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Seed size and seed weight are major quality attributes and important determinants

of yield that have been strongly selected for during crop domestication. Limited

information is available about the genetic control and genes associated with seed size

and weight in sorghum. This study identified sorghum orthologs of genes with proven

effects on seed size and weight in other plant species and searched for evidence of

selection during domestication by utilizing resequencing data from a diversity panel.

In total, 114 seed size candidate genes were identified in sorghum, 63 of which

exhibited signals of purifying selection during domestication. A significant number of

these genes also had domestication signatures in maize and rice, consistent with the

parallel domestication of seed size in cereals. Seed size candidate genes that exhibited

differentially high expression levels in seed were also found more likely to be under

selection during domestication, supporting the hypothesis that modification to seed size

during domestication preferentially targeted genes for intrinsic seed size rather than

genes associated with physiological factors involved in the carbohydrate supply and

transport. Our results provide improved understanding of the complex genetic control

of seed size and weight and the impact of domestication on these genes.
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INTRODUCTION

A growing world population and an increase in affluence is
driving demand for agricultural products, especially cereals,
which supply more than 75% of the calories consumed by
humans (Sands et al., 2009). With limited arable land and water
resources, particularly in Sub-Saharan Africa where sorghum is
a staple food and the population growth rate is amongst the
highest in the world, enhancing yield per unit area of cereal
crops will be critical to meet this demand. Seed number per
unit area and seed size are critical components of seed yield.
Although seed number tends to have a bigger influence on yield
(Boyles et al., 2016), seed size can make a significant contribution
and may offer prospects for further yield improvement (Yang
et al., 2009). In addition, it is often a major quality attribute
(Lee et al., 2002). Hence, elucidating the genetic basis of seed
size and the impact of domestication on seed size genes in
sorghum will enhance the understanding of crop domestication
and provide new targets for manipulating seed size in breeding
practice.

Seed size is an important fitness trait for flowering plants and
plays an important role in adaptation to particular environments.
Under natural conditions, greater seed resources stored in larger
seeds enable seedlings to grow more rapidly at the seedling
stage and increases competitiveness and survival (Manga and
Yadav, 1995). However, increased seed number also translates
directly into fitness, resulting in selection pressure to produce
more (and thus smaller) seeds (Westoby et al., 1992). For
cereal crops, the preference of early farmers for large seeded
lines for easier harvesting, processing, and planting has resulted
in larger seed size being selected during domestication. This
selection process has left observable genetic changes, including
a reduction of genetic diversity and an increased frequency of
favorable seed size alleles in cultivated lines compared to their
wild progenitors (Doebley et al., 2006). For example, in rice,
the favorable allele of GS3, which encodes a heterotrimeric G-
protein subunit that affects seed weight and length, was highly
enriched in a set of cultivated accessions of rice (Oryza sativa
L.) (34%) compared to a set of wild accessions (4%; Takano-Kai
et al., 2009; Botella, 2012). In maize (Zea mays L.), Bt2, which
encodes the small subunit of the ADP-glucose pyrophosphorylase
involved in starch biosynthesis and seed weight, has shown a
3.9-fold reduction in genetic diversity in cultivated inbred lines
compared to their wild teosinte relatives (Whitt et al., 2002).
Likewise, selection signatures have also been identified on other
seed size genes, including PBF1 (Lang et al., 2014), GS5 (Li et al.,
2011), and GIF1 (Wang et al., 2008). These selection signatures
provide a “bottom-up” approach to investigate the genetic basis
of domesticated traits, which has been successfully implemented
in many species for other traits such as prolificacy (Beissinger
et al., 2014) and northern leaf blight resistance (Wisser et al.,
2008) in maize.

Seed size is a physiologically complex trait. Sorghum seeds
are typically tending toward spherical, although considerable

Abbreviations: BBH: bidirectional best hit; RoD: reduction of diversity.

phenotypic variation in length, width and density does exist.
The potential size of the seed is often associated with cell
number, cell size and number of starch granules and is highly
correlated with ovary volume at anthesis (Yang et al., 2009).
However, measures associated with seed size have not been used
consistently in the literature, where individual grain weight is
often used as a surrogate for seed size. As key components of
carbon demand (sink) during seed filling, seed size and weight
are strongly associated with both carbon supply (source) and
transport between carbon sources and the seed (path). The
potential mass of individual seeds is determined by the rate
and duration of seed filling. In sorghum, seed filling rate is
highly correlated with ovary volume at anthesis, which in turn
is associated with the size of the meristematic dome during early
floret development (Yang et al., 2009).

