yield and
quality which are some key agronomic traits in sesame breeding.
Even so, until 2013, the molecular mechanisms of the high oil
content and quality in sesame seeds were still unclear (Jin et al.,
2001; Chun et al., 2003; Suh et al., 2003; Ke et al., 2011). An
association mapping of oil content, protein content, oleic acid
concentration, and linoleic acid concentration based on multi-
environment trials was conducted using 79 SSR, SRAP, and AFLP
markers in 216 Chinese sesame accessions (Wei et al., 2013). Only
one associated marker (M15E10-3) was identified for oil content
in two environments suggesting inadequate molecular markers
and/or germplasm resources. In this regard, Li et al. (2014)
analyzed 369 sesame accessions with larger phenotypic variation
under 5 environments using 112 informative SSRs. A total of 19
and 24 SSRs were detected for oil content and protein content,
respectively. From these, 19 markers were shared by both traits
suggesting that oil and protein contents are controlled mostly
by similar and major genes. By combining genome information

(Zhang et al., 2013a) to the association mapping results, 36
candidate genes related to lipid pathway including fatty acid
elongation gene and a gene encoding Stearoyl-ACP Desaturase
were identified. Later, Chen et al. (2014) investigated the sequence
divergence in the coding region of the Fatty acid desaturase
(FAD) gene between wild and cultivated sesame. They found
some nucleotide polymorphisms located in enzyme active site
between the wild and cultivated forms which may contribute to
the higher fatty acid composition in the cultivated sesame. The
specific primers linked to these functional SNPs would be for a
great importance in molecular breeding toward high fatty acid
content in sesame varieties.

The release of the reference genome sequence has provided
an unparalleled opportunity to further excavate the molecular
basis of high oil content and quality traits in sesame (Wang
et al., 2014a). The sesame genome was found to harbor low
copy of lipid-related genes (708) compared to related species
such as soybean (1,298). This finding was unexpected since
there is an obvious difference in oil contents between sesame
(∼55%) and soybean (∼20%). More interestingly, by combining
comparative genomic and transcriptomic analyses, authors have
discovered that some lipid gene families, especially the transfer
protein type 1 (LTP1) genes beneficial for high oil accumulation
have been expanded and retained during domestication, while
lipid degradation-related families were found reduced in sesame
compared to soybean and this may underlay sesame high oil
content. Additionally, important genes in the triacylglycerol
biosynthesis pathway were found highly implicated in the oil
accumulation during early stages of sesame seed development.
Finally, two potential key genes SiDIR (SIN_1015471) and SiPSS
(SIN_1025734) were detected for sesamin production in sesame
(Wang et al., 2014a).

Genome wide association studies takes full advantage of
ancient recombination events to identify the genetic loci
underlying traits at a relatively high resolution (Huang and
Han, 2014). In a comprehensive GWAS for oil and quality
traits in 705 sesame accessions under 4 environments,
13 significant associations were unraveled for oilseed
compounds including oil, protein, sesamin, sesamolin, SFA,
Unsaturated Fatty Acid (USFA) and the ratio SFA/USFA.
Several causative genes were uncovered for oil content
[SIN_1003248, SIN_1013005, SIN_1019167, SIN_1009923,
SiPPO (SIN_1016759) and SiNST1 (SIN_1005755)], for fatty acid
composition [SiKASI (SIN_1001803), SiKASII (SIN_1024652),
SiACNA (SIN_1005440), SiDGAT2 (SIN_1019256), SiFATA
(SIN_1024296), SiFATB (SIN_1022133), SiSAD (SIN_1008977),
SiFAD2 (SIN_1009785)], for sesamin and sesamolin content
[SiNST1 (SIN_1005755)] and protein content [SiPPO
(SIN_1016759)].

