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Legume plants are key elements in sustainable agriculture and represent a significant

source of plant-based protein for humans and animal feed worldwide. One specific

feature of the family is the ability to establish nitrogen-fixing symbiosis with Rhizobium

bacteria. Additionally, like most vascular flowering plants, legumes are able to

form a mutualistic endosymbiosis with arbuscular mycorrhizal (AM) fungi. These

beneficial associations can enhance the plant resistance to biotic and abiotic stresses.

Understanding how symbiotic interactions influence and increase plant stress tolerance

are relevant questions toward maintaining crop yield and food safety in the scope

of climate change. Proteomics offers numerous tools for the identification of proteins

involved in such responses, allowing the study of sub-cellular localization and turnover

regulation, as well as the discovery of post-translational modifications (PTMs). The current

work reviews the progress made during the last decades in the field of proteomics

applied to the study of the legume-Rhizobium and -AM symbioses, and highlights their

influence on the plant responses to pathogens and abiotic stresses. We further discuss

future perspectives and new experimental approaches that are likely to have a significant

impact on the field including peptidomics, mass spectrometric imaging, and quantitative

proteomics.
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INTRODUCTION

The Fabaceae or Leguminosae family, commonly referred to as “legumes,” is the third largest
family of flowering plants, second only to cereals in terms of agricultural importance. Some of
the most widely studied plants in the family include crops such as soybean (Glycine max L.
Merr.), common bean (Phaseolus vulgaris L.), chickpea (Cicer arietinum L.), lentil (Lens culinaris
Medik.), pea (Pisum sativum L.), or alfalfa (Medicago sativa L.). However, given the large size
and genome complexity of these major crops, the scientific community has focused its efforts
in the development of tools and protocols for other legume plants, commonly referred to as
model legumes, namely Medicago truncatula Gaertn. and Lotus japonicus L. For many of these
legume species there is genomic sequence information available, which greatly facilitates protein
identification using mass spectrometry-based proteomic approaches. Many species within the

Abbreviations: 2D-PAGE, two-dimensional polyacrylamide gel electrophoresis; AM, arbuscular mycorrhizal; CRISPR,

clustered regularly interspaced short palindromic repeats; LC-MS/MS, liquid chromatography coupled to tandem mass

spectrometry;MALDI-TOF,matrix-assisted laser desorption/ionization-time of flightmass spectrometry; PBM, peribacteroid

membrane; PR, pathogen response; PTM, post-translational modification; SST1, symbiosis-specific sulfate transporter 1.
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family are able to establish endosymbiotic relationships with
nitrogen-fixing Rhizobium bacteria and arbuscular mycorrhizal
(AM) fungi. These symbiotic interactions involve complex
signal exchanges between both symbionts and an intimate
communication to allow the establishment of the bacteria
or fungi inside root cells. These interactions are considered
mutualistic associations, with Rhizobium bacteria providing
a source of reduced nitrogen inside specialized root organs
named nodules, and AM fungi facilitating the capture of
important nutrients for the plant such as phosphorous or
sulfur, and even improving the plant responses to biotic and
abiotic stress conditions (Ruiz-Lozano et al., 2001; Dimkpa
et al., 2009; Pieterse et al., 2014). In order to understand
the biological processes governing these symbiotic interactions
and their effects on plant fitness, scientists have employed
an array of methodologies, ranging from gene expression to
proteomic analysis. Proteomics is a powerful tool for the study
of subcellular compartmentalization important to understand
nodule formation, symbiosome function and to unravel the
molecular mechanisms involved in the enhanced stress tolerance
of legumes under symbiotic conditions. The current work
reviews and summarizes the progress made during the last
decades in the field of proteomics applied to the study of legume-
Rhizobium and -AM symbioses, and their interactions with biotic
and abiotic stresses, discussing future perspectives and new
experimental approaches.