Although seeds with larger potential size tend to have greater
seed mass, the extent to which this increased seed mass is
actually achieved is strongly determined by assimilate availability
for each seed. The amount of assimilate per seed is driven
by factors affecting both seed number and assimilate supply.
Total seed number per plant is determined by the number
of seeds per panicle and the number of panicles per plant
(i.e., tillering and branching), which are affected by a range
of genetic and environmental factors (Alam et al., 2014). A
negative correlation between seed size and seed number has
been observed frequently in cereals (Jakobsson and Eriksson,
2000; Acreche and Slafer, 2006; Peltonen-Sainio et al., 2007;
Sadras, 2007). Specifically in sorghum this trade-off has been
observed by different groups (Heinrich et al., 1983; Yang et al.,
2010; Burow et al., 2014). Traits such as number of seeds per
panicle and number of tillers per plant are also commonly
negatively correlated with seed size (Moles and Westoby, 2004).
Contributors of assimilate availability for seed filling, including
photosynthesis (Jagadish et al., 2015), have shown positive
correlations with seed size. Environmental factors can also exert
a strong influence on seed size by affecting assimilate supply
(Jenner, 1994; Borrell et al., 2014) and carbon translocation
(Zolkevich et al., 1958).

In accordance with this physiological complexity, seed size
has been identified as a quantitative trait controlled by multiple
genes, many of which have been cloned in model species
(Xing and Zhang, 2010; Li et al., 2013; Zuo and Li, 2014). In
Arabidopsis, a kinase cascade consisting of HAIKU1, HAIKU2,
and MINISEED3 promotes seed development zygotically (Luo
et al., 2005; Wang et al., 2010), while TTG2 (Garcia et al., 2005),
AP2 (Ohto et al., 2009), and ARF2 (Okushima et al., 2005) are
engaged in the maternal control of seed size. In rice, QTLs
including GS3 (Mao et al., 2010), GS5 (Li et al., 2011), GW2
(Song et al., 2007), GW5 (Liu et al., 2017), GW8 (Wang S. et al.,
2012), and GL7 (Wang Y. et al., 2015) were reported to regulate
seed size by controlling cell division, while the influence of SRS3
(Kitagawa et al., 2010), D61 (Morinaka et al., 2006), and SRS5
(Segami et al., 2012) on seed size is related to the regulation of
cell size. Additionally, the role of GIF1 in carbon partitioning
during early seed-filling, which can impact seed weight, has been
identified using functional analysis in rice (Wang et al., 2008).
In maize, the Gln-4 gene (Martin et al., 2006) affects seed weight
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by controlling nitrogen transport to the kernel during seed-
filling, whereas Sh2, which encodes the large subunit of ADP-
glucose pyrophosphorylase, affects seed weight by regulating
starch biosynthesis (Jiang L. et al., 2013). Pleiotropy is common
amongst genes affecting seed size. For example, D2 (Hong et al.,
2003) and SMG1 (Duan et al., 2014) also have an effect on plant
architecture, TH1 (Li X. et al., 2012) affects seed number, and
TGW6 (Ishimaru et al., 2013) influences translocation efficiency
from source organs. These genes may thus affect seed size via
source-sink dynamics.

Sorghum, second only to maize among C4 cereals in terms
of the scale of grain production, is known for its adaptation
to heat and drought stress, and is a staple for 500 million of
the world’s poorest people. Despite the great importance of this
crop, the genetic basis of seed size in sorghum has been the
subject of relatively few studies and little information is available
about genetic control of the trait and signatures of domestication.
Hence, this study aims to investigate the polymorphism patterns
and signatures of domestication of candidate genes associated
with seed size and weight by using resequencing data for a diverse
group of wild and weedy and landrace genotypes (Mace et al.,
2013) in order to enhance understanding of crop domestication
and to provide potential targets for manipulating seed size in
sorghum breeding.

MATERIALS AND METHODS

Data Collection
Genes associated with seed size and weight (hereafter referred
as seed size) in three species, maize, rice and Arabidopsis, were
identified through a comprehensive literature review (Table S1).
Seed length, seed width, and seed density are all potentially
associated with seed size; thereforemultiple parameters including
thousand seed weight, seed length, and seed width, were used
as keywords for literature searches. A subset of high confidence
genes were identified with evidence of their association with seed
size supported by QTL cloning, transgenic experiments, mutant
analysis, association signal, and/or near isogenic lines analysis.

Genome assemblies and predicted gene models and protein
sequences for Arabidopsis thaliana (TAIR10), Oryza sativa
(IRGSP-1.0), Zea mays (AGPv4), and Sorghum bicolor (v3.0)
were downloaded from TAIR (https://www.arabidopsis.org); The
Rice Annotation Project database (http://rapdb.dna.affrc.go.jp);
Gramene (http://www.gramene.org) and Joint Genome institute
(http://www.phytozome.net), respectively.

Identification of Orthologos Genes
Orthologous genes in sorghum were identified by combining
synteny-based and the Bidirectional Best Hit (BBH) approaches
(Wolf and Koonin, 2012). Genomic syntenic relationships
between sorghum and model species were extracted from
Plant Genome Duplication Database (http://chibba.agtec.uga.
edu/duplication/) and used to search for syntenic orthologs,
while a local BLAST strategy was used for the BBH approach to
identify pairs of genes in two genomes that are the best BLAST
hits (highest score) to one another, using BLASTP.

Expression Analysis of Seed Size
Candidate Genes
The whole genome expression data from the study by Davidson
et al. (2012) was used to investigate the differential expression of
the 114 candidate genes. The data set compared expression of
genes in the seed at two different time points and two different
seed tissues in addition to five non-seed tissues (Davidson et al.,
2012). The maximum expression value (Fragments Per Kilobase
of transcript per Million mapped reads, FPKM) from any of the
seed tissue samples was compared to the maximum expression
value in any of the non-seed tissues and a fold difference >2 was
used to define genes that were differentially highly expressed in
the seed.

