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Plant disease and pests influence the physiological state and restricts the healthy

growth of crops. Physiological measurements are considered the most accurate way

of assessing plant health status. In this paper, we researched the use of an in situ

hyperspectral remote sensor to detect plant water status in winter wheat infected with

powdery mildew. Using a diseased nursery field and artificially inoculated open field

experiments, we detected the canopy spectra of wheat at different developmental

stages and under different degrees of disease severity. At the same time, destructive

sampling was carried out for physical tests to investigate the change of physiological

parameters under the condition of disease. Selected vegetation indices (VIs) were mostly

comprised of green bands, and correlation coefficients between these common VIs

and plant water content (PWC) were generally 0.784–0.902 (p < 0.001), indicating the

green waveband may have great potential in the evaluation of water content of winter

wheat under powdery mildew stress. The Photochemical Reflectance Index (PRI) was

sensitive to physiological response influenced by powdery mildew, and the relationships

of PRI with chlorophyll content, the maximum quantum efficiency of PSII photochemistry

(Fv/Fm), and the potential activity of PSII photochemistry (Fv/Fo) were good with R2

= 0.639, 0.833, 0.808, respectively. Linear regressions showed PRI demonstrated a

steady relationship with PWC across different growth conditions, with R2
= 0.817 and

RMSE = 2.17. The acquired PRI model of wheat under the powdery mildew stress has

a good compatibility to different experimental fields from booting stage to filling stage

compared with the traditional water signal vegetation indices, WBI, FWBI1, and FWBI2.

The verification results with independent data showed that PRI still performed better

with R2
= 0.819 between measured and predicted, and corresponding RE = 8.26%.

Thus, PRI is recommended as a potentially reliable indicator of PWC in winter wheat

with powdery mildew stress. The results will help to understand the physical state of

the plant, and provide technical support for disease control using remote sensing during

wheat production.
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INTRODUCTION

Climate change is affecting crop disease prevalence, significantly
influencing crop yield and quality worldwide (Christou and
Twyman, 2004; Strange and Scott, 2005). Spectral remote sensing
technology is used as a rapid, non-destructive, efficient method
for detecting crop disease and evaluating the spatial variability
across a crop (Liu et al., 2009). Effective evaluation of crop
disease, accurate diagnosis and effective management is of great
importance.

Disease stress generally results in changes in plant biomass
and leaf structure, and a reduction in chlorophyll and water
content. Blade shape and internal structural changes caused
by disease ultimately change the reflective spectrum curve of
plants (Jackson, 2003). Several techniques have been developed
for detecting crop disease, such as fluorescence spectroscopy
(Sindhuja et al., 2010), and remote sensing (Zhang et al., 2005;
Sankaran et al., 2010; Dammer et al., 2011; Usha and Singh, 2013).
Band combinations from hyperspectral imaging have generally
been applied to detect plant disease (Larsolle et al., 2007). Several
studies have shown that the most sensitive bands for crop disease
identification are commonly located in the visible and the near
infrared region (Wang et al., 2002; Bravo et al., 2003; Cheng
et al., 2010), however, the optimal sensitive wavebands depend
on how the disease interacts with a specific crop species (Mahlein
et al., 2013). Green bands can effectively monitor yellow rust at
wheat canopy level (Huang et al., 2007; Zhang et al., 2012b).
Previous studies have revealed the role of red-edge, green, and
blue bands to detect laurel wilt on avocado (Castro et al., 2015).
Some studies established different vegetation indices (PMI, PRI,
DGVI) to establish plant disease severity (Huang et al., 2007;
Mahlein et al., 2013; Feng et al., 2016). Other studies applied
multivariate analysis tools to detect spectral changes and disease
development, such as neural networks (Castro et al., 2012),
partial least squares regression (Zhang et al., 2012a,b, 2014),
factor analysis and back propagation neural network (Shen et al.,
2015b). Above studies showed that different spectral analysis
methods canmonitoring plant disease on a real-time basis, which
could provide a theoretical platform for precise control of pests
and diseases.

