
METHODS
published: 07 July 2017

doi: 10.3389/fpls.2017.01190

Frontiers in Plant Science | www.frontiersin.org 1 July 2017 | Volume 8 | Article 1190

Edited by:

Julie A. Dickerson,

Iowa State University, United States

Reviewed by:

Ruth Welti,

Kansas State University, United States

Jin Chen,

University of Kentucky, United States

Jianlin Cheng,

University of Missouri, United States

*Correspondence:

Ian Stavness

ian.stavness@usask.ca

Specialty section:

This article was submitted to

Technical Advances in Plant Science,

a section of the journal

Frontiers in Plant Science

Received: 03 May 2017

Accepted: 22 June 2017

Published: 07 July 2017

Citation:

Ubbens JR and Stavness I (2017)

Deep Plant Phenomics: A Deep

Learning Platform for Complex Plant

Phenotyping Tasks.

Front. Plant Sci. 8:1190.

doi: 10.3389/fpls.2017.01190

Deep Plant Phenomics: A Deep
Learning Platform for Complex Plant
Phenotyping Tasks
Jordan R. Ubbens and Ian Stavness*

Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada

Plant phenomics has received increasing interest in recent years in an attempt to

bridge the genotype-to-phenotype knowledge gap. There is a need for expanded

high-throughput phenotyping capabilities to keep up with an increasing amount of

data from high-dimensional imaging sensors and the desire to measure more complex

phenotypic traits (Knecht et al., 2016). In this paper, we introduce an open-source deep

learning tool called Deep Plant Phenomics. This tool provides pre-trained neural networks

for several common plant phenotyping tasks, as well as an easy platform that can be

used by plant scientists to train models for their own phenotyping applications. We report

performance results on three plant phenotyping benchmarks from the literature, including

state of the art performance on leaf counting, as well as the first published results for the

mutant classification and age regression tasks for Arabidopsis thaliana.
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1. INTRODUCTION

The genotype-to-phenotype gap is one of the most important problems in modern plant
breeding (Houle et al., 2010; Großkinsky et al., 2015). While genomics research has yielded much
information about the genetic structure of various plant species, sequencing techniques and the
data they generate far outstrip our current capacity for plant phenotyping (Yang et al., 2014).
Traditional plant phenotyping tools, which rely on manual measurement of selected traits from a
small sample of plants, have very limited throughput and therefore prevent comprehensive analysis
of traits within a single plant and across cultivars. This so-called phenotyping bottleneck (Furbank
and Tester, 2011) limits our ability to understand how expressed phenotypes correlate with
underlying genetic factors and environmental conditions and has slowed progress in important
breeding problems such as drought resistance (Großkinsky et al., 2015).

Image-based techniques have potential to vastly increase the scale and throughput of plant
phenotyping activities. Through a combination of new imaging technologies, robotic and conveyer-
belt systems in greenhouses, and ground-based and aerial imaging platforms in fields, the capacity
to take pictures of plants and crops has expanded dramatically in the past 5 years (Fahlgren
et al., 2015b). However, a key requirement for image-based phenotyping tools is to automatically
transform those pictures into reliable and accurate phenotypic measurements. In addition, these
tools must be capable of measuring a wide variety of phenotypes to allow for flexibility and
relevance to a range of scientific applications.

It has been proposed that future progress in image-based plant phenotyping will require a
combined effort in the domains of image processing for feature extraction and machine learning
for data analysis (Tsaftaris et al., 2016). In the current machine learning literature, deep learning
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methods lead the state of the art in many image-based
tasks such as object detection and localization, semantic
segmentation, image classification, and others (LeCun et al.,
2015). Deep learning methods in computer vision, such as
deep convolutional neural networks, integrate image feature
extraction with regression or classification in a single pipeline
which is trained from end to end simultaneously (LeCun et al.,
1990). However, few deep learning applications have been
demonstrated in the plant phenotyping literature, and no general
purpose tools have been presented to the plant phenotyping
community to support and promote these methods.

In this paper, we present an open-source software platform,
Deep Plant Phenomics, which implements deep convolutional
neural networks for the purpose of plant phenotyping. We
demonstrate the effectiveness of our approach in three complex
phenotyping tasks described in the literature: leaf counting,
mutant classification, and age regression for top-down images
of plant rosettes. Our goal is to provide the plant phenotyping
community access to state-of-the-art deep learning techniques
in computer vision in order to accelerate research in plant
phenotyping and help to close the genotype-to-phenotype gap.

