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Calcium is widely known to have a role as a signaling molecule in many

different processes, including stress response and activation of the embryogenic

program. However, there are no direct clues about calcium levels during microspore

embryogenesis, an experimental process that combines a developmental switch toward

embryogenesis and the simultaneous application of different stressing factors. In this

work, we used FluoForte, a calcium-specific fluorescent vital dye, to track by confocal

microscopy the changes in levels and subcellular distribution of calcium in living

rapeseed (B. napus) and eggplant (S. melongena) microspores and pollen grains during

in vivo development, as well as during the first stages of in vitro-induced microspore

embryogenesis in rapeseed. During in vivo development, a clear peak of cytosolic

Ca2+ was observed in rapeseed vacuolate microspores and young pollen grains, the

stages more suitable for embryogenesis induction. However, the Ca2+ levels observed

in eggplant were dramatically lower than in rapeseed. Just after in vitro induction, Ca2+

levels increased specifically in rapeseed embryogenic microspores at levels dramatically

higher than during in vivo development. The increase was observed in the cytosol, but

predominantly in vacuoles. Non-embryogenic forms such as callus-like and pollen-like

structures presented remarkably different calcium patterns. After the heat shock-based

inductive treatment, Ca2+ levels progressively decreased in all cases. Together, our

results reveal unique calcium dynamics in in vivo rapeseed microspores, as well as in

those reprogrammed to in vitro embryogenesis, establishing a link between changes in

Ca2+ level and subcellular distribution, and microspore embryogenesis.

Keywords: androgenesis, eggplant, FluoForte, in vitro culture, microgametogenesis, microspore culture,

microsporogenesis, rapeseed

INTRODUCTION

Microspores are the precursors of pollen grains, haploid gametophytes that will give rise to
male gametes in plants. By applying specific stresses and conditions in vitro, microspores can
be deviated from the original gametophytic pathway toward androgenesis, an experimentally
induced embryogenic fate. These cells are then reprogrammed to become totipotent and start
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dividing sporophytically to produce a new haploid microspore-
derived embryo (MDE). Either spontaneously or using
genome duplication treatments, haploid MDEs may become
doubled haploid (DH) and therefore 100% homozygous. This
experimental process is highly interesting for both basic research
and applied plant breeding. At the basic research level, the
main interest of microspore embryogenesis resides on being an
exceptional example of the fascinating developmental plasticity
of plant cells. The change in cell fate undergone by microspores
constitutes an excellent model to understand the cellular and
molecular mechanisms underlying cell totipotency. Once the
particular characteristics of this system are well-understood,
it may serve as a model for the study of the very early stages
of zygotic embryogenesis itself, overcoming the technical
difficulties imposed by the maternal tissues surrounding the
zygotic embryo.

In Brassica napus microspore cultures, embryogenic
development starts from late uninucleated microspores and
young bicellular pollen. A series of sporophytic divisions make
the multicellular MDE grow inside the pollen exine, stretching
and thinning it until the increasing size causes its rupture
(Hause et al., 1994). MDEs that emerge from the exine follow
the typical morphogenic pattern of zygotic embryos through
globular, heart-shaped, torpedo, and cotyledonary stages, while
non-induced microspores either arrest and die (Seguí-Simarro
and Nuez, 2008), or continue a gametophytic-like development
to become pollen-like structures which, after 5–6 days in culture,
usually burst and therefore die (Soriano et al., 2013).

To be induced to embryogenesis, microspores of most species,
including those of rapeseed, are subjected to a heat stress
treatment. The first perception of heat stress occurs at the level
of the plasma membrane via changes in its fluidity (Vigh et al.,
1985; Horvath et al., 1998), which, together with the activation
of stress-specific Ca2+-permeable channels, causes a transient
increase in cytosolic Ca2+ levels (Liu et al., 2005). Elevation
of cytosolic calcium levels is thought to be a primitive and
universal response to stress (White and Broadley, 2003). As a
response to specific Ca2+ perturbations, cells activate specific
combinations of Ca2+ sensors (Ca2+-binding proteins). Binding
to Ca2+ change their properties, which in turn modify the
way they interact with target proteins, thereby altering many
different aspects of cell physiology which, altogether, may result
in stress tolerance and/or a developmental switch (White and
Broadley, 2003). However, the roles and locations of calcium go
far beyond being an intracellular messenger in the cytoplasm.
Plant cells store calcium in different compartments, including the
endoplasmic reticulum, nucleus, cell wall and vacuoles. At first,
it was thought that the major source of stored calcium was the
cell wall, where it is tightly bound to pectins and plays a key role
in cell wall physiology (Demarty et al., 1984). Recently, it was
proposed that cell wall AGPs act as calcium capacitors to supply
Ca2+ to the cytosol on demand (Lamport and Varnai, 2013).
However, other studies pointed out that, regardless of the roles of
other compartments as calcium stores, the major calcium store
in plants appears to be the vacuole (Rudd and Franklin-Tong,

2001), where it acts as a counter-cation for different inorganic
and organic anions (White and Broadley, 2003). From these
compartments, calcium is mobilized to produce fluctuations in
cytosolic Ca2+ levels that play key signaling and regulating roles
in multiple physiological and developmental processes, including
cell division and growth, stomatal closure, and response to several
stresses, including pathogen attack and wounding (reviewed in
White and Broadley, 2003). Using the potassium pyroantimonate
technique, calcium distribution and levels have been assessed
during anther development in different species. From these and
other studies, it was deduced that calcium has a direct role
in pollen development. Indeed, altered calcium distribution in
anther walls and pollen in tobacco, wheat and rice leads to pollen
abortion (Tian et al., 1998; Meng et al., 2000; Li et al., 2001),
and gradients of Ca2+ are important to determine the polarity
and location of pollen pores and growing pollen tubes (Tirlapur
and Willemse, 1992). Later, during post-zygotic development,
gradients of Ca2+ are important for the establishment of embryo
polarity and seed germination (Hause et al., 1994).