Further studies of Zhang et al. (2013), Wang et al. (2016a)
resulted in 4 QTLs (QTL1-1, QTL11-1, QTL11-2 and QTL13-1)
and 9 QTLs (qSCa-8.2, qSCb-4.1, qSCb-8.1, qSCb-11.1, qSCl-
4.1, qSCl-8.1, qSCl-11.1, qSCa-4.1 and qSCa-8.1) detected for
seed coat color, respectively. Additionally, the gene SiPPO
(SIN_1016759) has been recently detected through fine mapping,
as the candidate gene that controlling seed coat color in sesame
(Wei et al., 2016). Seed coat color is an important agronomic
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trait in sesame, as it has been shown that white sesame seeds
typically have higher oil, sesamin or sesamolin content (Wang
et al., 2012a), whereas black sesame seeds usually have higher ash
and carbohydrate content and lower protein, oil, and moisture
ratios (Kanu, 2011). Though, these QTLs harbor dozen of genes,
further screening will help to pinpoint the candidate genes.

Compiling all these meaningful results regarding oil and
quality traits, researchers actually have substantial genomic
information at their disposal for breeding and releasing higher
nutritional cultivars to meet the various demands of oil markets.

Waterlogging and Drought Tolerance
Sesame is highly susceptible to waterlogging stress. The crop
experiences a reduction in growth and yield after 2–3 days of
waterlogging, which frequently occurs when they are grown
on soils that are poorly drained (Ucan et al., 2007). Wang
et al. (2012c) found 13,307 differentially expressed genes
(DEGs) in sesame under waterlogging stress. In a more
comprehensive study, a total of 1,379 genes were found as
the core gene that functions in response to waterlogging.
News worthily, they reported 66 genes that may be candidate
for improving sesame tolerance to waterlogging (Wang et al.,
2016b). Meanwhile, 6 QTLs (qEZ09ZCL13, qWH09CHL15,
qEZ10ZCL07, qWH10ZCL09, qEZ10CHL07, and qWH10CHL09)
linked to waterlogging traits were identified and a SSR marker
(ZM428) closely linked to qWH10CHL09 was further reported
as effective marker for marker-assisted selection (MAS) toward
waterlogging tolerance (Zhang et al., 2014). Currently, studies are
being implemented to unveil genomic variants associated with
waterlogging tolerance in sesame.

Concerning drought stress in sesame, few molecular
researches have been conducted so far in this field. Using a
comparative genomic approach, Dossa et al. (2016b) identified in
the whole sesame genome a set of 75 candidate genes for drought
tolerance enriched in transcription factors (TFs). Hence, they
afterward dissected two important TF families (AP2/ERF and
HSF) and proposed some candidate TFs for drought tolerance
improvement in sesame (Dossa et al., 2016c,d). Evolutionary
analyses of these families showed that sesame has retained
most of its drought-related genes similarly as uncovered for
its oil-related genes. This may thus explain the relative high
drought tolerance observed in this crop. A recent RNA-seq
analysis demonstrated that 722 genes act as the core gene set
involved in drought responses and 61 candidate genes conferring
higher drought tolerance were discovered (Dossa et al., 2017).
In another very recent report, an Osmotin-like gene (SindOLP)
has been uncovered to enhance tolerance to drought, salinity,
oxidative stresses, and the charcoal rot pathogen in transgenic
sesame (Chowdhury et al., 2017). Finally, a study is underway
to decipher SNP variants significantly linked to various drought
tolerance traits through an inclusive GWAS.

Productivity Enhancement
Although sesame has been domesticated since long time, the
yield in most of the growing areas is still very low, thus,
hampering its adoption and expansion in the world. Grain yield
of sesame per plant is considered to be composed of three

components, i.e., the number of capsules per plant, the number
of grains per capsule and the grain weight. Some other factors,
including plant height, length of capsules, number of capsules
per axil and axis height of the first capsule were found to be
strongly associated with grain yield of sesame (Biabani and
Pakniyat, 2008). Concerning the plant height trait, some QTLs
have been reported including Qph-6 and Qph-12 (Wu et al.,
2014a); 41 QTLs were further identified and the major QTL qPH-
3.3, was predicted to be responsible for the semi-dwarf sesame
plant phenotype (Wang et al., 2016a). However, it contains 102
candidate genes and thus needs further excavation to pinpoint the
causative gene. A semi-dwarf gene [SiGA20ox1 (SIN_1002659)]
has been recently detected through fine-mapping strategy (Wei
et al., 2016). Moreover, two important candidate genes for
plant height SiDFL1 (SIN_1014512) and SiILR1 (SIN_1018135)
were found in works of Wei et al. (2015). These findings will
undoubtedly assist in efforts to create mechanized cultivation
varieties with super high yield.