During pathogenic attack, enzyme activity is released to
hinder the pathogen, cell energy metabolism and function is
affected, and the internal physiological state of the plant and
leaf changes. The spectral reflectance after pathogenic attack
increases at visible and short-wave infrared, and reduces at the
near infrared band; the typical spectral characteristics differ
greatly with a healthy crop (Cheng et al., 2010; Zhang et al.,
2012a). Previous research on disease severity levels focus less
on the plant physiological state. Liu et al. (2014) used a
simple ratio of reflectance at 890–780 nm in the near-infrared
shoulder region for evaluating blade structure deterioration
under herbicide injury or stripe rust in winter wheat. Feng
et al. (2013) research showed that the Normalized Difference
Angle Index (NDAI) was reliable for estimating changes in
chlorophyll density following infection of the wheat canopy. Xu
et al. (2011) and Chen et al. (2010) continued to estimate the
changes in chlorophyll content under disease and insect infection

in plants. These findings suggest that remote identification of
plant physiological parameters after infection is feasible, and is
a rapid and convenient evaluation of the physiological response
to crop disease.

There has been great progress on monitoring plant water
status using remote sensing mostly based on the water sensitive
absorption band signal from hyperspectral remote sensing data.
The fixed-positionWater Band Index (WBI) positively correlates
with water content in beans (Xu et al., 2007), and the Floating-
position Water Band Index (FWBI) has been shown to correlate
with area-weighted water content of leaf in corn (Strachan
et al., 2002). Meanwhile, some researchers estimated the water
status of plants, not based on the moisture absorption band,
but xanthophyll cycle pigments related to heat dissipation. The
Photochemical Reflectance Index (PRI) has been proposed to
evaluate vegetation water stress at the leaf level (Penuelas et al.,
1997b; Suárez et al., 2008, 2010; Neues et al., 2009; Zarco-
Tejada et al., 2012). Nevertheless, Thenot et al. (2002) revealed
PRI sensitivity to water stress conditions, despite the structure
effect caused by water pressure affecting the reflected signal.
Dobrowski et al. (2005) and Evain et al. (2004) shows that PRI
can accurately track induced water stress conditions. The studies
were carried out under abiotic stress to estimate vegetation
water content using spectroscopy technology. However, under
biological stress, the plant physiological state will significantly
change, for instance, bacterial plaque coverage, increased leaf
yellowing, canopy structure destruction, altering the signal.
Therefore, the WBI may not be suitable for testing the dynamics
of moisture under abiotic stress which require xanthophyll cycle
pigments to detect moisture.

This study aims to evaluate the potential for using PRI as an
indirect indicator of plant water content (PWC) at canopy scale
in winter wheat under powdery mildew stress. The objectives of
this study were to (1) analyze the traditional water vegetation
indices (VIs) to determine canopy PWC of winter wheat in a
diseased field and artificially inoculated open field; (2) assess
the response of leaf chlorophyll content (Chl content) and
PWC under powdery mildew stress; (3) quantify the relationship
between PRI and disease index (DI), leaf Chl content, and
fluorescence parameters and (4) evaluate themethod using PRI to
measure water conditions under powdery mildew stress based on
the ground-based canopy hyperspectral technology. The results
will provide a basis for disease grading and classification, and
further provide technical support for early recognition and
precise control during crop production.

MATERIALS AND METHODS

Experimental Design
These experiments were conducted in the wheat growing seasons
of 2014–2016, located in Zhengzhou, China. The powdery
mildew susceptible varieties, Yanzhan 4110, was selected as
the test material. The field site consisted of loam soil. The
0–30 cm soil basic indicators were total N 0.97–1.20 g kg−1,
available phosphorus 28.44–34.52mg kg−1, available K 114.68–
120.12mg kg−1, and organic matter 10.2–15.7 g kg−1 pre-
planting. Nitrogen fertilizer application (135 kg hm−2 nitrogen)
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in the study plots was higher (12.5%) than the local field practice,
plus 120 kg hm−2 P2O5, and 90 kg hm−2 K2O as basic fertilizer.
A second dose of nitrogen fertilizer (135 kg hm−2 nitrogen) was
combined with the irrigation at the jointing stage. The study plots
were watered 3 times at the jointing stage, booting stage, and
flowering stage, and the corresponding local fields were watered
2 times at jointing stage and flowering stage. Other aspects of
field management followed standard local practices for wheat
production.