Even in the context of the experimental induction of
microspore embryogenesis, Ca2+ has been suggested to be either
necessary or helpful for microspore induction as well as for
MDE germination and conversion into plants. Experimenting
with extracellular calcium concentrations and calcium signaling
modulators, a relationship between calcium modulation and
embryogenesis induction was proposed in rapeseed (Pauls et al.,
2006), barley (Cho and Kasha, 1995) and bread wheat (Reynolds,
2000). Usually, stresses mobilize calcium stores, eliciting an
increase in cytosolic free Ca2+ levels which, in turn, activates
mitogen-activated protein kinase (MAPK) cascades, among other
protein phosphatase/kinase cascades (Pearce and Humphrey,
2001). Interestingly, different components of MAPK cascades
have been found differentially regulated during stress-mediated
induction of microspore embryogenesis in rapeseed and tobacco
(Coronado et al., 2002; Seguí-Simarro et al., 2005). Hause
et al. (1994) studied the distribution of calmodulin and free
cytosolic Ca2+ in globular and elongated MDEs, finding some
degree of polarization in the latter. Calcium was also found
helpful for conversion of rapeseed into plantlets when added
to the culture medium in the form of CaCl2 (Tian et al.,
2004). However, although its role in embryogenesis induction is
suspected from indirect evidences and deductions, the knowledge
about the precise role of calcium in this process is still very
scarce and poorly understood. Perhaps due to the technical
difficulties of detecting calcium in a complex in vitro system
like this, nobody to our knowledge has been able to show
how calcium distributes and accumulates during microspore
embryogenesis. In this work we study the changes in levels and
subcellular distribution of calcium during microspore/pollen in
vivo development in rapeseed and eggplant (two species with
high and recalcitrant response to microspore embryogenesis,
respectively), and at different time points during the first stages
of in vitro-induced microspore embryogenesis in rapeseed,
establishing a link between calcium increases and microspore
embryogenesis.
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MATERIALS AND METHODS

Plant Materials
Donor plants of rapeseed (B. napus) L. cv. Topas line DH4079
were grown in growing chambers of the COMAV Institute
(Universitat Politècnica de València, Valencia, Spain). Plants were
grown in 20 cm pots at 60% humidity and 16/8 photoperiod,
300 µE.m−2.s−1 light intensity, kept at 20◦C until flowering and
then transferred to 15◦C. Donor plants of eggplant (Solanum
melongena) of the high androgenic response line DH36 (Rivas-
Sendra et al., 2017) were grown in 30 cm pots in greenhouses
under controlled temperature (25◦C) and natural light.

Brassica napus Microspore Culture
Isolation, induction treatment and microspore culture were
performed according to Custers (2003). Flower buds containing
mostly late uninucleated microspores and early binucleated
pollen were dissected from the plant, surface sterilized with 2%
sodium hypochlorite for 10min, and washed three times in sterile
distilled water for a total of 15 min. Buds were crushed with
a sterile syringe piston in NLN-13 medium. NLN-13 medium
consist of NLN salts and vitamins as described by Nitsch and
Nitsch (1967) supplemented with 13% sucrose and sterilized by
filtration trhough a 0.22 µm filter. Microspores were isolated
from the suspension by filtration through a 40 µm nylon
mesh (Millipore) followed by three rounds of centrifugation at
100 g for 4 min each. Microspore density was calculated with a
hemacytometer and adjusted to 4 × 104 microspores/ml. The
cellular suspension was plated, incubated in darkness for 3 days
at 32.5◦C to induce embryogenesis, and then at 25◦C in darkness
for embryogenesis progression.

Callose, Calcium, and FDA Staining and
Detection
Rapeseed and eggplant microspores and pollen at different stages
during microsporogenesis and microgametogenesis were stained
with FluoForte (FF; Enzo Life Sciences, ENZ-52015) for calcium
detection.Microspores and pollen were isolated from flower buds
at different stages. To minimize the stress, the extraction process
was quickly done and the solutions and plant material used were
kept at 4◦C. Excised buds were crushed with a syringe piston
in phosphate-buffered saline (PBS), filtered through a 40 µm
nylon mesh and centrifuged at 100 g for 4 min. The supernatant
was discarded and the concentrated cell suspension was mixed
with the same volume of 0.2 g/l FF in PBS (diluted from a
10 g/l stock solution of FF in DMSO), in order to achieve a
0.1 g/l working concentration. The suspension was incubated in
darkness during 30 min. Then, cells were washed with 1 ml PBS
and centrifuged in an Eppendorf centrifuge at 200 g for 2 min.
The supernatant was discarded and pelleted cells were mounted
in a microscope slide with Mowiol antifading mounting solution
and immediately observed. Mowiol solution was prepared with
17% Mowiol 4–88 (Sigma-Aldrich) and 33% glycerol (v/v) in
PBS. Rapeseed microspore cultures were prepared as described
above, collected at different culture times and stained following
the same protocol, with twomodifications: samples and solutions
were kept at room temperature and 0.2% aniline blue for callose

detection was also added to the staining mix. Stained cells were
mounted in amicroscope slide withMowiol antifadingmounting
solution and immediately observed. A minimum of 20 cells at
each of the stages were carefully studied.

As a control of dye uptake, rapeseed microspores and
pollen at different stages during microsporogenesis and
microgametogenesis were stained with 0.001% fluorescein
diacetate (FDA; Invitrogen, F-1303). Microspores and pollen
were isolated from flower buds in PBS as described before,
keeping solutions and plant material at 4◦C to minimize the
mortality. Stock solution of FDA was prepared in acetone at
0.2%, and 5 µl of the stock were added to 1 ml of cell suspension.
Samples were incubated in darkness at 4◦C during 10 min, then
mounted in a microscope slide and immediately observed. In
all cases, observations were carried out with a Zeiss LSM 780
confocal laser scanning microscope.

Image Analysis of Fluorescence
Digital images were processed with Leica Application Suite
Advanced Fluorescence (LAS AF) and FIJI software. Spectral
imaging of mature pollen grains stained with FF was carried out
in the confocal laser scanning microscope with laser excitation at
488 nm. A set of images was obtained, each image being acquired
with a separate narrow bandwidth (8.9 nm), representing the
complete spectral distribution of the fluorescence emission
signals for every point of the image. The spectral analysis
of defined areas and the visualization of images in coded
colors depending on the emission spectrum was performed
using the advanced linear unmixing function (LAS software),
which separates mixed signals pixel by pixel using the entire
emission spectrum of each defined fluorescent compound in the
sample. Autofluorescence and FF signal were differentiated by
comparison with the reference emission spectrum of FF provided
by the manufacturer (www.enzolifesciences.com). Using Fiji
software, different cell regions (vacuoles, cytosol+nucleus, and
exine) were selected and their mean fluorescence intensity was
measured.