Population Genetics Analysis
Gene Level Population Genetics Parameters
The sequence data of the seed size genes in sorghum were
extracted from the whole genome resequencing data as described
in Mace et al. (2013) for 25 sorghum genotypes, representing
two groups: (1) wild and weedy genotypes and (2) landraces. A
number of summary statistics based on gene level, including the
average pairwise genetic diversity within a group, θπ (Nei and
Li, 1979) and Tajima’s D (Tajima, 1989), were calculated using a
BioPerl module and an in-house perl script. FST (Hudson et al.,
1992) was calculated to measure population differentiation using
another BioPerl module. Reduction of diversity (RoD) during
domestication was calculated as fold of decrease of θπ in the
landrace group compared to the wild and weedy group.

Identifying Selection Signatures at the SNP Level
CDS of the seed size genes across 25 resequenced genotypes was
used to generate population statistics for every SNP using the
R package PopGenome (Pfeifer et al., 2014). Specifically, a 1-bp
window size with a 1-bp step size was used to define the slide
window. θπ (Nei and Li, 1979), Fst (Hudson et al., 1992), and
Tajima’s D (Tajima, 1989) for each SNP within the CDS were
calculated using diversity.stats, F_ST.stats, and neutrality.stats
commands. Functional information was estimated by get.codons.
RoD in the pairwise ancestor/descendant population comparison
was calculated as fold of decrease of θπ in landrace compared
to wild and weedy. To identify SNPs under purifying selection
the following criteria were used: (1) RoD in the pairwise
ancestor/descendant population comparison should be greater
than the average RoD based on 159 neutral loci; (2) FST should
be positive; (3) Tajima’s D should be negative.

mlHKA Test
A set of 63 seed size candidate genes under purifying selection
were used as input, together with three random selections of
36 genes from 159 neutral genes, for the mlHKA (Wright and
Charlesworth, 2004) test for validation purposes. The mlHKA
program was run under a neutral model, where numselectedloci
= 0, and then under a selection model, where numselectedloci
>0. The number of cycles of the Markov chain was set to
be 100,000. For each random selection of 36 neutral genes,
three random numbers of seed were set to be 10, 20, and 30,
respectively. This means 3× 3= 9 times of run were performed.
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Significance was assessed by the mean log likelihood ratio test
statistic, where twice the difference in log likelihood between the
models is approximately chi-squared distributed with df equal to
the difference in the number of parameters.

Haplotype Analysis of Genes under Selection
Haplotype analysis was performed using R package pegas
(Population and Evolutionary Genetics Analysis System; Paradis,
2010) and ape package (Paradis et al., 2004) for genes under
selection. Functions haplotype, haploFreq and haploNet were
called to generate haplotype maps. In addition to landrace
and wild & weedy, accessions from improved lines, Guinea
margaritiferum race and S. propinquum were used in haplotype
analyses (Table S2).

RESULTS

Seed Size Candidate Genes in Sorghum
Based on a comprehensive literature survey, 129 genes associated
with seed size were identified in three well-studied model species,
including 65 genes in rice, 21 in maize and 43 in Arabidopsis
(Table S1). By using BBH method and the known syntenic
relationship from the Plant Genome Duplication Database to
infer orthologs (assembly v3.0), a total of 111 genes were
identified in sorghum (Table 1). From the set of 65 seed size-
related genes identified in rice, 55 orthologs were identified in
sorghum using the BBH method and 47 using the syntenic
relationship method. Of these, 30 orthologs were identified
by both methods, resulting in a total of 72 unique orthologs
identified in sorghum (Figure 1). Additionally, a total of 23
orthologs were identified in sorghum based on the 21 seed
size-related genes from maize, including 20 BBH orthologs
and 12 syntenic orthologs with 9 orthologs identified by both
methods. Finally, 25 sorghum orthologs were identified based
on the analysis of the 43 selected seed size-related genes from
Arabidopsis (Figure 1). Amongst all putative sorghum orthologs,
9 were in common across a minimum of two species, leading to
111 unique orthologs in sorghum identified as seed size candidate
genes (Figure 1). Four seed size candidate genes in sorghum from
Zhang et al. (2015) with one overlapped with the 111 seed size
orthologs were also taken into consideration, resulting in a final
list of 114 seed size candidate genes.

The 114 identified seed size candidate genes were unevenly
distributed across the 10 sorghum chromosomes, ranging from
23 genes located on chromosome 1 to only 2 genes located on
chromosome 5. Whole genome expression data from the study
by Davidson et al. (2012) was used to investigate the differential
expression of the 114 candidate genes. A total of 22 genes
exhibited differentially high levels of expression in the seed (Table
S3).