Experiment 1 was carried out at a diseased nursery field
located in the experimental station of National Engineering
Research Center for Wheat, (34◦47′ N, 113◦39′ E). Wheat was
sown on 22 October 2014, in the north-south direction with 20
cm row spacing, and the area of the plot was 8.2 m2 (2.1 × 4
m). Experiment 2 was carried out at an open field located in
the experimental farm of Henan Agricultural University (34◦51′

N, 113◦35′ E). Wheat was sown on 15 October 2014, and
each plot area was 20.3 m2 (7 × 2.9 m) during the 2014–
2015 growing season. There were four disease treatments with
three replications. The healthy treatment was not inoculated, the
low level treatment was inoculated every 4 days, the medium
level was inoculated by every 2 days, and the severe treatment
were inoculated every day. Experiments 3 and 4 were repeated
trials of Experiments 1 and 2 at the same location in the
following year. Wheat was sown on 22 October 2015 and
12 October 2015, respectively, during the 2015–2016 growing
season. To avoid powdery mildew cross-contamination between
plots, powdery mildew resistant triticale was sown between
experimental plots. Each plot was divided by a 0.6m spacing
which contained two rows of triticale. Triticale has a plant height
of 2 m. The data from Experiments 1–3 were used to build the
model and the independent Experiment 4 was used to test the
model.

Infected plants with soil were excavated and placed into
prepared pots (18 cm in diameter, 15 cm in height) for
inoculating the field experiments from the jointing stage.
After 16:00, infected plants with powdery mildew fungi were
brought to the inoculated field. The infected plants were shaken
above the experimental plot to infect the wheat and then the
infected plants were placed in the center of the experimental
plots. The inoculated plot was covered with a transparent
shed which remained open in the day and closed at night;
the inside of shed was kept moist and the temperature at
night was 10◦C. After 10 days, symptoms began to appear,
and once the wheat infection became obvious during the
late jointing stage, the shed was removed. The meteorological
data during powdery mildew infection are shown in Figure 1.
Rainfall in 2015 was higher than in 2016, especially in April
(corresponding to the booting and flowering stage of wheat)
and May (corresponding to filling stage of wheat), which is
conducive with the occurrence and spread of wheat powdery
mildew. The key growth period of wheat is shown in Figure 2.
A representative area in each plot was selected to investigate
the severity of the disease, measure the reflectivity of the
canopy and chlorophyll fluorescence parameters, and determine
plant chlorophyll content at booting stage, anthesis, and filling
stage.

FIGURE 1 | Meteorological data of March to May in 2015–2016 under our

experimental area.

FIGURE 2 | Pictures of the different developmental stages of the infected

winter wheat; jointing (left upper), booting (right upper), anthesis (left

lower), and filling (left lower).

Data Collection
Measurement of In situ Canopy Reflectance

Spectrum
Wheat canopy reflectance spectra were measured by FieldSpec
HandHeld spectrometer (Analytical Spectral Devices Inc.,
Boulder, Colorado, USA) over 350–2,500 nm spectral region, at
0.5m above the wheat canopy with a field of view of 25◦ (Cao
et al., 2013), and a spectral sampling interval of 1.4 nm for the
350–1,050 nm region and 2 nm for the 1,000–2,500 nm region.
Each spectrum measurement was carried out under sunny and
windless conditions at 10:00–14:00 local time. For each sampling
point, a view area of ∼0.17 m2 of wheat canopy was selected to
measure canopy reflectance spectra, five sequential readings were
averaged to obtain one spectrum, and to analyze biochemical
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and biophysical canopy features. Instrument optimization was
performed prior to sample acquisition, with the average of 50
dark current and white reference, respectively. A white BaSO4

calibration panel was taken before canopy measurements to
calculate baseline reflectance. DC measurement can be updated
at any time, but should be updated more frequently in the
beginning of a given session, as the instrument warms up.
Finally, reflectance spectra were obtained by determining the
ratios of data acquired for a sample to data acquired for the white
reflectance standard.

Measurement of Chlorophyll Fluorescence

Parameters
Chlorophyll fluorescence parameters were measured on the
level of single leaves using a modulated fluorimeter (MiniPAM
Photosynthesis Yield Analyser, Walz, Effeltrich, Germany).
Fluorescence parameters were measured at 10:00–11:30 local
time. The minimum fluorescence (Fo) was induced by a weak
pulse of modulating light applied (<0.3 µmol photons m−2

s−1), which ensured that almost all the PSII reaction centers
were in the open state. The maximum fluorescence (Fm) was
determined by saturating pulse light of 8,000 µmol photons
m−2 s−1 over a 0.8 s period (reaction centers fully closed).
Both the values of Fo and Fm were measured on a leaf under
full dark-adaptation for 30 min. The difference between Fm
and Fo generated the variable fluorescence (Fv, Fv = Fm−Fo).
The maximum quantum efficiency of PSII (Fv/Fm, Fv/Fm =