2. BACKGROUND

2.1. Image Analysis for Plant Phenotyping
Many image analysis tools have been released by the scientific
community for the purpose of performing image-based high-
throughput plant phenotyping (Hartmann et al., 2011; Fahlgren
et al., 2015a; Rahaman et al., 2015; Knecht et al., 2016). These
tools range in the degree of automation, as well as the types of
phenotypic features or statistics they are capable of measuring.
From an image analysis perspective, phenotypic features can be
categorized based on their complexity (Figure 1). Image-based
phenotypes can be broadly separated into those that are simply
linear functions of image pixel intensities or more complex types
that are non-linear functions of pixel intensities, which can be
either geometric or non-geometric descriptions.

Standard image processing pipelines have provided acceptable
results for measuring Linear phenotypic features (Figure 1)
under controlled experimental conditions. For example, biomass
can be estimated from shoot area by segmenting a plant
from a known background (Leister et al., 1999). Likewise,
accurate measurement of Normalized Difference Vegetation
Index (NDVI) (Walter et al., 2015), chlorophyll responses
(Campbell et al., 2015), and other simple features have been
demonstrated. Non-linear, geometric phenotypic features, such
as compactness and diameter of rosettes (De Vylder et al.,
2012), can be measured as a straight-forward processing step
after plant segmentation. However, simple image processing
pipelines tend to breakdown when faced with more complex
non-linear, non-geometric phenotyping tasks. Tasks such as
leaf/pod/fruit counting, vigor ratings, injury ratings, disease
detection, age estimation, and mutant classification add a
higher level of abstraction which requires a more complicated
image processing pipeline with several more steps such as
morphological operations, connected components analysis, and

others (Pape and Klukas, 2015). Not only is this process dataset-
specific and labor-intensive, the added complexity contributes
additional parameters and potential fragility to the pipeline.

In addition to being limited to simple features, existing
image-based phenotyping tools are often also only applicable
for processing pictures of individual plants taken under highly
controlled conditions, in terms of lighting, background, plant
pose, etc. Most tools rely on hand-engineered image processing
pipelines, typically requiring the hand-tuning of various
parameters. In some circumstances, hand-tuned parameters can
be invalidated by variation in the scene including issues like
lighting, contrast, and exposure (Li et al., 2014). As such, moving
existing image analysis tools out of the laboratory and into
the field, where lighting, background, plant overlap, and plant
motion cannot be controlled, may prove difficult.

Machine learning techniques, and deep learning in particular,
have potential to improve the robustness of image-based
phenotyping and extend toward more complex and abstract
phenotypic features. By creating high-throughput systems which
reach beyond basic phenotypic features, researchers will be able
to explore more complex phenotypes which may be useful for
genotype-phenotype association. For example, it has been shown
in the literature that a collection of automatically measured
phenotypes such as tiller count and plant compactness yielded
more trait loci in O. satvia than did manual measurements of
shoot weight and leaf area (Yang et al., 2014).

2.2. Deep Learning
In response to the limited flexibility and poor performance
of classical image processing pipelines for complex
phenotyping tasks, machine learning techniques are expected
to take a prominent role in the future of image-based
phenotyping (Tsaftaris et al., 2016). Plant disease detection
and diagnosis is an example of a complex phenotyping task
where machine learning techniques, such as support vector
machines, clustering algorithms, and neural networks, have
demonstrated success (Singh et al., 2016).

Deep learning is an emerging area of machine learning for
tackling large data analytics problems. Deep convolutional neural
networks (CNNs) are a class of deep learning methods which are
particularly well-suited to computer vision problems. In contrast
to classical approaches in computer vision, which first measure
statistical properties of the image as features to use for learning
a model of the data, CNNs actively learn a variety of filter
parameters during training of the model. CNNs also typically use
raw images directly as input without any time-consuming, hand-
tuned pre-processing steps. CNNs and their variants have been
shown to substantially out-perform classical machine learning
approaches for tasks such as handwriting recognition (LeCun
et al., 1990), image classification (He et al., 2016), and instance
detection and segmentation (Girshick, 2015).