Genetic Diversity in Seed Size Genes in
Sorghum
Sequence data for all 114 candidate genes was extracted from
a previously described set of wild and weedy genotypes and
landraces (Table S2; Mace et al., 2013). Overall, the selected
genes exhibited a wide range of variation in sequence diversity

FIGURE 1 | One hundred eleven orthologs of seed size genes identified in

sorghum. Both the BBH method and the known syntenic relationships were

used to identify orthologs of previously identified seed size genes in

Arabidopsis (43), maize (21), and rice (65). The black arrows indicate

BBH-identified orthologs, while the red arrows indicate syntenic orthologs.

in both genotype groups (the wild and weedy genotype group
and the landraces group), with diversity measures (θπ) varying
from 0.0085 (Sobic.002G311000) to 0 (Sobic.003G380900) in the
wild and weedy genotypes, and from 0.0070 (Sobic.004G317300)
to 0 (Sobic.003G035400, Sobic.003G380900, Sobic.004G065400,
and Sobic.006G059900) in the landraces (Table S4). The
SERF1 (a negative regulator of seed filling in rice) ortholog,
Sobic.003G380900, was invariant in all the genotypes included in
the current study. The sequence diversity observed in the seed
size candidate genes in the wild and weedy genotypes was not
significantly different to the genome-wide averages. However,
the seed size candidate genes in the landraces were significantly
less diverse than the genome-wide averages (p = 0.026, t-test)
(Figure 2A) and were significantly less diverse in comparison to
the wild and weedy genotypes (p = 3.68E-11, paired t-test). The
RoD in the seed size candidates between the two genotype groups
during domestication was greater when compared to 159 neutral
genes identified in a previous study (Mace et al., 2013; Table S5,
Figure 2B). The degree of population differentiation, measured
by the fixation index FST, based on the seed size candidate genes
was significantly higher between the landrace and wild and weedy
genotypes (Figure 2C) in contrast to the neutral genes.

Furthermore, the extent of RoD varied among the seed
size candidate genes. Two genes, Sobic.006G059900 (ZmIPT2
ortholog) and Sobic.003G035400 (GW5 ortholog), were invariant
in the landrace genotypes, despite having high levels of sequence
diversity in the wild and weedy genotypes. The signature of
significantly reduced sequence diversity in the landrace group,
in comparison to the wild and weedy group, was also observed
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FIGURE 2 | Sequence variation identified in the seed size candidate genes in sorghum. (A) A comparison of sequence diversity (θπ) between the seed size candidate

genes (red) and genome-wide averages (blue) in both the landrace and wild and weedy groups. Error bars indicate the standard error; * indicates a significant

difference (p < 0.05, t-test) between the groups. (B), Box-plots showing the distributions of sequence diversity reduction fold) of 114 seed size candidate genes (red)

and 159 neutral genes (blue) during domestication. The p-value was calculated based on a t-test. (C), Box-plots showing the distributions of FST between the

landrace and wild and weedy genotype groups for 114 seed size candidate genes (red) and 159 (blue) neutral genes. The p-value was calculated based on a t-test.

in four other genes, with RoD ranging from 15- to 58-
fold: Sobic.003G030600 (58-fold decrease), Sobic.003G277900
(25-fold decrease), Sobic.007G149200 (20-fold decrease), and
Sobic.003G230500 (15-fold decrease). A contrasting signature
of increased sequence diversity in the landraces was observed
for 16 seed size candidate genes, including Sobic.004G237000,
a syntenic ortholog of PGL2, with θπ of 0.0048 in the landrace
genotypes in comparison to just 0.0021 in the wild and weedy
genotypes. In addition to reduced sequence diversity in the
landraces, a more skewed allele frequency, as determined through
a negative Tajima’s D value, was observed in the majority of cases.

Signatures of Selection in Seed Size
Candidate Genes
Based on the genome-wide thresholds for the gene-level rankings
described in Mace et al., (2013), 6 seed size candidate genes were
identified with signatures of purifying selection during sorghum
domestication (Table S6). Previous studies (Whitt et al., 2002;
Brugiere et al., 2008; He et al., 2011; Hufford et al., 2012; Jiao
et al., 2012; Xu et al., 2012; Luo et al., 2013; Weng et al., 2013;
Wills et al., 2013; Lang et al., 2014; Zuo and Li, 2014; Sosso et al.,
2015; Si et al., 2016) revealed purifying selection signals in 7
maize and 9 rice seed size genes included in this study (Table
S1). Twenty one orthologs were identified in sorghum from 15

of the 16 genes under selection in either maize or rice, however,
only one of them, Sobic.006G059900 (ZmIPT2 ortholog), was
identified with signatures of purifying selection in sorghum based
on the gene-level rankings (Table S6).

To investigate the domestication signature in the 114 sorghum
seed size candidate genes at a higher resolution, signatures
of purifying selection at the SNP level were analyzed. In
total, 2,317 SNPs were identified in the CDS of all 114
candidate genes, consisting of 1,202 synonymous SNPs and
1,115 non-synonymous SNPs. In addition to sequence diversity
(θπ) metrics, FST, Tajima’s D, and RoD during domestication
were calculated for each SNP. Based on the specified criteria
regarding these metrics (see methods), 283 SNPs from 63 genes
were identified with signatures of purifying selection, including
Sobic.003G406600 (GW8 ortholog), Sobic.008G100400 (SMK1
ortholog), and Sobic.009G053600 (GS5 ortholog). Out of the
63 genes under selection, 42 contained non-synonymous SNPs
under selection (Table S7). The selection signatures identified at
the SNP level included 5 out of 6 genes under selection at the gene
level.