PROTEOMICS APPLIED TO THE STUDY
OF THE LEGUME-RHIZOBIUM SYMBIOSIS

Comparative Proteomic Studies
During the last decades a considerable effort has been made to
characterize the diversity of proteins expressed in different tissues
under a variety of conditions at the international level. This
effort was initiated using 2D-PAGE-based approaches, generating
reference maps for various organs in different legume species.
Taking M. truncatula as an example, Mathesius et al. (2001)
were the first to establish a root reference map, which included
∼2,500 protein spots, from which 179 were identified. It was
remarkable that close to half of them were present as protein
isoforms, including key metabolic enzymes such as S-adenosyl-
L-methionine synthase, malate dehydrogenase, or ascorbate
peroxidase. Gallardo et al. (2003) reported the characterization
of the seed proteome during seed filling, with the identification
of 84 proteins including proteins belonging to the main storage
protein families as well as proteins involved in carbon and
sulfur metabolism, among others. Subsequently, works from the
Sumner laboratory published a comprehensive analysis of the
M. truncatula proteome at the different organ level, including
cell cultures, with the high-confidence identification of close to
2,000 proteins, the largest proteomic identification reported so
far (Watson et al., 2003; Lei et al., 2005).

Focusing on the symbiotic perspective, several comparative
proteomics works have been devoted to the analysis of
the differential root proteome of a number of legumes
when inoculated with their corresponding microbial partners.

Depending on the focus of the study, works in the field of
symbiosis can be divided in two major groups: (i) studies focused
on the characterization of the legume plant proteome, and (ii)
works focused on the Rhizobium partner (Table 1). In the latter
case, a classical comparison is the analysis of the proteome
of free-living Rhizobium cells vs. their differentiated nitrogen-
fixing forms, named bacteroids. This strategy has been applied to
identify symbiosis-specific proteins synthesized in the symbionts
of the main legume species. Comparison of the proteomic
profiles of cultured cells vs. Sinorhizobium meliloti nodule
bacteroids suggested that nodule bacteria do not express sugar
transporters or enzymes involved in the early steps of glycolysis,
while containing multiple transporters for nitrogen compounds
including amino acids and oligopeptides (Djordjevic et al., 2003;
Djordjevic, 2004). The high adaptability of symbiotic bacteria
depending on the carbon source was also reported in proteomic
works carried out in Bradyrhizobium japonicum (Sarma and
Emerich, 2005, 2006). Authors reported the unusually low levels
in proteins related to fatty acid and nucleic acid metabolism in
bacteroids, suggesting that bacteroids and cell cultured bacteria
may present differential mechanisms to regulate the levels
of ribonucleotides. Subsequent work in B. japonicum using
more powerful mass spectrometry techniques, however, did not
observe such repression in nucleotide metabolism, identifying
almost the full set of enzymes involved in de novo nucleoside and
nucleotide biosynthesis expressed at the gen and/or protein level
(Delmotte et al., 2010). Regarding the symbiont of L. japonicus,
Tatsukami et al. (2013) identified 722 proteins commonly
found under the free-living and symbiotic conditions, while 125
proteins were uniquely identified under symbiotic conditions.
Interestingly, proteins involved in peptidoglycan biosynthesis
and proteins related to the flagellum were uniquely detected
under free-living conditions, suggesting that once within the
symbiosomes, bacteroids simplify their cell surface by losing
their cell wall and motility structures (Tatsukami et al., 2013).
Furthermore, the quantitative time-course proteomic analysis of
M. loti suggested that bacteroids experience nitrogen-deficiency
at early stages of nodule development, while at intermediate
stages high levels of nitrogenase protein lead to nitrogen-rich
conditions in the symbiosome (Nambu et al., 2015).

In the case of plant-oriented studies, it is common to compare
differences in the proteome of uninoculated vs. inoculated plants.
One of the pioneer works in this line was carried out by
Krause and Broughton (1992), reporting 12 symbiosis-specific
proteins potentially involved in root-hair deformation in Vigna
unguiculata, although at the time the lack of genomic sequence
information limited protein identification. The availability of
expressed sequence tags (ESTs) and, subsequently, genomic
sequences of several legume plants have led to greatly improve
the number of identified proteins. For instance, the model
legume M. truncatula has been subjected to detailed proteomic
characterization in terms of symbiotic responses. One of the
first studies in nodules identified two leghemoglobin isoforms
and one enolase protein as some of the proteins that most
accumulated in roots upon inoculation with symbiotic bacteria
(Bestel-Corre et al., 2002). The protein profiling of the plant
fraction of M. truncatula root nodules led to the identification
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TABLE 1 | Summary of proteomic studies focused on the legume-Rhizobium symbiosis.

Legume sp. Rhizobium sp. References Main outcome

I. STUDIES FOCUSED ON THE PLANT PARTNER

G. max roots (wt and SS2-2 mutant) B. japonicum USDA110 Lim et al., 2010 Protein-mediated suppression of defense-related responses

in root cells upon inoculation with symbiotic bacteria.