RESULTS

Optimization of FF Staining Conditions
FF has been successfully used in animal cells (Blaauw et al.,
2012; Kim et al., 2013) but, to the best of our knowledge, has
not yet been used to detect calcium in plant cells. In sperm or
blood platelets, FF has been used at concentrations of 10–20 µM
solved in the presence of Pluronic F-127 0.02–0.1% (Mendes-
Silverio et al., 2012; Jansen et al., 2015). We performed a series
of experiments in different conditions in order to optimize the
staining protocol for our in vivo and in vitro microspores and
pollen grains.

Pluronic F-127 is a non-ionic, surfactant polyol that facilitates
the solubilization of water-insoluble dyes in physiological
medium, and it has been used to help disperse acetoxymethyl
(AM) esters of fluorescent ion indicators (Cohen et al., 1974).
This is why it was suggested to maintain dye solubility and aid
tissue penetration (Fricker et al., 2001). In our tests, we found
that Pluronic F-127 (P2443, Sigma) 0.1% can be added to the
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working staining solution for improved solubility of the dye and
increased stability of the solution over time, but we confirmed
that, when used immediately after preparation, the addition of
Pluronic F-127 to the staining mix made no difference in the
staining efficiency. According to manufacturer’s specifications,
Pluronic F-127 might alter the membrane properties of the cell,
so we decided to avoid its use.

In order to minimize the changes with respect to microspore
culture conditions, we tried to use FF dissolved in NLN-13
culture medium (pH 5.8) instead of PBS. However, the staining
of the cells was weak and irregular, and not all cells were
homogeneously stained (data not shown), so we discarded its

FIGURE 1 | Fluorescence intensity of FF staining in the cytosol+nucleus

region and in vacuoles of rapeseed vacuolate microspores and young

bicellular pollen, 15 min (A) and 60 min (B) after mounting the samples.

use. In order to optimize the working concentration of FF,
preliminary tests were performed in root tips, where high levels
of Ca2+ for xylem delivery are described in the extreme root tip
and lateral root growing regions. We tested FF at 0.01, 0.05, 0.1,
and 0.2 g/l. Fluorescence in root tips was only detectable when
0.1 or 0.2 g/l was used (Figure S1). Negative control without FF
showed no signal. Next, we tested FF 0.05, 0.1, and 0.2 g/l in
microspores. The intensity of green fluorescence, always keeping
the same settings in the microscope and camera, was found
to be proportional to FF concentration (Figure S2). Negative
control without FF presented no signal (Figures S2A,A′). When
FF was added, the intensity yielded by 0.05 g/l was too weak
(Figures S2B,B′). The optimal fluorescence was found with the
use of 0.1 g/l (Figures S2C,C′), while 0.2 g/l produced excessively
saturated images (Figures S2D,D′). Thus, we established 0.1 g/l
as the optimal working concentration for our cells.

Conventional calcium-sensitive fluorescent dyes are known to
undergo compartmentalization after prolonged incubation times
(Fricker et al., 2001). Therefore, we studied the dynamics of
FF staining in living, freshly isolated rapeseed microspores and
pollen grains at different time points. Approximately 15 min
after mounting samples in the slides (Figure 1A), both vacuolate
microspores (Figures 2A,A′) and pollen grains (Figures 2B,B′)
clearly showed an intense nuclear-cytosolic FF signal, having
vacuoles a very low signal, barely eye-detectable. Prolonged
observation of these cells revealed a progressive decrease of the
nuclear-cytosolic signal and a parallel increase of the vacuolar
signal. Thereby, 60min after mounting (Figure 1B), the FF signal
was almost excluded from the nucleus-cytosol and principally
localized in the vacuoles. Such a transition from cytosolic to
vacuolar signal was observed in both vacuolate microspores
(Figures 2C,C′) and pollen grains (Figures 2D,D′). After 1 h,
no further changes were observed. Quantitatively, the nucleus-
cytosol/vacuole ratio averaged for the three stages shown in

FIGURE 2 | FF staining of rapeseed microspores and pollen after 15 and 60 min of observation. Phase contrast (A–D) and fluorescence (A′–D′) pairs of pictures are

shown. Vacuolate microspore (A,A′) and early binucleated pollen (B,B′) after 15 min of observation. Vacuolate microspore (C,C′) and early binucleated pollen (D,D′)

after 60min of observation. Note the change of FF staining localization from nuclear-cytosolic to vacuolar in both cell types. Ct, cytosol; v, vacuole. Bars: 10µm.
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FIGURE 3 | FF staining during in vivo microspore/pollen development in

rapeseed. Phase contrast (A–F) and fluorescence (A′–F′) pairs of pictures of

a tetrad (A,A′), young microspore (B,B′), mid microspore (C,C′), vacuolate

microspore (D,D′), young bicellular pollen (E,E′), and mid pollen grain (F,F′)

are shown. ct, cytosol; n, nucleus; v, vacuole. Bars: 10 µm.

TABLE 1 | Average intensities of FF fluorescent staining for different regions of

microspores/pollen during in vivo development.

Stage Vacuoles Cytosol + nucleus Exine

Mid microspore 0.01 ± 0.01 0.01 ± 0.01 n.d.

Early vacuolate microspore 1.00 ± 1.11 3.80 ± 1.75 n.d.

Late vacuolate microspore 0.28 ± 0.39 2.45 ± 1.65 n.d.

Young bicellular pollen 0.52 ± 0.29 2.94 ± 2.27 n.d.

Mature pollen 0.03 ± 0.02 0.03 ± 0.02 4.04 ± 1.63

Fluorescence intensity is given in arbitrary units ×103/µm2.