To validate whether the 63 selection candidates displayed
patterns of genetic variation consistent with purifying selection,
the mlHKA test was employed. A model of directional selection
best explained the patterns of polymorphism observed relative to
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TABLE 1 | Seed size candidate genes identified in sorghum including details of the identification approach, the original study describing the gene’s function and presence

of supporting selection.

Gene IDa Approachb Original genec Selection

signatured
Referencese

Sobic.001G016200 BBH Nuf2 family protein Yes Huang et al., 2012b

Sobic.001G056700 Synteny O2 Yes Hartings et al., 1989

Sobic.001G107100 BBH SRS5 Yes Segami et al., 2012

Sobic.001G113200 BBH AHK4 Yes Riefler et al., 2006

Sobic.001G154900 Both GL3.1/qGL3 Yes Qi et al., 2012; Zhang et al., 2012

Sobic.001G170800 Both Transport protein Yes Huang et al., 2012b

Sobic.001G172400 BBH BRD1 Yes Mori et al., 2002

Sobic.001G184900 Both Expressed protein Yes Huang et al., 2012b

Sobic.001G254100 Synteny PGL1 No Heang and Sassa, 2012a

Sobic.001G254200 Synteny OsFBK12 Yes Chen et al., 2013

Sobic.001G285000 BBH IKU1 No Wang et al., 2010

Sobic.001G335800 Synteny qGW7/GL7 Yes Wang S. et al., 2015; Wang Y. et al., 2015

Sobic.001G336200 BBH/BBH KLU/ Grain Length3.2 No Adamski et al., 2009; Xu et al., 2015

Sobic.001G341700 BBH/Both GS3/ZmGS3 Yes Li et al., 2010b; Mao et al., 2010

Sobic.001G382400 BBH FER No Yu et al., 2014

Sobic.001G445900 BBH/BBH CYP90B2/CYP90B1 No Wu et al., 2008

Sobic.001G448700 Both TUD1 No Hu et al., 2013

Sobic.001G468400 Both Prol1.1 No Wills et al., 2013

Sobic.001G482600 BBH TIFY 11b No Hakata et al., 2012

Sobic.001G484200 BBH RGA1/D1 No Ashikari et al., 1999

Sobic.001G485400 Both BG1 No Liu L. et al., 2015

Sobic.001G488400 Synteny PGL1 No Heang and Sassa, 2012a

Sobic.001G488500 BBH OsFBK12 No Chen et al., 2013

Sobic.002G021200 BBH DDM1 Yes Xiao et al., 2006

Sobic.002G022600 BBH ANT No Mizukami and Fischer, 2000

Sobic.002G054800 Both O2 Yes Hartings et al., 1989

Sobic.002G056000 BBH MET1 Yes Xiao et al., 2006

Sobic.002G116000 BBH GbssIIa No Jiang L. et al., 2013

Sobic.002G216600 Both/Synteny DEP1/AGG3 No Huang et al., 2009; Li S. et al., 2012

Sobic.002G226500 Both SG1 Yes Nakagawa et al., 2012

Sobic.002G257900 Synteny GW8 Yes Wang S. et al., 2012

Sobic.002G272700 BBH EOD3/CYP78A6 Yes Fang et al., 2012

Sobic.002G308400 BBH MYB transcription factor Yes Huang et al., 2012b

Sobic.002G309600 BBH UPF1 Yes Yoine et al., 2006

Sobic.002G311000 BBH Receptor-like kinase Yes Huang et al., 2012b

Sobic.002G312200 Both GLW7 No Si et al., 2016

Sobic.002G367300 Both qGW7/GL7 Yes Wang S. et al., 2015; Wang Y. et al., 2015

Sobic.002G367600 BBH BG2 No Xu et al., 2015

Sobic.002G374400 Both DEP2 Yes Li F. et al., 2010

Sobic.003G014500 BBH MHZ7 No Ma et al., 2013

Sobic.003G030600 BBH D2 No Hong et al., 2003

Sobic.003G035400 Synteny GW5/qSW5 No Liu et al., 2017

Sobic.003G140000 Synteny OsSAMS1 Yes Chen et al., 2013

Sobic.003G230500 BBH Sh2 Yes Jiang L. et al., 2013

Sobic.003G277900 BBH/BBH D61/ BRI1 Yes Morinaka et al., 2006; Jiang W. et al., 2013

Sobic.003G292600 BBH AHP4 No Hutchison et al., 2006

Sobic.003G358400 BBH DET2 No Jiang W. et al., 2013

Sobic.003G380900 Synteny SERF1 No Schmidt et al., 2013

Sobic.003G406600 Synteny GW8 Yes Wang S. et al., 2012

(Continued)
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TABLE 1 | Continued