Given the success in other areas, deep learning has
been proposed as a future trend in image-based plant
phenotyping (Tsaftaris et al., 2016). Early results from the few
studies that have applied the technique are promising: CNNs
were effective for plant disease detection and diagnosis (Mohanty
et al., 2016) and for classifying fruits and flowers of plants in field
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FIGURE 1 | A taxonomy of image-based plant phenotyping tasks. Phenotypes in (A,B) can be accurately measured using classical image processing techniques

(Fahlgren et al., 2015b), while those in (C) are complex phenotyping tasks requiring more sophisticated analyses.

images (Pawara et al., 2017). The performance of deep learning
in these contexts motivates the present work investigating deep
learning for other complex phenotyping tasks, such as leaf
counting and morphological classification.

2.3. Convolutional Neural Networks
A typical setup for a CNN uses a raw RGB image as input, which
can be considered as an n × m × 3 volume, where n is the
image height, m is the image width, and 3 is the number of color
channels in the image, e.g., red, green, and blue channels. The
architecture of a CNN is comprised of several different layers of
three main types: convolutional layers, pooling layers, and fully
connected layers. The initial layers in a network are convolutional
and pooling layers. The convolutional layers apply a series of
filters to the input volume in strided convolutions (Figure 2).
Each filter is applied over the full depth of the input volume, and
each depth slice in the layer’s output volume corresponds to the
activation map of one of these filters. For example, if padding
is applied at the boundaries of the image and with a stride size
of one pixel, the output of the convolutional layer will be an
n×m× k volume where n andm are the height and width of the
input volume, and k is the number of filters. The pooling layers
apply a spatial downsampling operation to the input volume, by
calculating the maximum (called max pooling) or mean (average
pooling) value in a pixel’s neighborhood.

After a series of convolutional and pooling layers, there
are typically one or more fully connected layers, including the
output layer. The input to the first fully connected layer is

the output volume from the previous layer, which is reshaped
into a large one-dimensional feature vector. This feature vector
is matrix-multiplied with the weights of the fully connected
layer, which produces pre-activations. After each convolutional
and fully connected layer (with the exception of the output
layer), a non-linear function (such as a sigmoid function or
Rectified Linear Unit) is applied to arrive at the final activations
for the layer. The output layer is a fully connected layer
without an activation function. In the case of classification,
the number of units in the output layer corresponds to the
number of classes. These values can then be log-normalized
to obtain class probabilities for classification problems. In the
case of regression problems, the number of units in the output
layer corresponds to the number of regression outputs (for
example, one output for leaf count, or four outputs for bounding
boxes).

As with other supervised methods, CNNs are trained via
an iterative optimization procedure to minimize the difference
between the network’s output and a known ground-truth label for
each input. A loss function (such as cross-entropy loss) compares
the output value (or values) of the network to the ground-truth
label. This results in a singular loss value, which is then back-
propagated through the network in reverse order. At each layer,
the gradient of the error signal with respect to each parameter
(in the weight matrix of the fully connected layers, or the filter
weights of the convolutional layers) can be calculated. These
parameters can then be adjusted by a factor proportional to this
gradient.
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FIGURE 2 | Example of filters in the first convolutional layer of a network being applied to the input image in stride convolutions.

3. METHODS

3.1. Software and Algorithm
We have created the Deep Plant Phenomics (DPP) platform as
an open-source, freely available tool for the plant phenotyping
community with the hope to accelerate research results in
the area of deep learning for advanced phenotyping. This
platform provides an accessible programming interface using
the Python language for training models to perform regression
and classification tasks, as well as offering pre-trained networks
for different plant phenotyping tasks. Deep Plant Phenomics
is available for download at https://github.com/usaskdapper/
deepplantphenomics. Detailed documentation describing
installation and usage of the platform is available in the software
repository. For the benchmark tasks discussed in the present
paper, we implement deep convolutional neural networks using
DPP.

DPP integrates Google’s open-source Tensorflow
computational library (Abadi et al., 2015). This allows the
platform to run on a variety of hardware, including CPUs
and GPUs, as well as CPU and GPU clusters. This seamless
extensibility from entry-level desktop computers to large
compute clusters is important for high-throughput phenotyping,
since throughput can be scaled to meet demand (Klukas
et al., 2014). The open-source PlantCV library (Fahlgren et al.,
2015a) is used in the platform to provide image processing
capabilities. The PlantCV module, in conjunction with a pre-
trained bounding box regression network, provides automatic
segmentation of images from Lemnatec plant scanners, as a

demonstration of the potential image processing applications of
the package. Multiple dataset loading functions are provided in
the platform, including loaders for bounding box coordinates
supplied in Pascal VOC format (Everingham et al., 2010),
regression and classification labels, CSV files, directories, as well
as loaders for the International Plant Phenotyping Network
(IPPN) phenotyping dataset (Minervini et al., 2014) and other
plant phenotyping datasets.