Figure 1 was 4.2 (four-fold more signal in the nucleus + cytosol
than in vacuole) when observed within 15 min, and 0.03 (30-
fold less signal in nucleus-cytosol than in vacuole) when observed
after 60 min. Next, we checked eggplant microspores and pollen
grains 15 and 60 min after mounting and observed exactly
the same results (data not shown). Thus, we concluded that
prolonged incubation times caused a progressive loss of nuclear-
cytosolic signal together with a compartmentalization of the FF
signal into vacuoles. However, observation of cells around 15
min after incubation and mounting consistently showed a clear
nuclear-cytosolic signal in these cells. As a result of this, we
assumed this time point as the optimal to reliably detect calcium
with FF in our cells.

Calcium Distribution during Microspore
and Pollen Development in Rapeseed
A representative example of the calcium distribution at each stage
during microsporogenesis and microgametogenesis is shown
in Figure 3. Observations were remarkably consistent for each
stage. Tetrads (Figures 3A,A′) and young microspores just
released from the tetrad (Figures 3B,B′) presented a very low
calcium signal, principally located in few, small cytosolic foci,
likely corresponding to cytoplasmic organelles. Mid microspores
showed no detectable calcium signal (Figures 3C,C′). At the
onset of microspore vacuolation, calcium signal accumulated
in the cytosol and nucleus, while no detectable signal was
found in the vacuole (Figures 2A,A′). Late unicellular, vacuolate
microspores (Figures 3D,D′) also showed nuclear-cytosolic
signal, but brighter than in the previous stage. As in the previous
stage, the large, central vacuole was devoid of fluorescence, but
in this stage, the nuclear region appeared slightly brighter than
the cytosol. The highest signal intensity was observed after the
first pollen mitosis, in early binucleated pollen (Figures 3E,E′;
Movie S1). In this stage, an intense fluorescence was observed
in the cytosol and even more intense in the nuclei, but not
in the mid-sized vacuoles that resulted from fragmentation
of the large vacuole. In the mid pollen grain (Figures 3F,F′)
calcium staining was in general less intense, but it was observed
again in the cytosol and the centrally positioned nuclei. The
small and numerous vacuoles and the starch granules typical
from this pollen stage showed no detectable signal. In order
to confirm our qualitative observations, we calculated for all
the cells studied at each stage, the average FF fluorescence
intensity/µm2 in all the cell area and in each of the identifiable
cell regions. As seen in Table 1 and in Figure 4A, this analysis
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FIGURE 4 | Fluorescence intensity of FF staining in cytoplasm and vacuoles of rapeseed cells at different stages during in vivo gametogenesis (A), in vitro

embryogenesis (B), and non-embryogenic in vitro development (C).

FIGURE 5 | Rapeseed mature pollen grain stained with FF and observed under phase contrast (A) and fluorescence (A′). Panels (B–D) show the analysis of

fluorescence emission spectra of exine autofluorescence and FF. (B) Small areas were selected from mature pollen exine (green arrowhead) and microspore exine

(purple arrowhead), (C) Fluorescence emission spectrum of pollen exine (green) and microspore exine (purple), (D) Areas with different emission spectra are

represented in coded colors, allowing the identification of FF staining (green) and exine autofluorescence (purple). Note that in the pollen wall, FF staining and exine

autofluorescence are overlaid. Bars: 10 µm.

confirmed that at the stages of microspore vacuolation and
first pollen division, calcium signal strongly increases in the
nuclear-cytosolic regions, staying very low in vacuoles. In mature

pollen grains (Figures 5A,A′), a faint, barely detectable signal
was observed inside the pollen grain, in line with the progressive
decrease observed after the first pollen mitosis. However,
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numerous bright foci were detected in the exine, outside the
cell. To exclude the possibility of exine autofluorescence, a
known and well-documented phenomenon (Roshchina, 2012),
we analyzed both emission spectra. Spectral imaging as described
in SectionMaterials andMethods was carried out in preparations
containing both microspores and mature pollen grains and
exposed to the same excitation conditions. Small regions were
selected in the pollen and microspore exine (Figure 5B, green
and purple arrowheads, respectively), and the fluorescence
emission spectra of the selected areas were analyzed. As seen in
Figure 5C, the pollen exine spectrum (green curve) presented
the characteristic emission spectrum of FF (one neat peak
with a maximum in 525 nm), whereas the microspore exine
spectrum (purple curve) showed multiple peaks at different
wavelengths, typical of autofluorescence. Indeed, when the linear
unmixing procedure provided by the LAS AF software was
used to assign different color to areas with different emission
spectrum, both signals perfectly overlaid (Figure 5D). Therefore,
the exine signal observed in mature pollen grains was not due to
autofluorescence.

Finally, we decided to check out whether the different FF

fluorescence we observed in different stages was actually due
to the presence of different calcium levels, or instead, was

due to a different dye uptake in different stages. For this we

used FDA, an acetoxymethyl ester like FF that passively enters

the cell and interacts with intracellular esterases, exactly as

FF does. However, unlike FF, FDA is not sensitive to calcium
nor to anything else. FDA de-esterification directly releases
fluorescein. Therefore, similar dye uptakes at different stages
during microsporogenesis and microgametogenesis should give
rise to similar fluorescence levels. Figure S3 shows that from
the tetrad to the mature pollen stage, rapeseed microspores
and pollen at different developmental stages presented an
equivalent fluorescence pattern, characterized by a homogeneous
staining of the nucleus, cytoplasm and cytoplasmic organelles
excluding vacuoles. A similar FDA staining pattern implies a
similar dye uptake. In other words, the different FF fluorescence
observed in different stages was not due to a different, stage-
specific dye uptake, but to different, stage-specific calcium
levels.

In conclusion, we showed that during in vivo development,
calcium levels increased progressively in the cytosol and nucleus
(but not in vacuoles) from the tetrad stage to the late vacuolate
microspore stage, first as discrete foci and then as a dispersed
signal that reached a maximum at the young pollen stage. From
then on, calcium levels progressively decreased to become barely
detectable in the cytosol of mature pollen. However, an intense
calcium signal was observed at this stage in the pollen exine.

Calcium Distribution during Induction of
Microspore Embryogenesis in Rapeseed
Next, we studied the intracellular levels and distribution of
calcium signal in rapeseed microspores isolated and in vitro
induced to embryogenesis. To identify them we used different
morphological markers (size, shape, cytoplasmic appearance,
etc.), being the most evident the presence of internal cell walls.