Gene IDa Approachb Original genec Selection

signatured
Referencese

Sobic.003G407300 BBH AHK3 No Riefler et al., 2006

Sobic.003G444100 Both OsCCS52B Yes Su’udi et al., 2012

Sobic.004G065400 Synteny GW6 No Song et al., 2015

Sobic.004G075600 Both Zinc finger protein Yes Huang et al., 2012b

Sobic.004G085100 Both Bt1 Yes Shannon et al., 1998

Sobic.004G093900 BBH CKX2 Yes Li et al., 2013

Sobic.004G107300 Both/Both/Both GW2/ZmGW2-4/ZmGW2-

5

No Song et al., 2007; Li et al., 2010a

Sobic.004G133600 BBH/original ZmSWEET4c/NA No Sosso et al., 2015; Zhang et al., 2015

Sobic.004G163700 BBH SbeIIb No Jiang L. et al., 2013

Sobic.004G176000 Both SDG725 Yes Sui et al., 2012

Sobic.004G214100 Both BC14 No Zhang et al., 2011

Sobic.004G237000 Both PGL2 No Heang and Sassa, 2012b

Sobic.004G245000 Synteny AHK4 Yes Riefler et al., 2006

Sobic.004G247000 Both Gln-4 No Martin et al., 2006

Sobic.004G269900 Synteny GS2/GL2 Yes Che et al., 2015; Hu et al., 2015

Sobic.004G307800 Both SGL1 Yes Nakagawa et al., 2012

Sobic.004G317300 BBH O1 Yes Wang G. et al., 2012

Sobic.004G323600 Both SMG1 No Duan et al., 2014

Sobic.004G330200 BBH TGW6 Yes Ishimaru et al., 2013

Sobic.004G338400 BBH TH1 No Li X. et al., 2012

Sobic.005G001500 Both PBF1 Yes Lang et al., 2014

Sobic.005G132000 BBH ARF2 Yes Okushima et al., 2005

Sobic.006G059900 Both ZmIPT2 Yes Weng et al., 2013

Sobic.006G080500 BBH RGE1 Yes Kondou et al., 2008

Sobic.006G114600 BBH/BBH D11/CYP724B3 Yes Tanabe et al., 2005; Wu et al., 2008

Sobic.006G203400 Synteny GS2/GL2 Yes Che et al., 2015; Hu et al., 2015

Sobic.006G239000 Both FLO2 Yes She et al., 2010

Sobic.006G240700 BBH AP2 No Ohto et al., 2009

Sobic.006G268800 Original NA Yes Zhang et al., 2015

Sobic.007G032400 Both/BBH OsFIE2/FIE No Luo et al., 2000; Na et al., 2012

Sobic.007G101500 BBH Bt2 Yes Jiang L. et al., 2013

Sobic.007G149200 Synteny/BBH DEP1/AGG3 Yes Huang et al., 2009; Li S. et al., 2012

Sobic.007G156800 Synteny SGL1 No Nakagawa et al., 2012

Sobic.007G166600 Original NA No Zhang et al., 2015

Sobic.007G193500 Both GW8 No Wang S. et al., 2012

Sobic.008G001700 Synteny PBF1 Yes Lang et al., 2014

Sobic.008G100400 BBH SMK1 Yes Li et al., 2014

Sobic.008G152800 BBH CBL3 No Eckert et al., 2014

Sobic.008G173900 Both OsPPKL3 Yes Zhang et al., 2012

Sobic.008G193300 BBH OsSUT2 No Eom et al., 2011

Sobic.009G024600 Both RSR1 No Fu and Xue, 2010

Sobic.009G033600 Both OsSAMS1 Yes Chen et al., 2013

Sobic.009G036400 BBH APG No Heang and Sassa, 2012b

Sobic.009G040700 Both OsPPKL2 Yes Zhang et al., 2012

Sobic.009G049400 Both SRS3 Yes Kitagawa et al., 2010

Sobic.009G053600 BBH GS5 Yes Li et al., 2011

Sobic.009G070000 Both GW5/qSW5 Yes Liu et al., 2017

Sobic.009G141500 Synteny SERF1 No Schmidt et al., 2013

Sobic.010G022600 BBH Wx1 Yes Shure et al., 1983

Sobic.010G047400 Both HGW Yes Li J. et al., 2012

Sobic.010G064600 BBH DA1 No Li et al., 2008

(Continued)
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TABLE 1 | Continued

Gene IDa Approachb Original genec Selection

signatured
Referencese

Sobic.010G064800 BBH CKI1 Yes Deng et al., 2010

Sobic.010G069600 Synteny SMG1 Yes Duan et al., 2014

Sobic.010G072300 Both Sh1 No Jiang L. et al., 2013

Sobic.010G091700 Synteny PGL2 No Heang and Sassa, 2012b

Sobic.010G110100 BBH A transcription factor Yes Huang et al., 2012b

Sobic.010G111200 BBH GASR7 No Huang et al., 2012b

Sobic.010G144900 Original NA No Zhang et al., 2015

Sobic.010G184100 Synteny Bt1 No Shannon et al., 1998

Sobic.010G210100 Both GW6 Yes Song et al., 2015

Sobic.010G228100 Both DEP3 Yes Qiao et al., 2011

Sobic.010G273900 BBH SbeI No Jiang L. et al., 2013

Sobic.010G277300 BBH BRD2 No Hong et al., 2005

Sobic.K041100 BBH GIF1 Yes Wang et al., 2008

Sobic.K041200 BBH Mn1 Yes Miller and Chourey, 1992

aBased on sorghum genome assembly 3.0.
bBioinformatics approach used to identify seed size candidate genes.
cGene name from the original publication in either maize, rice, or Arabidopsis.
dSelection signature based on SNP level analysis.
ePublication documenting the genes associated with seed size.