DPP includes pre-trained neural networks for the rosette leaf
counting task as well as the Arabidopsis mutant classification task
discussed here. These models can be applied to images with a
single line of code. In addition, new models trained using DPP
can easily be packaged for deployment in the same manner.

When training new models using the platform, there exists
support for DropOut layers (Srivastava et al., 2014), local
response normalization layers (Krizhevsky et al., 2012), data
augmentation options, data fusion for integrating image meta-
data, different optimization and weight initialization schemes,
multithreading, regularization, and other tools. These features
make the package a powerful and flexible learning platform
which can be suited to many phenotyping tasks.

3.2. Dataset and Tests
For the three experiments presented in this paper, the IPPN
image-based plant phenotyping dataset was used (Minervini
et al., 2015). This dataset includes multiple computer vision
benchmarks for tasks such as plant and leaf segmentation, leaf
counting, classification, and others. This image dataset has been
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extensively studied as it has been the subject of competitions in
leaf segmentation and leaf counting.

The IPPN dataset includes several different image sets
multiple contexts: images of individual plants, and trays
containing multiple plants. For the experiments described here,
we focus on the images of individual plants, which are subdivided
into three datasets—two datasets of Arabidopsis thaliana (A1,
A2) and one dataset of Nicotiana tabacum (tobacco) (A3). We
perform the leaf counting task on all three datasets, as well
as the mutant classification and age regression tasks on the
A2 Arabidopsis dataset for which ground truth is available. All
tasks use only the RGB images from each of the three datasets.
The sizes of each of the three datasets are 120, 165, and 62
examples, respectively. Examples from the A2 dataset show a
wide variation in image resolution, the size of the visual field,
as well as morphological differences such as leaf shape and size
(Figure 3). The number of leaves varies between five and twenty
leaves per plant for the Arabidopsis examples, and between two
and thirteen for the Tobacco examples. To determine the ground
truth for leaf counts, the authors of the dataset extrapolated the
count from human expert provided leaf segmentations for each
image. Further description of the dataset and the methodology
used in its construction is provided in the publication (Minervini
et al., 2015).

The phenotyping tasks evaluated in the present study
represent challenging traits to measure from images. Leaf
count is an important phenotype because of its correlation
with such features as yield, drought tolerance, and flowering
time (Minervini et al., 2015). This makes leaf count not only
distinct from shoot area or biomass, but a useful phenotype
in its own right. Mutant classification is related to identifying
morphological differences between plant varieties. While an
experiment may not explicitly want to classify mutants (as these
would already be known), classifying images of plants based
on morphological differences is important because the same

morphological changes to a plant that are observed (induced)
in a mutant may be relevant phenotypes for natural plants, i.e.,
the morphological changes present in certain mutants may be
caused by other pathways such as from pests or disease; therefore
mutant classification can be a demonstration of more challenging
disease classification that havemorphological features rather than
color, etc. Age regression, measured in hours after germination,
relates to plant maturity, which is an important phenotype in
plant breeding. While an experiment may not directly need to
estimate age, since it is known a priori, estimating the maturity
of different varieties is important. For example, which variety
matures earlier or more rapidly at certain growth phases.

In order to demonstrate that the proposed method is robust
to changes in scene lighting, an additional experiment was
performed on the A2 leaf counting dataset. In this robustness
experiment, the brightness and contrast of images in the test
were randomly adjusted. Since the model is also trained with
brightness and contrast adjustments as a form of augmentation
(detailed below), different parameters for this adjustment were
used to bring the distortions out of the range seen by the model
during training. During the training, brightness was modified
with a maximum delta of 63 and contrast was modified with a
lower range of 0.2 and an upper range of 1.8. For testing, the delta
for brightness was set to 75, and the lower and upper parameters
for contrast were set to 0.5 and 2.1, respectively.