(Fm−Fo)/ Fm) has been widely used as a sensitive indicator
of plant photosynthetic performance (Shirke and Pathre, 2003)
and detect stress-induced perturbations in the photosynthetic
apparatus (Baker and Rosenqvist, 2004). The maximum primary
yield of photochemistry of PSII (Fv/Fo, Fv/Fo = (Fm−Fo)/ Fo),
showed a close relationship with Fv/Fm (Li et al., 2006; Sharma
et al., 2014). The Fv/Fo has been interpreted as an indicator of the
structural alterations on the donor side of the PSII (Christen et al.,
2007), and it decreased with increasing of temperature (Janka
et al., 2013), drought stress (Li et al., 2006), aluminum stress
(Peixoto et al., 2002) and nitrogen deficiency (Lima et al., 1999).

Assessment of Disease Index
In each spectral test location, 20 plants of wheat were randomly
selected to measure the incidence of wheat powdery mildew. To
reduce human error, all the tests were conducted by the same
person under the guidance and supervision of professionals who
major in plant protection.

The severity of all fully expanded leaves was used to indicate
the incidence condition of the sampling point, and the grid
method (lesion area to total fully expanded leaf area percentage)
to calculate the severity of powdery mildew. Powdery mildew
severity was divided into nine grades, as follows: 0, 1, 10, 20, 30,
45, 60, 80, and 100%. The DI was computed using the following
formula (Cai et al., 2007).

DI =

∑

xf

n
∑

f
× 100

Here, x is the value of each incidence level, n is the value of the
highest level (n = 9) of powdery mildew incidence, and f is the
value of total leaves in each level of disease severity.

Measurement of Leaf Chlorophyll Content and Plant

Water Content
Physiological data measurements were required at the spectral
sampling points. After each canopy spectral reflectance and leaf
chlorophyll fluorescence measurement, 10 plants from each plot
were selected randomly and destructively sampled for plant fresh
weight (WF). The sample was then denatured at 105◦C for 30min
and at 80◦C until a constant weight (dry weight, WD). PWC was
calculated using the method of weight ratio (Jones et al., 2004):

PWC(%) = (WF −WD)/WD×100

For each treatment, three wheat stems showing typical symptoms
were selected. From these three stems, nine leaf samples were
taken from the second, third and fourth leaf from the top of
wheat plant. The veins were removed and 0.2 g cut from each
sample. The samples were ground with 10 ml acetone at 80%,
before adding 40 ml acetone to a total of 50 ml in a brown
volumetric flask. These flasks were stored in the dark at 4◦C for
48–72 h, ensuring complete chlorophyll extraction. Absorption
was measured at 470, 649, and 665 nmwith a spectrophotometer.
The average value of three replicates was used to calculate
the concentrations (mg/g fresh leaf mass) of leaf chlorophyll a
and chlorophyll b using the formula described by Lichtenthaler
(1987).

Data Analysis
Several spectral indices previously reported in the literature
were selected to check the correlation with PWC; optimized
VIs are listed in Table 1. The best equations were established
between physiological parameters, DI and spectral parameters
by regression under powdery mildew stress of wheat. Equation
evaluation was optimized through R2 and a self-developed
computer program based on the software of MATLAB 7.0. Data
from Experiments 1–3 were used to establish the relationship
between the spectral indices and PWC. Data from Experiment
4 were used to validate the PWC monitoring models; the
estimated values were compared with the measured values to
assess reliability and accuracy of the equation output under
actual conditions. Root mean square error (RMSE), relative error
(RE), and precision (R2, the determination coefficients between
the measured and estimated values) were applied to check the
applicability between the estimated and measured data. RMSE
and RE obeyed the following Equations (1) and (2), respectively:

RMSE =

√

√

√

√

1

n
×

n
∑

i=1

(Pi − Oi)
2 (1)

RE(% ) =

√

√

√

√

1

n
×

n
∑

i=1

(
Pi − Oi

Oi
)× 100% (2)
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TABLE 1 | Summary of selected spectral parameters reported in the literature.