In order to identify microspores committed to embryogenesis
but still not divided, we stained cells in parallel with
anilin blue to identify the development of the callose-rich
subintinal layer, described as an early marker of embryogenic
commitment (Parra-Vega et al., 2015b). One day after induction
(Figures 6A,A′), we found many cells where the intracellular
calcium signal increased dramatically with respect to that found
in in vivo isolated microspores. These cells also presented aniline
blue staining at discrete peripheral regions, indicative of the onset
of subintinal layer formation. The calculation of the average FF
fluorescence intensity/µm2 showed that in these cells [1-cel (I) in
Table 2 and Figure 4B], in addition to a ∼2.5× increase in the
nuclear-cytosolic signal, these microspores accumulated signal
in vacuoles at levels considerably higher (∼19×) than during in
vivo development. Indeed, the most striking difference between
in vivo and in vitro development was the massive internalization
of calcium signal to vacuoles. In 1 day-old cultures we also
observed microspores with larger peripheral regions stained with
aniline blue, indicating a later stage in subintinal layer formation.
Interestingly, these cells [1-cel (II) in Table 2 and Figure 4B]
showed a decrease in the nuclear-cytosolic calcium signal, being
nearly all the signal concentrated in vacuoles, now located at
the cell periphery (Figures 6B,B′; Movie S2). A third type of
unicellular microspores [1-cel (III) in Table 2 and Figure 4B]
was fully surrounded by aniline blue-positive subintinal layer and
showed a decrease in vacuolar signal (Figures 6C,C′), suggesting
that as the cell progresses in embryogenesis, calcium signal
decreases. This notion was confirmed in embryogenic structures
with clearly visible cell divisions (Figures 6D,D′), where vacuoles
showed no detectable signal, and the nuclear-cytosolic signal
dropped down to very low levels. Four-celled (Figures 6E,E′)
and multicellular embryogenic microspores (Figures 6F,F′) from
6-day old cultures, where the subintinal layer is already
dismantled (Parra-Vega et al., 2015b), followed this trend, with
almost no detectable calcium signal neither in the vacuoles nor in
the rest of the cell.

In light of these results, we concluded that the first signs of
embryogenic commitment are accompanied by an increase in
intracellular calcium levels. In particular, calcium accumulated in
vacuoles, disappearing from the nucleus and cytosol. However,
later embryogenic stages, when microspores start the successive
division rounds, are characterized by a progressive decrease
in calcium levels, reaching undetectable levels not only in the
cytosol, but also in vacuoles.

Calcium Distribution in Non-induced,
In vitro Cultured Rapeseed Cells
In isolated microspore cultures, microspores induced to
embryogenesis coexist with other forms, non-sensitive
to the inductive treatment and therefore, not induced to
embryogenesis. For instance, there are cells arrested or dead
at different culture stages (Figure 7A), microspores induced
to divide and proliferate but in a non-embryogenic manner,
giving rise to disorganized, callus-like structures (Figures 7B,C),
and microspores that follow a gametophytic-like pathway,
becoming pollen-like grains (Figures 7D,E) with many of the
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FIGURE 6 | FF and aniline blue staining during in vitro microspore

embryogenesis in rapeseed. Phase contrast (A–F) and fluorescence (A′–F′)

pairs of pictures are shown. (A,A′) Induced microspore showing high FF green

signal, and few aniline blue stained regions below the intine. (B,B′) Microspore

showing FF staining only in vacuoles, and aniline blue signal in the subintinal

(Continued)

FIGURE 6 | Continued

layer. (C,C′) Embryogenic microspore with decreased vacuolar FF signal and

fully surrounded by aniline blue-positive subintinal layer. (D,D′) Embryogenic

microspore with a clear aniline blue-stained cell division (arrows) and very low

level of FF staining. (E,E′) Four-celled embryogenic structure (arrows indicate

inner cell walls), without detectable fluorescent signal. (F,F′) Multicellular

embryogenic structure without detectable fluorescent signal. Bars: 10 µm.

TABLE 2 | Average intensities of FF fluorescent staining for different regions of

in vitro- cultured structures.

Stage Vacuole Cytosol + nucleus

1-cel (I) 10.74 ± 1.92 7.58 ± 2.55

1-cel (II) 6.36 ± 2.54 0.40 ± 0.24

1-cel (III) 3.54 ± 2.20 0.69 ± 0.87

2-cel 0.04 ± 0.08 0.04 ± 0.08

4-cel n.d n.d

Multicel 0.01 ± 0.01 0.01 ± 0.01

Not induced 0.01 ± 0.01 0.01 ± 0.01

Callus-like 0.05 ± 0.08 0.31 ± 0.20

Pollen-like 1.84 ± 2.12 1.84 ± 2.12

Fluorescence intensity is given in arbitrary units ×103/µm2.

features typical from pollen grains, including enlarged size,
vegetative and generative nuclei, and starch granules, among
others. Microspores apparently arrested or dead, not showing
any sign of development, showed no detectable signal in any
case (Figures 4C, Figure 7A′). Dividing cells that followed a
callus-like pathway showed a pattern of FF staining remarkably
different from embryogenic microspores (Figure 4C). These
structures presented a faint but clearly detectable signal in the
nuclear-cytosolic region (Figure 7B′), combining a dispersed
pattern with the presence of some discrete foci as those observed
in in vivo microspores. Interestingly, we detected this pattern
of calcium signal in these structures even in 3 day-old cultures,
a stage when calcium could not be detected in embryogenic,
dividing structures. In all cases, signal was not present in
vacuoles, at least at detectable levels. After 6 days of culture
(Figure 7C′), however, calcium signal in callus-like structures
became eventually undetectable in our conditions. Pollen-like
structures presented a dual pattern of calcium distribution.
Some of them presented very scarce signal, concentrated in few
small, peripheral foci (Figure 7D′). Others presented abundant
cytosolic signal, principally in peripheral regions (Figure 7E′).
Interestingly, some of them showed a broken exine and part of
the cytoplasm emerging out of the grain, resembling germinating
pollen (Figures 7F,F′). In any case we could find in pollen-like
structures a calcium distribution pattern similar to that found in
embryogenic microspores.