3.3. Approach
Convolutional neural networks (CNNs) were constructed and
trained from scratch to perform each of the three benchmark
tasks. The structure of the network varied slightly between
tasks, as the model was tailored to the problem and the data
(Table 1). This tailoring of the architecture is not necessary;
however, we perform the modifications here in order to obtain
higher performance results and demonstrate the capabilities of
the method.

FIGURE 3 | Example images from the A2 dataset showing a range of diversity in image resolution, leaf size and shape, and leaf counts. (A) A low-resolution example

from the A2 dataset. The ground truth segmentation for the example shows nine leaves in total—the center of the rosette contains three separate leaves, which are

difficult to distinguish due to the lack of resolution. (B) A higher-resolution example from the A2 dataset, showing distinct boundaries between both the mature leaves

as well as the smaller leaves.
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TABLE 1 | The network architectures used for each of the phenotyping datasets

and tasks.

A1 A2 A3 Mutant Age

Input size 256 × 256 128 × 128 256 × 256 128 × 128 128 × 128

Conv 5 × 5 Conv 5 × 5 Conv 5 × 5 Conv 5 × 5 Conv 3 × 3

Pool 3 × 3 Pool 3 × 3 Pool 3 × 3 Pool 3 × 3 Pool 3 × 3

Conv 5 × 5 Conv 5 × 5 Conv 5 × 5 Conv 5 × 5 Conv 3 × 3

Pool 3 × 3 Pool 3 × 3 Pool 3 × 3 Pool 3 × 3 Pool 3 × 3

Conv 3 × 3 Conv 3 × 3 Conv 3 × 3 Conv 5 × 5 FC 2048

Pool 3 × 3 Pool 3 × 3 Pool 3 × 3 Pool 3 × 3 Output 1

Conv 3 × 3 Conv 3 × 3 Conv 3 × 3 Conv 5 × 5

Pool 3 × 3 Pool 3 × 3 Pool 3 × 3 Pool 3 × 3

Conv 3 × 3 Conv 3 × 3 Conv 3 × 3 FC 4096

Pool 3 × 3 Pool 3 × 3 Pool 3 × 3 DropOut (0.5)

Conv 3 × 3 Output 1 Conv 3 × 3 FC 4096

Pool 3 × 3 Pool 3 × 3 DropOut (0.5)

FC 1024 Output 1 FC 4096

Output 1 Output 5

Softmax

All pooling operations are max pooling with a stride of 2.

For the A2 leaf counting dataset, a convolutional neural
network was constructed with two 5 × 5 convolutional layers,
three 3 × 3 convolutional layers, and an output layer. Each
convolutional layer was followed by a max pooling layer with
a 3 × 3 spatial size and a stride of 2 pixels. The Xavier
(Glorot) initialization scheme (Glorot and Bengio, 2010) was
used in each case, with tanh used as the activation function.
Images were resized to 128 × 128 and cropped to 96 ×

96 randomly during training, and to center during testing.
For all experiments, the only pre-processing applied to the
images was per-image standardization, which subtracts the
mean from the image matrix and divides by the standard
deviation.

The A1 dataset includes only one accession of Arabidopsis
(Col-0), which tends to have smaller and more tightly packed
leaves. Therefore, we increased the input size to 256× 256 pixels
and added an additional 3 × 3 convolutional and pooling layer
to the network. We reduced the automatic cropping from 25 to
10% to avoid losing leaves near the edges of the image, as images
in this dataset seem to be more tightly cropped. We also added a
fully connected layer with 1,024 units. For the A3 dataset, we used
the same modifications as for the A1 dataset, with the exception
of the fully connected layer.

For the mutant classification task, the network used a feature
extractor comprised of four 5 × 5 convolutional layers, each
followed by a pooling layer as before. The output was fed into a
classifier with two fully connected layers, each having 4,096 units
and each followed by a DropOut layer (p = 0.5). We used a 128
× 128 input size, and the ReLU activation function in all layers.

The age regression network was comprised of two 3 × 3
convolutional layers, each followed by a max pooling layer, and
a single fully connected layer with 2,048 units. We retained the
128 × 128 input size and the ReLU activation function for this
task.

TABLE 2 | Mean (std) absolute difference for the three leaf counting benchmarks.