Quantitative trait loci were also identified for the capsule
related trait including capsule number per plant (Qcn-11), First
capsule height (Qfch-4, Qfch-11, and Qfch-12), capsule axis
length (Qcal-5 and Qcal-9), capsule length (Qcl-3, Qcl-4, Qcl-7,
Qcl-8, and Qcl-12) (Wu et al., 2014a). Similarly, the gene SiACS
(SIN_1006338) coding for the number of capsule per axil was
discovered and may be an important asset for yield improvement
in sesame (Wei et al., 2015). Since the number of capsules per
axil is related to the number of flowers per axil, Mei et al.
(2017) successfully mapped a gene SiFA (mono-flower vs. triple-
flower) onto the LG11 flanked by the markers Marker58311 and
Marker36337.

In regard to the grain yield, few QTLs are actually available
including Qgn-1, Qgn-6, and Qgn-12 for grain number per
capsule and Qtgw-11 for thousand grain weight.

Flowering time is also an important trait for adaptation
of crops to different agro-climatic conditions that significantly
affects the yield. Two candidate genes at flowering-time loci
SiDOG1 (SIN_1022538) and SiIAA14 (SIN_1021838) have been
discovered (Wei et al., 2015). Sesame’s indeterminate growth
habit is one of the reasons of its low yielding capacity compared to
other oilseed crops (Yol and Uzun, 2012). Recently, the gene SiDt
(DS899s00170.023) was detected as a target gene for conferring
the determinate trait in sesame cultivar (Zhang et al., 2016).
Also, the branching habit which is an important trait in sesame
as it plays a cardinal role in grain yield, cultivation practices
and mechanized harvest, has been investigated. A gene SiBH
controlling the branching habit (uniculm vs. branched type) was
mapped onto the LG5 flanked by the markers Marker129539
and Marker31462. This QTL region will be useful for developing
unbranched sesame varieties fit for mechanized harvest (Mei
et al., 2017).

In another realm, AFLP markers P01MC08, P06MG04 and
P12EA14 were found to be linked to the recessive GMS gene
SiMs1 (Zhao et al., 2013) and 13 SSRs including SBM298 and
GB50 were associated to the dominant GMS gene Ms (Liu et al.,
2015). These markers will be valuable for marker-aided breeding
of GMS hybrids and harnessing heterosis as one of the promising
approaches for yield improvement in sesame (Murty, 1975).
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CURRENT HOT-TOPICS IN SESAME
RESEARCH AND FUTURE DIRECTIONS

Recent years have witnessed a continuously increasing number
of functional genes discovered for key agronomic traits in
sesame thanks to the availability of versatile “Omics” tools. In
this regard, the next logical step in the sesame research is the
functional validation of these gene resources through genetic
engineering approaches. Genetic transformation would be an
ideal opportunity to quickly transfer the functional genes into
sesame elite cultivars. Actually, several successful attempts of
sesame genetic transformation through Agrobacterium have led
to up 42.66% of transformation efficiency (Yadav et al., 2010;
Al-Shafeay et al., 2011; Chowdhury et al., 2014). However,
improvements of the sesame genetic transformation protocol for
reaching higher efficiency are imperative. Nonetheless, studies
are in the offing to transfer candidate genes for oil quality traits
as well as abiotic stress tolerance into elite cultivars and unveil
their molecular mechanisms. In this vein, the first study of the
functional analysis in transgenic sesame came into being very
recently (Chowdhury et al., 2017). This report presages a bright
future for the genetic engineering era of sesame.