Spectral parameters Formula or depiction References

Water band index(WBI) WBI = R950/R900 Xu et al., 2007

Floating-position water band index (FWBI1) FWBI1 = R900/min (R930−980 ) Strachan et al., 2002

Floating-position water band index (FWBI2) FWBI2 = R920/min (R960−1000 ) Harris et al., 2006

Visible atmospherically resistant index (VARIgreen) VARIgreen =

(RGreen-RRed)/(RGreen+RRed−RBlue)

Gitelson et al., 2002

Simple Ratio Pigment Index (SRPI) SRPI = R430/R680 Penuelas et al., 1994

Ratio vegetation index (RVI) RVI = R493/R678 Tilley et al., 2003

Ratio index of the double-peak areas (RIDA) RIDA =
∫ 755
k

dRλ
dλ

dλ/
∫ k
680

dRλ
dλ

dλ Feng et al., 2014

Red green ratio chlorophyll content (RGRcn) RGRcn=(R612+R660)/(R510+R560 ) Steddom et al., 2003

Lomin corresponding wavelength of minimum band

reflectance ranging from 640 to 680 nm

Chen et al., 2011

Anthocyanin index (AI) AI = R(600−699)/R(500−599) Gamon and Surfus, 1999

R705/(R717+R491 ) R705/(R717+R491) Tian et al., 2011

Photochemical reflectance index (PRI) PRI = (R570−R531 )/(R570+R531 ) Gamon et al., 1992

R is the reflectance at a given wavelength. For example, R900 is the spectral reflectance value at 900 nm.

Where, Pi and Oi are the estimated and measured values,
respectively, and n is the sampling number. Estimation was
superior if RE < 10%, good if RE = 10–20%, and acceptable if
RE= 20–30% (Feng et al., 2014).

RESULTS

Canopy Reflectance Spectra with Different
Stages and Disease Indexes
The canopy reflectance was distinctly different at each growth
period and disease severity (Figure 3). The initial symptoms of
the disease occurred mainly in the lower portion of the plant.
With disease progression, symptoms began to appear obvious
in middle and upper layers. Generally, with increasing growth
period, the reflectance tended to increase in the visible region
and initially increased then decreased in the near-infrared region
(Figure 3A). The severity of the powdery mildew affected the
reflectance spectra of the canopy similar to the growth stages
in the visible region, but decreased reflectance in the near-
infrared wavebands as the disease worsened (Figure 3B). By
comparison, visible wavebands are more sensitive to disease
severity than near-infrared wavebands, and sensitive wavebands
are mainly between 500 and 670 nm. Increased canopy coverage
and strong chlorophyll absorption resulted in a decrease in
canopy reflectance in the visible region. Reflectance in the near-
infrared region may have been caused by Sphaerotheca fuliginea
cover on the leaf surface, structural damage of the leaf surface,
yellowing and decreased water content, etc.

Relationship between Traditional Water
Band Index and Plant Water Content
To understand whether the reported water band indices
effectively monitored the water dynamic change under disease
stress in winter wheat, we performed correlation between
representative water indicator and PWC at booting, anthesis,
and filling stage using data from Experiments 1–3 (Table 2). The

linear relationships of WBI, FWBI1 and FWBI2 to PWC were
relatively poor (R2 = 0.38–0.49) across each developmental stage
used for reflectance data acquisition (Figure 4). Furthermore,
individual regression analysis was conducted using specific
growth period datasets. The accuracy of the regression model
was significantly affected by developmental stage. The three
typical water indices showed significantly different correlation
with PWC at different growth stages (R2 = 0.41–0.64). These
water band indices were linearly correlated with PWC at the
booting stage (R2 = 0.60–0.64), but less so at flowering and
filling stages (R2 = 0.41–0.53 at flowering stage; 0.42–0.44 at
filling stage). Typical water band indices were unsuitable across
different stages for detection of water status under powdery
mildew stress, and this may be due to significant superimposed
effects from physiological and biological changes under biotic
stress, and which requires us to seek out efficient indicator of
physiological parameters under disease stress.

Correlation between Common Vegetation
Indices and Plant Water Content
Previous VIs were developed mostly under abiotic stress. Nine
out of the 12 published VIs in Table 1 were not combination
with water absorption wavebands, and then selected to examine
estimation strength of PWC using MATLAB 7.0 software. These
nine VIs were significantly correlated with PWC using whole
datasets, single stage datasets or single experiment datasets
(Table 2). This correlation analysis showed that PRI was superior
to other common indices in terms of accuracy and ability to track
PWC changes in winter wheat under disease stress. Population
correlation coefficient of PRI and PWC was 0.902 (p < 0.001).
The four VIs of SPRI, RGRcn, RIDA and RVI (493,678) were
followed to give better correlation (r > 0.8).