Giuffrida et al., 2015 Pape and Klukas, 2015 Proposed

A1 1.27 (1.15) 2.2 (1.3) 0.41 (0.44)

A2 2.44 (2.28) 1.2 (1.3) 0.61 (0.47)

A3 1.36 (1.37) 2.8 (2.5) 0.61 (0.54)

Performing deep learning with small datasets can be
particularly challenging, as small training sets can be easy
for a deep network to memorize, resulting in problematic
overfitting. This often results in low training error, but high
testing error. This discrepancy is termed the generalization
error. One way to protect against overfitting when performing
learning with images is to perform dataset augmentation. By
applying distortions to images in the training set with some
probability, the size of the training set is artificially but effectively
increased. In all experiments, brightness, contrast, cropping,
and flipping distortions were applied randomly to augment the
training set.

For testing, a random 80–20 train-test split was used in all
experiments. It is considered good practice to implement “early
stopping” during training, by withholding a portion of the dataset
(called the validation set) to test on and stopping training once
the network attains a certain level of performance on these
samples. This helps to prevent overfitting, where performance
on the test set may subsequently drop as training continues past
this point. Since the 80–20 split used by previous published
results does not include any validation set that could be used
to implement early stopping, we stop training after the training
loss appears to plateau. The gradient-adaptive Adam algorithm
was used for optimization in all experiments (Kingma and Ba,
2015).

4. RESULTS

The mean absolute difference results for the three different
leaf counting datasets are provided in Table 2 and detailed
histograms of errors are shown in Figure 4. We compared
the performance against a result from the literature using
an unsupervised machine learning method (Giuffrida et al.,
2015), and reproduced their comparison against a counting-
by-segmentation method from the literature (Pape and
Klukas, 2015). Unlike the authors of the cited studies, we
do not include results for training accuracy, because a deep
convolutional network with sufficient capacity is able to fit the
training data with an arbitrary degree of accuracy. We also do
not report the (non-absolute) count difference (CountDiff ),
which does not directly measure performance since over-
prediction and under-prediction are able to negate each
other. Training and testing curves for Arabidopsis leaf
counting, age regression, and mutant classification are shown in
Figure 5.

The mutant classifier model proved effective in distinguishing
between five different mutants of Arabidopsis, with a measured
96.88% mean test accuracy. This is an encouraging result, and it
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FIGURE 4 | Distribution of count errors for the three leaf counting datasets. The output of the regressor is not rounded in order to produce more granular bins.

(A) Single strain Arabidopsis leaf counting. (B) Multi-strain Arabidopsis leaf counting. (C) Tobacco leaf counting.

sets the baseline performance for this task as the first published
result.

For the age regression task, our model achieves a mean
absolute difference of 20.8 h with a standard deviation of 14.4 h.
The ground truth labels for this task range between 392 and
620 h. Like for the mutant classification task, this result is the first
published result for this task.

The results for the experiment investigating robustness to
variance in scene were a mean absolute difference of 0.64, with
a standard deviation of 0.51. These results are comparable with
the unmodified test set (Table 2) which suggests that the network
is indeed robust to changes in lighting conditions.

5. DISCUSSION

For the leaf counting task, the proposed method shows
significantly better performance on each of the three benchmark
datasets in terms of the absolute difference in count compared
to previous methods. In addition, both the mean and standard
deviation are more consistent between tasks using the proposed
method. Both results from the literature show significantly
degraded performance on a selection the three benchmark
tasks—multi-accession Arabidopsis for Giuffrida et al. (2015),
and both Col-0 Arabidopsis and tobacco for Pape and Klukas
(2015). In contrast, the proposed CNN method shows that it is
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FIGURE 5 | Example training (red) and testing (blue) curves for several benchmark tasks. (A) Multi-strain Arabidopsis leaf counting. (B) Tobacco leaf counting. (C) Age

regression. (D) Mutant classifier.

capable of learning representations of the training data which are
effective for each of the three datasets.

Tests with artificially modulated image brightness and
contrast demonstrate that the CNN method can be made
robust to changes in scene lighting conditions through
data augmentation during training. Therefore, the proposed
technique has better potential than classical image analysis
methods for translation to field phenotyping where scene
conditions are more variable, e.g., for measuring emergence
counts from aerial images of rosettes in field plots. It also means
that the method can be used in indoor environments such as
greenhouses, where the lighting modality cannot be controlled.