Calcium Distribution during Microspore
and Pollen Development in Eggplant
In order to check whether the calcium profiles observed
during microspore and pollen development in rapeseed are
exclusive of this species or a common feature shared with
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FIGURE 7 | FF and aniline blue staining during non-embryogenic in vitro

development in rapeseed. Phase contrast (A–F) and fluorescence (A′–F′)

pairs of pictures are shown. (A,A′) Non-induced, arrested, or dead

microspore. (B,B′) Callus-like structure with non-embryogenic cell divisions

(arrows). (C,C′) Six day-old multicellular callus-like structure (arrows indicate

(Continued)

FIGURE 7 | Continued

inner cell walls). (D,D′,E,E′) Pollen-like structures with different levels of FF

signal, from low and concentrated in discrete peripheral foci (D,D′) to intense

and distributed throughout the cytosol. (F,F′) Pollen-like structure with broken

exine resembling germinating pollen, showing FF signal in the peripheral

cytosolic area. Bars: 10 µm.

other species, we studied the changes in calcium distribution in
eggplant microspores and pollen. In young andmidmicrospores,
no detectable calcium signal could be observed (data not
shown). As microspores began to undergo vacuolation, calcium
signal faintly accumulated in the cytosol and nucleus, while
no signal at all was found in the vacuole (Figures 8A,A′).
Late unicellular, vacuolate microspores (Figures 8B,B′) showed
a similar but slightly brighter pattern of nucleo-cytosolic
and not vacuolar signal. After the first pollen mitosis,
young pollen grains (Figures 8C,C′) showed a similar profile,
but being the nuclear signal brighter than in previous
stages. However, in mid pollen grains (Figures 8D,D′) calcium
staining was not detectable, as it was in mature pollen
grains (Figures 8E,E′). As in rapeseed, bright foci were
also observed in the exine, outside the cell, but at a
considerably lower amounts, only one or two per exine slice
(Figures 8D′,E′).

DISCUSSION

Fluoforte Staining Is a Convenient Way to
Detect Intracellular Ca2+ in Living In vivo

and In vitro Cultured Microspores
Despite the interest of the long pursued study of the changes
in intracellular calcium levels and distribution in plant cells,
this study has not been always easy. Among the different
technical alternatives, the most used have been Ca2+-sensitive
fluorescent dyes. Different dyes are commercially available,
but they generally do not diffuse well into cells because at
physiological pH, they are negatively charged (Grynkiewicz et al.,
1985). The alternative, uncharged acetoxymethyl (AM) esters
of the dyes, are able to passively enter the cytosol, where
they interact with intracellular esterases that switch them to
the negatively charged, Ca2+- sensitive form (Tsien, 1981). In
plants, this approach may be limited by the presence of esterases
(pectin methyl-esterases, PMEs) in the cell wall (Micheli, 2001),
which hydrolyze AM-esters in the extracellular space prior to
access the cytosol. However, Solis et al. (2016) found that the
expression of PMEs in rapeseed vacuolate microspores, pollen
grains and embryogenic microspores was very low. Thus, it
seems that the presence of cell wall PMEs should not be a
problem in our case. Our results confirmed it, since we were
able to detect an intense signal within rapeseed microspores
and pollen grains. Although at different intensities, we observed
a similar calcium pattern during eggplant microspore and
pollen development, which extends the range of applicability
of this method beyond rapeseed. As to the presence of FF
signal in the exine of mature pollen, it could be due to
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FIGURE 8 | FF staining during in vivo microspore/pollen development in

eggplant. Phase contrast (A–E) and fluorescence (A′–E′) pairs of pictures of a

mid microspore (A,A′), young microspore (B,B′), young, just divided pollen

grain (C,C′), mid pollen grain (D,D′), and mature pollen grain (E,E′) are

shown. ct, cytosol; n, nucleus; v, vacuole. Bars: 10 µm.

the presence of other, mature pollen-specific PMEs, or to
the contribution of the senescing inner anther wall layers
which, together with the release of calcium (Ge et al., 2007b;
Qiu et al., 2009; Kuang and Liao, 2015) and of partially
and non-methyl-esterified pectins to the locular fluid (Corral-
Martínez et al., 2016), could be delivering pectin-associated
PMEs.

We also demonstrated that the different FF fluorescence
observed is not due to stage-specific differences in cell
permeability or in dye uptake, because FDA, an AM-ester dye
as FF, but insensitive to calcium, yielded similar fluorescence
levels in all the stages observed. Another problem previously
documented with the use of fluorescent calcium dyes in plant
cells is intracellular compartmentalization after loading (Fricker
et al., 2001). However, this strongly depends on the cell
type and the dye used. For example, Bush and Jones (1987)
used two AM-ester dyes, Indo-1 and Fura-2, to image Ca2+

in barley aleurone protoplasts. They found that while Indo-
1 was not well-hydrolyzed, Fura-2 compartmentalized in the
vacuole. Similarly, in rhizoid cells of Fucus serratus, Fura-2
was found sequestered into vacuoles and vesicles (Brownlee
and Pulsford, 1988). Using FF in rapeseed microspores, we
also found some degree of dye compartmentalization in the
vacuole, but 1 h was needed to observe it. When observed
within 15 min after mounting, intracellular calcium signal
was exclusively cytosolic and nuclear. Other studies, using
absolutely different approaches and species (Kong and Jia, 2004;
Ge et al., 2007b; Qiu et al., 2009; Kuang and Liao, 2015;
Wei et al., 2015), consistently showed a clearly cytoplasmic
signal, which counts in favor of this notion too. Thus, we can
assume that in in vivo microspores, the signal we observed
corresponded to cytosolic and nuclear Ca2+. Similarly, we can
also assume that when we see, under identical preparative
conditions, cells with mostly vacuolar signal (as in embryogenic
microspores), we are detecting Ca2+ initially located in vacuoles,
and not compartmentalized. It must be noted, though, that
compartmentalization prevented us from using live imaging
of Ca2+ changes in the same microspores during the first
embryogenic stages. This was the reason to take different
samples for different time points, instead of observing the
same cells over time. Since we kept our in vivo samples at
4◦C to avoid the putative effect of heat on calcium levels,
it could also be argued that cold might also have an effect.
However, calcium oscillations due to cold shock are brief
(seconds, according to Knight, 1999; White and Broadley, 2003),
which implies that after a 15 min incubation, we should not
observe them. In addition, the exposure of samples to different
treatments and several buffers to be able to reveal FF fluorescence
might preclude from obtaining a more precise picture of
absolute levels under physiological conditions, which would need
further investigations in near-to-physiological conditions. All
this considered, the method we hereby described may not be
useful to detect short calcium pulses or absolute levels under
physiological conditions, but we can rely on the use of FF
to detect differences in calcium levels and distribution among
different stages during in vivo and in vitromicrospore and pollen
development.
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Species Responsive to Microspore
Embryogenesis Show a Particular Calcium
Dynamics during In vivo Development
From the tetrad stage on, cytosolic Ca2+ progressively increased
from a very low level in tetrads up to a maximum in late
microspores and young pollen grains. From that stage on, Ca2+