Alternatively, the available “Omics” tools actually spur us to
enquire scientific questions that remain unexplored or weakly
investigated in sesame and could considerably aid in efforts
toward its enhancement. These issues constitute the present hot-
topics in the sesame research and involve various domains of the
crop:

(a) Origin and domestication of sesame: Further
investigations into the evolution of sesame have been
hampered by the absence of detailed molecular data across
multiple sesame accessions and wild related species. There
is a need for more characterization of wild germplasm
including African species, inter-specific crosses and
molecular studies to efficiently harness potentialities of
sesame wild species. Therefore, the ongoing sequencing
projects of wild sesame species and landraces from different
origins would help to definitely state the domestication
process of sesame.

(b) Study to solve constraints related to the mechanized
harvesting in sesame cultivation: Plant architecture,
dehiscence and indeterminate growth habit are some key
factors affecting mechanization of sesame harvest. Many
QTLs and genes related to these traits are now available and
could be applied through molecular breeding to improve
sesame ability for mechanized harvesting.

(c) Instigation of molecular studies related to root system
architecture (RSA), dehiscence character, resistance to
disease, tolerance to salt and heat as well as other key
agronomic traits for yield improvement: Sesame root
system is thought to play a foremost role in its adaptation to
different environments and weather conditions. However,
till date, no study has been undertaken to dissect the
RSA of sesame and look for some candidate genes linked
to this major trait. Furthermore, gene identification for
the indehiscence trait in sesame should be a priority in

future researches. Also, the available genomic tools need
to be more effectively applied for other no less important
agronomic traits that could lead to the enhancement of
sesame productivity especially the resistance to biotic and
abiotic stresses.

(d) Genetic dissection and exploitation of sesame seed’s
bioactive components: Sesame seeds contain several
bioactive components including tocopherols, sesamin,
and sesamolin which have tremendous potential for the
valorization and value addition of the crop. Hence further
studies to investigate the genetic basis of these traits would
help to develop nutritionally superior cultivars.

(e) More “Omics” technologies to support genomic
research: Although several transcriptome data have been
released in sesame, future investigations should combine
additional “Omics” technologies including proteomics and
metabolomics as they are capital for a full understanding
of a biological system. Moreover, the available “draft”
reference genome sequence of sesame has to be updated
to reach a “full sequence” since it may affect the ability to
accurately link sequence variations to phenotypes, allele
mining or other biological issues.

(f) Application of advanced biotechnological technologies:
Functional genomics and biotechnological methodologies,
such as genetic transformation, yeast assay system, new
mutation approach such as Target Induced Local Lesions
in Genomes (TILLING) and genome-editing technologies
using CRISPR/Cas9 system, are much needed to validate
the effects of the available functional genes and their
functional variants on the key agronomic traits.

CONCLUSION

Sesame has become an emerging crop in the world and its
entrance into the “Omics” era has raised it at the “genomic
resource-rich crop” level. Invaluable efforts during recent years
have engendered several genetic/genomic tools and resources that
provide an impetus to research and nurture sesame production
for the benefit of smallholder farmers in developing countries.
The major traits in sesame including oil and quality, yield related
traits, abiotic stress resistance have been thoroughly explored
and our understanding of the molecular basis underlying these
traits has deeply increased. More importantly, several functional
genes, QTLs and molecular markers linked to these traits are
now available and could be employed in sesame breeding
programs. The current scope in the sesame research concerns
the exploitation of these available genomic information for the
effective sesame improvement trough molecular- or genomics-
assisted breeding. However, the road to raise sesame as one
of the major oilseed crops in the world is still long and will
need more synergetic efforts, more applications of MAS and
inter-disciplinary researches. Other related research fields for the
valorization and expansion of sesame should also follow the same
trend as the molecular field. Finally and perhaps one of the most
important recommendations is to enhance partnerships between
national and international sesame teams, so that major issues
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of sesame production could be addressed through international
projects and effective breeding strategies could be implemented.
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