It is common to visualize the filters of the first convolutional
layer, since these filters often contain some interpretable structure
as they correspond to operations over the input image. Later

convolutional layers are more difficult to interpret, as they
correspond to abstract output from the previous convolutional
layer. Since the leaf counter network uses 5× 5× 3 filter weights,
not much interesting structure appears in the filter weights of the
first convolutional layer during training. However, by increasing
the filter size to 11× 11× 3, some interesting structure appears in
these filters (Figure 6). The trained filters result in mostly green
and violet pixels. Violet pixels respond to high values in the red
channel and low values in the green channel; therefore, it is likely
that the presence of leaves is being suppressed in these regions of
the receptive field.

It is noteworthy that both previous leaf counting algorithms to
which we compare our method (Table 2) require pre-segmented
plant images, and presumably the performance of their algorithm
is dependent on the accuracy of this segmentation. In contrast,
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FIGURE 6 | Visualization of filter weights in the first convolutional layer of a leaf

counting network.

the CNN technique requires no such pre-processing and only the
raw RGB images are required as input. The authors of the dataset
describe the inputs to the age estimation task to be the RGB
images as well as the labels for mutant type; however, we use only
the RGB images and rely on the network to learn representations
which are robust to differences in growth rate between mutants.
Experiments using the mutant labels actually performed worse,
as it allowed the network to use the label to fit the training
data more aggressively and this was detrimental to generalization
performance.

The advantage of supervised learning methods over hand-
engineered image analysis techniques in tasks such as leaf
counting is their capacity for complex representation learning.

For example, a hand-engineered image processing pipeline must
be designed to accommodate leaves of different shapes and
sizes (for plants of different ages and genotypes), leaves with
different length petioles, as well as partially overlapping leaves.
A supervised representation learning algorithm such as a CNN
is capable of automatically learning a representation of the data
which takes into account all of these factors, and any others which
are present in the training data.

Although designing CNN architectures requires less hand-
engineering than image processing pipelines, the process is
not completely automated. Building a network architecture
to perform any computer vision task involves some iterative
optimization in two areas: the number and size of network
layers, and the values of hyperparameters such as learning rate
and regularization strength. For hyperparameter tuning, some
automated methods are available such as simple grid search and
Bayesian optimization (Snoek et al., 2012). Although training a
CNN requires such considerations, it is less cumbersome than
tuning the alternative image processing pipeline. For example,
the leaf counting pipeline described in Pape and Klukas (2015)
contains 14 discrete image processing steps, the majority of them
having tuneable parameters such as noise area limit and gap fill
size limits.

There are several promising directions for future research
for which DPP software development is ongoing. Support for
additional types of network architectures, such as Residual
Networks (He et al., 2016), may offer more utility for future
applications. Detection and localization of plants and leaves, a
natural progression to the leaf counting regression discussed
in this paper, could be made possible with architectures such
as Fast-RCNN (Girshick, 2015). In addition, implementing
recurrent models such as Long Short Term Memory (LSTM)
networks (Hochreiter and Schmidhuber, 1997) would allow for
the prediction of temporal features such as growth rate, which
are an important class of features. Implementing transfer learning
in the platform has the potential to provide higher accuracy and
lower training times. Transfer learning involves starting with
a network pre-trained on large datasets, such as the ImageNet
database (Deng et al., 2009), and then fine-tuning the network
with a smaller set of images tailored to the task of interest, e.g.,
rosette images. This technique is widely accepted in the literature
for bootstrapping the learning process, and has proven successful
in plant disease diagnosis (Mohanty et al., 2016).

Although the DPP platform has only been tested with
data collected in a controlled environment, further testing
can be done to explore applications with outdoor, field-level
applications. There are also opportunities to test the performance
of the system on larger datasets, such as those collected
from automated greenhouses. Finally, we look forward to the
applications, collaborations, and suggestions put forward by the
plant phenotyping community as the platform matures.

6. SUMMARY

In this work, we introduced a deep learning platform for
image-based plant phenotyping called Deep Plant Phenomics.
We demonstrated its effectiveness by performing three image-
based phenotyping tasks from the literature. Our approach

Frontiers in Plant Science | www.frontiersin.org 9 July 2017 | Volume 8 | Article 1190

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Ubbens and Stavness Deep Plant Phenomics

achieved state of the art performance on the leaf counting task
and set baseline results for the mutant classification and age
regression tasks. The software has been released as an open-
source package, with the goal of promoting the use of deep
learning within the plant phenotyping community.
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