G. max root hairs B. japonicum USDA110 Wan et al., 2005 Induction of phospholipases, phosphoglucomutases, lectins,

and an actin isoform in soybean roots upon B. japonicum

inoculation.

G. max nodules (cytosol fraction) B. japonicum USDA110 Oehrle et al., 2008 Proteins related to carbon and nitrogen metabolism, oxygen

supply and protection are predominantly found in the cytosol

of nodule cells.

G. max En-b0-1 roots (supernodulating) B. japonicum MAFF

211342

Salavati et al., 2012 Identification of a correlation between the levels of a

peroxidase isoform and nodulation at the protein but not

transcript level in soybean nodules.

L. japonicus roots and nodules M. loti MAFF30309 Dam et al., 2014 Establishment of 2D-PAGE reference maps of L. japonicum

roots and nodules.

M. alba nodules S. meliloti 1021 Natera et al., 2000 Identification of nearly 100 plant and bacterial proteins in

white sweetclover nodules.

M. truncatula roots S. meliloti 2011 Bestel-Corre et al., 2002 Two leghemoglobin isoforms and one enolase protein were

accumulated in roots upon inoculation with symbiotic

bacteria.

M. truncatula nodules S. meliloti 2011 Larrainzar et al., 2007 Identification of 377 plant proteins in nodules, mostly related

to amino acid metabolism and protein synthesis and

degradation.

M. truncatula nodules S. meliloti 2011 Larrainzar et al., 2009 Integrative proteomic and metabolomic analysis of the effects

of drought stress in the plant and bacteroid fractions of M.

truncatula nodules.

M. truncatula roots and nodules S. meliloti 2011 Larrainzar et al., 2014 Absolute quantification proteomics and gene expression

analyses show that sulfur metabolism and ethylene

biosynthesis have key roles in the response of nodules and

roots subjected to drought stress.

M. truncatula shoots and roots S. meliloti 1021 Molesini et al., 2014 Analysis of local and systemic responses of M. truncatula

roots and shoots upon inoculation.

M. truncatula roots (wt and skl mutant) S. meliloti 1021 Prayitno et al., 2006 Increased abundance of one ACC oxidase isoform in

wild-type roots but not in roots of the supernodulating skl

mutant upon inoculation.

M. truncatula roots and shoots S. meliloti 2011 Staudinger et al., 2012 Detection of salt and drought stress markers and

identification of an improved plant response to stress of

plants grown under symbiotic conditions when compared to

nitrate-fed plants.

M. truncatula shoots S. medicae WSM419 and

S. meliloti 2011

Staudinger et al., 2016 Plants grown under symbiotic conditions present reduced

levels of leaf senescence during drought stress independently

of the efficiency of the symbiotic Rhizobium strain used.

P. sativum shoots R. leguminosarum bv.

viciae

Irar et al., 2014 Identification of variations in protein abundance as part as the

local responses of pea nodules grown under split-root

conditions and subjected to water stress.

P. sativum shoots (soluble and plasma

membrane fractions)

R. leguminosarum bv.

viciae

Desalegn et al., 2016 Indications of a positive influence of the symbiotic interaction

on the activation of the plant defense responses upon

pathogen attack.

P. sativum shoots R. leguminosarum bv.

viciae

Turetschek et al., 2016 Proteomic and metabolomic analyses of two pea cultivars

with varying pathogen resistance levels associate tolerance to

ethylene biosynthesis and suppression of cell death

responses.

V. unguiculata roots Rhizobium sp. NGR234 Krause and Broughton, 1992 One of the first proteomic studies analyzing

symbiosis-specific proteins potentially involved in root-hair

deformation in cowpea.

(Continued)
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TABLE 1 | Continued

Rhizobium sp. Type of cell References Main outcome

II. STUDIES FOCUSED ON THE Rhizobium PARTNER

B. japonicum USDA110 Bacteroids Sarma and Emerich, 2005 Abundance of proteins related to nitrogen and carbon

metabolism, and transport in soybean nodule bacteroids.

B. japonicum USDA110 Free-living cells vs.

bacteroids

Sarma and Emerich, 2006 Compared to bacteria under free-living conditions, nodule

bacteroids present unusually low levels in proteins related to

fatty acid and nucleic acid metabolism.