159 neutral loci (mean log likelihood ratio test statistic = 661,
P < 7.49E-94 for all comparisons, Table S8). Additionally, out
of 22 seed size candidates exhibiting differentially high levels
of expression in the seed, 17 (77%) were under selection. The
percentage is significantly higher than the remaining 92 seed size
genes not exhibiting differentially higher levels of expression in
the seed, where only 46 genes (50%) in this group were found
to be under selection (χ2

= 6.546, p-value < 0.05), indicating
seed size genes highly expressed in the seed are more likely to be
targeted during domestication.

Parallel Domestication of Seed Size in
Cereals
Seed size genes under selection across species were also identified.
Among 15 seed size genes under selection in maize or rice,
12 were also found to be under selection in sorghum based
on the SNP level CDS analysis in this study. A broader
investigation of parallel domestication selection signals across
syntenic orthologs of all the 114 seed size candidate genes in
maize (Hufford et al., 2012; Jiao et al., 2012) and rice (He
et al., 2011; Huang et al., 2012a; Xu et al., 2012) identified
30 seed size candidate genes in sorghum that have orthologs
under selection in maize and/or rice (Table S6). Among these
30 sorghum genes, only one gene was under selection based
on the gene level analysis, but 21 genes were identified as
being under selection based on the SNP level CDS analysis
(Table S6, Figure 3), with 4 of the 9 remaining genes having
paralogs under purifying selection in sorghum. The sorghum
seed size candidate genes under selection in multiple cereals
included Sobic.009G070000 (GW5 ortholog), Sobic.003G406600
(the of GW8 ortholog), Sobic.007G101500 (Bt2 ortholog),

Sobic.K041100 (GIF1 ortholog), and Sobic.005G001500 (PBF1
ortholog).

DISCUSSION

Seed size is a typical domestication syndrome trait, with
cultivated cereal crops having larger seeds in comparison to their
wild progenitors (Doebley et al., 2006). During domestication,
large seeded genotypes were selected for their contribution to

FIGURE 3 | Venn-diagram showing the number seed size genes under

selection across species; sorghum (blue), maize (green), and rice (red). Seed

size candidate genes under selection in sorghum were identified based on

SNP analysis in sorghum, while selection signals on their orthologs in maize

and rice were extracted from previous studies.
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increased grain yield, but perhaps more importantly also for
their positive effect on the quality of end-use products. Utilising
the power of whole genome sequencing of diverse sorghum
germplasm at the SNP level, combined with comparative
genomic analysis of well researched cereal crops such as rice and
maize, we identified 114 seed size candidate genes in sorghum.
Signatures of domestication were identified in over half (63)
of these genes through SNP level analysis of the CDS regions,
with a high degree of concordance of seed size candidate genes
under selection across species observed. Additionally, a group
of seed size candidate genes that exhibited differentially high
levels of expression in the seed were found to be more likely
under selection during domestication. These results provide
new insights into the genetic control of seed size in sorghum
and the domestication of the seed size trait in cereal crops.
Candidate genes included in this study provide a useful entry
point into investigating the genetic factors controlling seed size.
An understanding of genetic diversity and evolutionary pressures
on these seed size candidate genes in sorghum provides potential
targets for manipulating seed size via marker-assist selection or
genome editing. In particular, intrinsic seed size genes may prove
more amenable to relatively simple interventions in comparison
to genes which effect seed size indirectly, for example via grain
number.

Seed Size Candidate Genes under
Selection Are More Likely to be Intrinsic
Seed Size Genes Rather than Pleiotropic
Seed Size Genes
Of the 111 orthologs identified in sorghum based on seed size
genes frommaize, rice, andArabidopsis, only 9 orthologous genes
were identified as being associated with seed size in more than
one species (Figure 1). This limited overlap suggests that the
sample of seed size genes identified to date in each species is
incomplete and/or that the genetic factors influencing seed size
vary among species. This is likely to be due to the complexity of
the genetic control of seed size, which is controlled by factors
involved in intrinsic seed size, such as cell number, cell size,
structure and composition, and by physiological factors involved
in the carbohydrate supply-demand balance and transport.

Given the differences in plant architecture and physiology
across the four species, it seems likely that genes under selection
in sorghum that have also been identified as seed size genes
in more than one species, either affect intrinsic seed size
or directly affect seed number through an effect on panicle
architecture, rather than affecting seed size via carbohydrate
supply or indirectly affecting seed number. Both situations
occurred in this study, as Sobic.001G341700, the ortholog of GS3
and ZmGS3 directly influences cell number in the seed, whereas
Sobic.002G216600, the ortholog of DEP1 and AGG3, changes
panicle branching and therefore seed number (Huang et al., 2009;
Mao et al., 2010; Chakravorty et al., 2011; Li S. et al., 2012).