progressively disappeared, reaching in mature pollen cytosolic
levels as low as those of tetrads. This pattern, characterized
by a sharp peak at the microspore-pollen transition, is not
frequent in other species. For example, using the potassium
pyroantimonate cytochemistry for electron microscopy, in Larix
principis-rupprechtii, calcium was almost undetectable during
microspore development, whereas in pollen grains, it was only
clearly observed in the pollen coat (Kong and Jia, 2004). In lettuce
and oil tea, a progressive increase during microsporogenesis, a
decrease during vacuolation, a second increase in young pollen
grains, and a final decrease in mature pollen was described (Qiu
et al., 2009). In Uncaria hirsuta, calcium precipitates increased
as microsporogenesis proceeded, with a peak in bicellular pollen
and a decrease in mature pollen (Kuang and Liao, 2015). In
tobacco, calcium was detected in the cytoplasm and nucleus
of vacuolate microspores and bicellular pollen, decreasing at
late pollen stages (Ge et al., 2007b). Using exactly the same
procedure than in rapeseed, we showed in eggplant that Ca2+ also
concentrated in the nucleus and cytosol of vacuolate microspores
and young pollen grains, but at low levels, far below those of
rapeseed. As seen, a calcium peak in young pollen grains seems to
be a common trend for all the species abovementioned. However,
in some of them calcium levels are low in vacuolate microspores
and, interestingly, there are no evidences to our knowledge of
successful induction of microspore embryogenesis. In contrast,
other species show remarkably high calcium levels in vacuolated
microspores, and successful microspore embryogenesis has been
reported. This is the case of eggplant, tobacco and rapeseed.
Indeed, tobacco and rapeseed are considered as model species
in terms of response to induction of microspore embryogenesis.
Eggplant is considered moderately recalcitrant but inducible,
and in this species, the calcium levels observed in vacuolate
microspores were markedly lower than in rapeseed. These
observations make us propose that the particularly high Ca2+

levels just at the stagesmore suitable for embryogenesis induction
are related to their ability to undergo embryogenesis. In addition,
the levels of calcium present at these stages in different species
would be related to their different sensitivity to embryogenesis
induction.

The Unique Calcium Pattern of
Embryogenic Microspores Would Reflect
the Simultaneous Occurrence of Multiple
Stresses
In rapeseed microspores induced to embryogenesis, Ca2+ was
found in the cytosol and nucleus at levels remarkably higher than
in in vivo vacuolate microspores and young pollen grains. This
is not surprising, since cultured microspores are suspended in a
calcium-rich medium [500 mg/l Ca(NO3)2], and it is known that
one of the consequences of heat shock exposure is fluidization

of the plasma membrane, which makes it more permeable to
cations such as Ca2+, among others. Thus, it seems reasonable to
deduce that the dramatic increase in embryogenic microspores
is due to the entry of Ca2+ from the culture medium. According
to White and Broadley (2003), the magnitude and duration of
a stress-associated calcium increase depends on the severity of
the stress and the number of different stresses acting together.
Rapeseed isolated microspore culture is a system where different
stress sources are simultaneously applied to the same population.
These stresses include, at least, a mechanical stress from isolation
procedures, an osmotic stress from culture in a medium with
high sucrose levels (130 g/l), and a 24 h-long heat stress at
32.5◦C. In turn, they induce the production of reactive oxygen
species which generate additional oxidative stress. It is known
that some stresses, such as mechanical stress or cold shock induce
immediate, transient Ca2+ short pulses, whereas heat shock,
hyper-osmotic stress, and exposure to oxidative stress first elicit
an immediate, short Ca2+ pulse and also a second, prolonged
elevation that may last even hours (reviewed in White and
Broadley, 2003). Our experimental conditions precluded us from
detecting the first short pulse, but the extremely elevated Ca2+

levels observed after 24 h of in vitro culture would reflect the
second, prolonged elevation of such biphasic calcium signature
caused not only by exposure to heat stress, but also to hyper-
osmotic and oxidative stress. Thus, just induced embryogenic
microspores combine, simultaneously, high initial Ca2+ levels
and a series of stress-inducing factors characterized by prolonged
Ca2+ elevations. Such unique combination would be the cause of
their disparate Ca2+ levels.

The Unique Calcium Pattern of
Embryogenic Microspores Might Be
Involved in the Developmental Switch
In this cellular scenario, it is tempting to speculate with the
consequences of this unique Ca2+ perturbation. First, it might
be related to autophagy. We demonstrated that induction of
embryogenesis in rapeseed is tightly associated with massive
autophagy and excretion processes involving the formation of
autophagosomes and plastolysomes (Corral-Martínez et al., 2013;
Parra-Vega et al., 2015a). On the other hand, a clear link between
calcium signaling and autophagy induction through regulation
of PPP3/calcineurin (a calcium-dependent phosphatase) was
recently demonstrated in mammal cells (Medina et al., 2015).
Although possible, this hypothesis is still weak, since a similar
link between calcium and autophagy is still to be demonstrated
in plants. However, the links between Ca2+ perturbations
and plant embryogenesis induction are significantly stronger
and well-founded. It is widely accepted that during zygotic
embryogenesis, calcium is needed for egg cell activation. In both
plants and animals, the initial step of egg activation involves
dramatic Ca2+ increase and oscillations. In mouse oocytes, it
was demonstrated that the promotion of calcium uptake with
the A23187 ionophore was sufficient to activate nearly 50%
of the treated oocytes (Nakasaka et al., 2000). In plants, there
are multiple evidences of Ca2+ increases upon fertilization that
point to a key role of calcium in egg cell activation (reviewed
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in Ge et al., 2007a). The most notable example comes from
maize, where the first events of the embryogenic program
can be induced just by triggering Ca2+ influx (Antoine et al.,
2001). In other embryo-forming processes, the involvement of
calcium is similar. Experimentally elevated Ca2+ levels were
found to stimulate somatic embryogenesis in Coffea canephora
(Ramakrishna et al., 2012) and carrot (Takeda et al., 2003), where
initiation of somatic embryogenesis was found to coincide with
a rise in the level of cytosolic Ca2+ (Timmers et al., 1996).
Although, there is no evidence for an androgenesis-specific
calcium signature, the calcium pattern we hereby describe is the
most detailed description of calcium dynamics during the first
stages of MDE induction, and presents remarkable similarities
with calcium dynamics in other embryo-forming processes.
Since it is widely accepted that explicit calcium perturbations
produce specific signatures which trigger defined physiological
responses (reviewed in White and Broadley, 2003), we speculate
that the unique combination of elevated initial Ca2+ levels
and additional stresses in embryogenic microspores would be
somehow mimicking the specific calcium perturbations that
appear to initiate embryogenesis in egg and somatic cells under
defined circumstances.