Since the collected data was from two different types of
test systems and three growth stages, correlation between VIs
and PWC varied according to different growth conditions. By
comparison, correlation in Experiment 1 was better than the
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FIGURE 3 | Canopy reflectance spectra for the different infected developmental stages (A) and for different disease index of powdery mildew at anthesis (B).

TABLE 2 | Correlation coefficients between canopy spectral parameters and plant water content (PWC) of winter wheat infected with powdery mildew.

Spectral parameters Experiment Growth Stages All

Exp. 1 Exp. 2 Exp. 3 Booting Anthesis Filling

WBI 0.645*** 0.764*** 0.665*** 0.781*** 0.724*** 0.660*** 0.681***

FWBII 0.685*** 0.783*** 0.635*** 0.799*** 0.716*** 0.652*** 0.696***

FWBI2 0.571** 0.702*** 0.618*** 0.748*** 0.799*** 0.650*** 0.618***

VARIgreen 0.864*** 0.752*** 0.822*** 0.492* 0.754*** 0.771*** 0.789***

SRPI 0.845*** 0.75*** 0.811*** 0.582** 0.567*** 0.811*** 0.819***

RVI(493,678) 0.877*** 0.708*** 0.734*** 0.541** 0.678*** 0.828*** 0.803***

RIDA 0.893*** 0.883*** 0.653*** 0.375 0.633*** 0.735*** 0.802***

RGRcn 0.861*** 0.776*** 0.835*** 0.566** 0.741*** 0.747*** 0.816***

Lomin 0.913*** 0.902*** 0.636*** 0.521* 0.714*** 0.733*** 0.792***

AI 0.884*** 0.769*** 0.809*** 0.413 0.741*** 0.727*** 0.793***

R705/(R717+R491 ) 0.886*** 0.813*** 0.654*** 0.633** 0.659*** 0.775*** 0.784***

PRI 0.917*** 0.835*** 0.853*** 0.815*** 0.869*** 0.922*** 0.902***

*p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 4 | Relationship between (A) WBI, (B) FWBI1, and (C) FWBI2 with PWC. Data points from Experiments 1–3 (n = 82).

other two experiments, and correlation at booting stage was
poorer than the other two stages. For example, at booting stage,
both RIDA and AI with PWC show no significant correlation at
the 0.05 probability level (r < 0.413), VARIgreen and Lo with

PWC were generated the weakest significance correlation at the
0.05 probability level (r < 0.521), and other VIs with PWC gave
higher significance correlation at the 0.01 probability level (r <

0.815). As shown in Figure 5, the regression equations for PWC
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FIGURE 5 | Relationship between PWC and PRI. Data points from

Experiments 1–3 (n = 82).

with PRI well illustrates the dynamic pattern of PWC changes
in winter wheat which suffer from powdery mildew with R2

values of 0.817 and RMSE of 0.217, minimizing the possible
heterogeneity from different growth stages.

The Effects of Disease Severity on Plant
Water Content and Leaf Chlorophyll
Content
Disease stress affected crop physiological processes in a complex
way, and the linear regression showed that physiological
parameters of PWC and Chl content are sensitive to disease
severity in winter wheat. When suffering from powdery mildew
damage in winter wheat, the early symptoms are not obvious;
formation of suborbicular disease spot, and the physiological
process only change slightly. With increasing disease, wheat
growth parameters take on significant changes with reduction of
biomass and deterioration of leaf tissue structure. Figure 6 shows
the close relationship between growth parameters and disease
severity, with R2 values of 0.767 for PWC and 0.675 for Chl
content, indicating serious and stable effects of disease severity
on PWC and leaf Chl content in winter wheat.

Relationship between Photochemical
Reflectance Index and Disease Index,
Chlorophyll Content and Fluorescence
Parameters
The infection of powdery mildew not only affected wheat growth
parameters, but also lead to change in canopy reflectance. As
shown in Figure 7A, PRI gradually increased with increasing
disease severity; there was a significant positive correlation
with R2 of 0.649. However, PRI showed a significant negative
correlation with Chl content of R2 = 0.639 (Figure 7B).
Chlorophyll fluorescence is an important parameter to assess
photosynthetic apparatus, particularly PSII activity in response
to environmental stresses. A negative correlation was found

between PRI and chlorophyll fluorescence parameters in wheat
leaves, with an R2 of 0.833 for Fv/Fm (Figure 7C) and
0.808 for Fv/Fo (Figure 7D). This close linear relationship
between chlorophyll fluorescence parameters and PRI showed
a homogeneous pattern between efficiency of solar energy
utilization and photochemical activity of PSII system, indicating
that PRI agreed well with photosynthetic capacity of plants under
powdery mildew stress.