Of the 63 seed size candidate genes identified as being under
selection in sorghum, 21 were identified as being under selection
in at least one of the other species (Table S6). Genes that
exhibited differentially high levels of expression in the seed are

more likely to be associated with intrinsic variation for seed
size. Our data shows that these genes were much more likely to
be under selection during domestication. This provides support
for the hypothesis that the modification to seed size during
domestication preferentially targeted genes for intrinsic seed size
rather than genes that indirectly impact on seed size.

Base Pair Level Analysis Provides a High
Resolution Approach to Study
Domestication Signatures on Seed Size
Genes
Domestication has shaped sorghum into a productive crop from a
wild grass. Previous studies in sorghum have identified thousands
of genes underpinning sorghum domestication based on whole
genome analyses (Mace et al., 2013; Morris et al., 2013). This
study detected selection signals in 63 seed size candidate genes
in sorghum identified from cross species analyses based on
individual nucleotide level analyses. The nucleotide level analyses
provide greater resolution to study domestication signatures
than whole gene level rankings. In general, when genes are
under strong purifying selection, the gene level analysis may
provide sufficient power to identify the signature of selection. For
example, in Sobic.009G049400, the ortholog of SRS3 conferring
a round seed phenotype in rice (Kitagawa et al., 2010), 44% of
the SNPs were identified with signatures of purifying selection
(Figure 4A). The majority of the remaining SNPs in this gene
also exhibited the same trend of sequence diversity patterns,
resulting in this gene being identified as under purifying selection
at both the gene and nucleotide levels (Figure 4C, Mace et al.,
2013). However, during domestication, contrasting selections
can be imposed on different mutant loci of the same gene
(particularly genes with pleiotropic effects) at different times,
which results in a gene with chimeric positive and purifying
selection signals (Purugganan and Fuller, 2009; Campbell et al.,
2016). This situation was observed in this study, where 11 SNPs
in the SRS5 ortholog, Sobic.001G107100, clustering within 50
bp of each other, were identified with signatures of purifying
selection (Figure 4B). However, the gene was not identified as
being under selection based on the gene level analysis due to
the heterogeneous sequence diversity patterns observed across
the entire gene length (Figure 4D). In such cases, analyzing each
mutant locus separately provides increased resolution to identify
the selection signature in comparison to gene level analysis in
which contrasting selection signals within the same gene may
cancel each other out.

Common Seed Size Genes under Selection
across Cereals Supports Parallel
Domestication of Seed Size in Grass
Cereals
During crop domestication, human demands have led to a similar
suite of traits being changed across a wide range of crops,
a phenomenon known as convergent domestication (Lenser
and Theißen, 2013). However, whether the same genetic basis
underlies parallel changes in different species is still under
debate. Early QTL mapping studies found close correspondence
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FIGURE 4 | Genetic diversity pattern of two genes under selection. (A), The sequence diversity of SNPs within Sobic.009G049400; (B), The sequence diversity of

SNPs within Sobic.001G107100; (C), The haplotype network of Sobic.009G049400; (D), The haplotype network of Sobic.001G107100. Group classification of

sorghum accessions used as detailed in Table S2. Colour-coding as follows; improved inbred lines (pink), landraces (red), wild and weedy genotypes (blue), S.

propinquum (green), and guinea margaritiferums (purple). The size of the circles in the haplotype networks is proportionate to the number of accessions with that

haplotype. The branch length represents the genetic distance between two haplotypes.

of QTLs for seed size, shattering, and flowering time across
cereal crops (Paterson et al., 1995), with subsequent detailed
QTL analyses identifying high levels of concordance in flowering
time QTLs across sorghum and maize (Mace et al., 2013).
Recently, Sh1, a major QTL controlling shattering, and HD1, a
major locus conferring flowering time, have been reported to
be under parallel selection in multiple cereals (Lin et al., 2012;
Liu H. et al., 2015). In this study, among 15 seed size genes
previously identified to be under selection in rice or maize,
12 were shown to have orthologs in sorghum under selection
during domestication. Genes under parallel selection have been
found to be major effect loci of seed size explaining a large
proportion of the phenotypic variation (Lenser and Theißen,
2013). The significant overlap of selection signatures on seed
size genes in cereals provides support for the role of parallel
domestication.

CONCLUSIONS

Seed size and weight are physiologically complex traits
controlled by many loci, some of which have been selected
during the domestication of cereals. In this study, we have
collated a large number of genes controlling seed size and
weight across three extensively studied plant model species
and identified their sorghum orthologs using comparative

genomics analyses. We demonstrated that has domestication
in sorghum left signatures of selection genetic signatures on
multiple seed size candidate genes. For a number of the
seed size genes we found signatures of selection that were
common across sorghum, maize and rice, consistent with
parallel domestication of the seed size trait. We also found
that seed size candidate genes that exhibited differentially
high levels of expression in the seed were more likely to be
under selection during domestication. Our work sheds light
on the processes involved in cereal domestication and provides
potential targets for breeding to increase seed size and potentially
yield.
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