Interestingly, calcium increase is not the only common link
with other embryogenic processes. The formation of a callose-
rich layer surrounding the cell as soon as it acquires embryogenic
identity is a common feature of embryogenic microspores (Parra-
Vega et al., 2015b), somatic embryos (Maheswaran andWilliams,
1985; Dubois et al., 1991; You et al., 2006) and zygotic embryos as
well (Jensen, 1968;Williams et al., 1984). The similarities between
calcium patterns would add to the growing body of evidences
that relate the different embryogenic pathways not only ant the
genetic level, but also at the cellular and physiological levels.

Vacuolar Calcium Internalization Could
Help Cells Prevent Toxicity of Calcium
Excess
An additional difference with in vivo microspores was the
massive internalization of calcium in vacuoles during the
inductive treatment. It is known that there is a maximal
concentration and duration beyond which, prolonged increases
in cytosolic Ca2+ become toxic and even lethal for cells
(White and Broadley, 2003). Indeed, sustained high Ca2+

levels were shown involved in programmed cell death during
both normal development and abnormal situations such as
hypersensitive responses to pathogens (Levine et al., 1996).
Thus, vacuolar storage of calcium excess in embryogenic
microspores may be a mechanism to keep calcium homeostasis
under control and therefore, avoid calcium toxicity or death
induction. It is interesting to note that the presence of
markers of embryogenic commitment such as the callose-
rich subintinal layer (Parra-Vega et al., 2015b) was inversely
related to the presence of Ca2+ in vacuoles. A callose-rich,
impermeable wall may constitute an effective barrier against
Ca2+ influx across a plasma membrane permeabilized during
heat shock. Therefore, as the subintinal layer grows and covers
progressively more plasma membrane, it will be less necessary

to store Ca2+ excess in vacuoles. In line with this, once cells
were transferred to 25◦C, no Ca2+ was detected in vacuoles,
reaching a situation similar to that of young microspores
or mature pollen. In conclusion, the storage of calcium in
vacuoles during heat shock exposure seems to be a cellular
response to reduce excessive concentration to safe cytosolic
levels.

Stress-Induced Calcium Perturbations Are
Not the Only Players Involved
A remarkable feature of microspore cultures is that all
microspores are initially exposed to the same in vitro conditions,
but not all adopt the same developmental pathway nor
present the same calcium patterns, as we demonstrated hereby.
Embryogenic microspores showed a dramatic rise during the
first stages, accumulating most of the Ca2+ in vacuoles, whereas
callus-like structures presented almost no calcium increase, being
always cytosolic, not vacuolar. In turn, pollen-like structures
showed either very scarce signal, which might indicate pollen
latency, or abundant peripheral signal associated in some cases
to morphological evidences of pollen germination. In vivo, this
calcium distribution pattern has been associated to germinating
pollen (Ge et al., 2007a), which confirms the pollen-like behavior
of these in vitro-induced structures. In summary, we showed
three defined calcium patterns associated to three developmental
fates, all triggered in adjacent cells exposed to identical stress
conditions. Thus, the question arises as to why there are different
responses to identical stimuli? First, it is possible that each
response (embryo-like, callus-like, or pollen-like) comes from
microspore/pollen grains at slightly different developmental
stages, and therefore with different calcium levels. Second, and
assuming that all microspores are at the same developmental
stage, this phenotypic plasticity may be explained because
calcium levels are not the only players involved in the responses.
According to Gilroy and Trewavas (2001), the levels and activity
of Ca2+ sensors and target proteins, among other elements,
are also important, and they may not be the same in all cells,
probably due to subtle physiological differences (even being at
the same microspore stage) which lead to minute differences in
transcript, protein, and/or enzyme profiles. This is why identical
stimuli may give rise to different Ca2+ perturbations which, in
turn, may lead to different developmental fates in two adjacent
microspores.
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Movie S1 | Early binucleated rapeseed pollen, just after the first pollen mitosis,

stained with FF.

Movie S2 | Embryogenic rapeseed microspore from a 1 day-old microspore

culture, stained with FF and aniline blue.

Figure S1 | Merged phase contrast and fluorescence images of a rapeseed lateral

root tip stained with 0.1 g/l FF. Bar: 40 µm.

Figure S2 | Freshly isolated (non-induced) rapeseed microspore and pollen

mixtures, stained with different FF working concentrations. Phase contrast (A–D)

and fluorescence (A′–D′) pairs of pictures are shown. (A,A′) Control with no FF

staining. (B,B′) Staining with 0.05 g/l FF. (C,C′) Staining with 0.1 g/l FF. (D,D′)

Staining with 0.2 g/l FF. Bars: 40 µm.

Figure S3 | FDA staining during in vivo microspore/pollen development in

rapeseed. Phase contrast (A–G) and fluorescence (A′–G′) pairs of pictures of a

tetrad (A,A′), young microspore (B,B′), mid microspore (C,C′), vacuolate

microspore (D,D′), young bicellular pollen (E,E′), mid pollen grain (F,F′), and

mature pollen grain (G,G′) are shown. Bars: 10 µm.
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