Testing Photochemical Reflectance Index
and Plant Water Content Relationship
Model
The monitoring model of PWC has been set up through
hyperspectral indices from remote sensing data, yet further
examination is required on the reliability and generalization of
the PRI-PWC regression equation using the independent dataset
obtained from Experiment 4 (n = 52). The 1:1 relationship
between the observed and estimated values confirmed the
accuracy of the derived model (Figure 8). The R2 values between
measured and estimated PWC were 0.819, generating RMSE of
5.62 and RE of 8.26%, and the predicted values were in general
higher than the measured values. The above results suggest that
the PRImodel performs better for detecting PWCunder powdery
mildew stress.

DISCUSSION

The sensitivities of the visible and near-infrared wavebands to
the disease were different depending on disease type (Mahlein
et al., 2013). Studies have shown that the change of spectral
reflectance was more obvious in visible wavebands than in the
near-infrared wavebands under disease stress (Cheng et al., 2011;
Zhang et al., 2011). The first symptom of powdery mildew
infection is formation of suborbicular disease spot; as the disease
develops, the leaf surface becomes covered by a layer of the
mold (Allen, 1942). Following powdery mildew infection, wheat
growth parameters change significantly with a decrease in dry
matter accumulation, Chl content and moisture content, as well
as deterioration of leaf tissue structure. However, crop canopy
reflectance showed a steady increase in the red wavebands
(Cheng et al., 2010; Chen et al., 2011). The spectral reflectance
demonstrated a strong correlation with disease severity, and
sensitive wavebands were mostly located in the green region
(510–570 nm). Green light intensity increased due to the
mycelium covering the crop surface (Graeff et al., 2006; Mahlein
et al., 2013; Shen et al., 2015a) and a reduction in both chlorophyll
content and light interception (Feng et al., 2016). In this study,
correlation between disease severity with PWC and Chl content
was significantly negative (R2 > 0.67). Although, 900–970 nm
is the most sensitive band range of water absorption in near-
infrared regions (Penuelas et al., 1993), the traditional water VIs
asWBI, FWBI1, FWBI2 were unsuitable to detect the water status
under powdery mildew stress. In this paper, relationships of the
above three indices to water content possessed a weak correlation,
and the precision was greatly reduced (R2 < 0.5). This may be
due to a mixture phenomenon of physiological signal coverage
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FIGURE 6 | Relationship between (A) PWC, (B) leaf chlorophyll contents and disease index (DI) in winter wheat. Data points from Experiments 1–3 (n = 82).

FIGURE 7 | Relationship between DI (A), leaf chlorophyll contents (B), Fv/Fm (maximum photochemical efficiency of PSII) (C), Fv/Fo (potential activity of PSII) (D), and

the photochemical reflectance index (PRI) in winter wheat. Data points from Experiments1–3.

and then confuse water absorption signal on canopy spectra
under powdery mildew stress. Therefore, assessing PWC under
powdery mildew stress using the traditional water indices (WBI,
FWBI), is difficult at canopy level.

Plant disease influences tissue and organ physiological state
and ultimately changes the reflective spectrum of plants (Jackson,
2003). Therefore, the disease sensitive waveband is reasonable

for detecting plant physiological changes. Some researchers
investigated the green waveband to form VIs for monitoring
disease, such as dual-green vegetation index (Feng et al. 2016),
powdery mildew index (Mahlein et al., 2013), and PRI (Huang
et al. 2007). Spectral reflectance at 531 nm can provide an
indicator of both photosynthetic function and interconversion of
xanthophyll cycle pigments (Gamon et al., 1992). PRI was shown
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FIGURE 8 | Comparison of predicted and observed wheat PWC based on the

PRI in winter wheat. Data points from Experiment 4 (n = 52).

to track plant status in response to changing environmental
conditions (Magney et al., 2016). In this paper, PRI (531,570)
showed a good relationship with disease index (R2 = 0.649), and a
significant relationship with PWC (R2 = 0.817) and fluorescence
parameter (Fv/Fm, R2 = 0.833; Fv/Fo, R2 = 0.808). When white
powdery mycelium covers the leaf surface, it causes a loss of
pigment, fading leaves, and deteriorated leaf structure. These
factors are closely linked with the green waveband. Reduced
photosynthesis is closely linked to the green waveband in the
visible range at canopy level (Evain et al., 2004). Gamon et al.
(1992) proposed that PRI was an indicator of the de-epoxidation
state of the xanthophyll cycle pigments and the efficiency of
photosynthesis. Many studies have evaluated crop water stress
based on xanthophyll compositional change (Penuelas et al.,
1997a; Suárez et al., 2008, 2010; Neues et al., 2009; Zarco-Tejada
et al., 2012), and the proportion of violaxanthin converted into
zeaxanthin under stress conditions (Gamon et al., 1992). Previous
research quantified relationships between PRI and physiological
indicators, such as canopy temperature (Suárez et al., 2009),
leaf stomatal conductance (Suárez et al., 2008), xylem water
potential (Stagakis et al., 2012), relative leaf water content and
the difference between leaf and air temperature (Rossini et al.,
2013) and chlorophyll fluorescence parameters (Evain et al., 2004;
Dobrowski et al., 2005). Therefore, PRI was proposed as an
indicator of water stress (Suárez et al., 2008; Neues et al., 2009;
Stagakis et al., 2012). When wheat is infected with powdery
mildew, PWC and Chl contents decreased (Figure 6), and PRI
increased obviously (Figure 7A). PRI showed a close correlation
with PSII light use efficiency (Fv/Fo, Fv/Fm) under powdery
mildew stress (Figures 7C,D). Unlike conventional water indices
based on water absorption signal, PRI accurately tracked water
content in infected wheat based on the relationships between PRI
and growth parameters, and the PSII photochemical properties
related to xanthophyll changed under biotic stress.

In remote sensing monitoring, factors affecting reflectivity
should be considered, for example canopy structure, background,
sun angle, leaf area index (LAI), and leaf angle distribution
(LAD), etc. Previous studies have shown that the main factors
affecting spectrum are LAI and LAD at the canopy level, and
major changes are in the near-infrared region 760–900 nm
(Dian and Fang, 2013). Under the same LAI, the reflectivity
of the canopy is reduced with increasing average leaf angle
(Zhao et al., 2009); the bigger the leaf angle, the more compact
the plant, the weaker the ability to intercept light. There is
a close relationship between PWC and plant morphological
structure factors, changes in leaf angle ensure the plant can
maximize moisture and light in the environment (Wu et al.,
2014). Leaf water content of infected plants is usually reduced;
conversely, leaf angle is increased, which may influence the
reflectance spectrum in the near infrared bands (Cheng et al.,
2010). When plants were infected, plant water metabolism was
disturbed and PWC gradually decreased in our experiments.
Therefore, the spectral reflectance of infected wheat was affected
by comprehensive factors, such as water content, leaf angle
and disease spot. In our studies, PRI successfully indicated
PWC under two experimental systems with powdery mildew
stress, and a corresponding model could reliably estimate PWC
across different growth conditions. These results show that PRI
is a viable indicator for detecting wheat water content under
powdery mildew stress using an in-situ spectrometer. Of course,
the detecting model was derived from a susceptible variety in
two experimental conditions. Therefore, further analysis would
be necessary to understand the effectiveness of PRI model
monitoring of dynamic changes in plant water of various plant
species under different disease stress.

CONCLUSIONS

The physiological analysis of plant disease is extremely important
for understanding relationships between VIs and growth
parameters under biotic stress. Ground based remote sensing
data acquired with the FieldSpec HandHeld spectrometer
(Analytical Spectral Devices Inc., USA) were used to detect the
variation of PWC of winter wheat infected with powdery mildew.
The common water band indices, WBI, FWBI1, and FWBI2 were
inappropriate for estimating the PWC under powdery mildew
stress (R2 < 0.5). Physiological indicators (Chl content, PWC)
significantly responded to increasing disease severity levels. The
ordinal regressions between the PRI and plant physiological
parameters under powdery mildew stress applied in the field,
showed that PRI was sensitive to physiological change, such as
Chl content (R2 = 0.639), Fv/Fm (R2 = 0.833), and Fv/Fo (R2

= 0.808). The green band range (510–570 nm) was valuable for
detection of physiological parameters under the powdery mildew
stress, and the unified relationship between PRI and PWC
generated higher precision (R2 = 0.817), and lower error (RE =

8.26%). This showed that the PRI model has better compatibility
between different test conditions and sampling periods, and PRI
could be used as a plant water indicator of infected wheat at
canopy level. This result will provide a theoretical basis for
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monitoring plant moisture dynamic variation under biotic stress
in winter wheat using remote sensing technology.
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