B. japonicum USDA110 Bacteroids Delmotte et al., 2010 In contrast to previous reports, application of more sensitive

LC-MS/MS-based approaches identifies a complete set of

proteins related to de novo nucleoside and nucleotide

biosynthesis in bacteroids.

Bradyrhizobium sp. ORS278 Bacteroids

(Aeschynomene indica

root and stem nodules)

Delmotte et al., 2014 Root and stem nodule bacteroids show expression of similar

sets of proteins, mostly related to central metabolism. As

exceptions, proteins involved in photosynthesis were

exclusive found in stem nodules.

M. loti MAFF30309 Free-living cells vs.

bacteroids

Tatsukami et al., 2013 Differentiated bacteroids do not longer express proteins either

involved in peptidoglycan biosynthesis or proteins related to

the flagellum.

M. loti MAFF30309 Bacteroids Nambu et al., 2015 Time-course analysis of nodulation suggests that bacteroids

experience nitrogen-deficiency at early stages of nodule

development.

S. meliloti 1021 Free-living cells vs.

bacteroids

Djordjevic et al., 2003 Compared to free-living bacteria, nodule bacteroids appear

not to require the expression of sugar transporters or

enzymes involved in the early steps of glycolysis.

S. meliloti 1021 Bacteroids Djordjevic, 2004 Bacteroids express a specific set of ABC-type transporters

involved in the transport of amino acids and inorganic ions.

of 377 unique proteins, most of them with roles in amino acid
metabolism and protein synthesis and degradation (Larrainzar
et al., 2007). Proteomics is also a valuable tool for the analysis
of local and systemic responses upon inoculation. Through
the analysis of the proteomic changes occurring in shoots and
roots of inoculated M. truncatula plants, 18 proteins were
found to accumulate in roots including sucrose synthase 1, a
fructose-bisphosphate aldolase, and an alcohol dehydrogenase,
while in shoots the content of several proteins involved in
defense responses or abiotic stress responses was found to
increase (Molesini et al., 2014). Proteomics has been also
applied to investigate the effects of the addition of the ethylene
precursor aminocyclopropane carboxylic acid (ACC) on nodule
development using the supernodulating, ethylene-insensitive
mutant sickle (Penmetsa and Cook, 1997) during the early stages
of the symbiotic interaction (Prayitno et al., 2006). Among
other findings, authors observed that Sinorhizobium inoculation
increased the abundance of one ACC oxidase isoform in wild-
type roots but not in sickle roots, suggesting that a feedback
mechanism regulates the expression this gene. Nevertheless,
subsequent work using RNA-seq techniques has shown that
at least three genes of the ACC oxidase family are induced
in sickle upon inoculation (Larrainzar et al., 2015), which
highlights the usefulness of combining data at the proteomic and
transcriptomic level.

Further characterization of specific metabolic pathways using
absolute quantification techniques has been also applied to this
model legume, including the detailed analysis of the nitrogen
assimilation and ethylene biosynthesis pathways in root nodules

(Larrainzar et al., 2009, 2014). Similarly, the symbiotic proteome
of soybean, a crop of major economical importance, has been
also extensively studied. A time-course proteomic analysis of wild
type and the soybean mutant SS2-2, which lacks autoregulation
of nodulation, has revealed that there is a protein-mediated
suppression of defense-related responses in root cells upon
inoculation with Rhizobium bacteria (Lim et al., 2010). A similar
observation was done when comparing the proteomic changes
associated to inoculation of soybean plants with differential
nodulation capacities (Salavati et al., 2012). In this work, a
correlation between the levels of a peroxidase isoform and
levels of nodulation was found, although the regulation did
not occur at the transcript level. The plant fraction of soybean
nodules has been also subjected to proteomic analysis, leading
to the identification of 69 proteins mainly related to carbon and
nitrogen metabolic activities (Oehrle et al., 2008), similarly to
previous observations inM. truncatula.

Since root hairs are most frequently the main entry point for
Rhizobium bacteria, several works have been devoted to identify
the proteomic changes occurring in this specialized root cell upon
inoculation. This work has the obvious technical limitation that
collecting sufficient amount of plant material is challenging and
requires a large number of plants per proteomic sample, with
estimations of around 1,500 soybean roots and 4,000 soybean
seedlings (Wan et al., 2005; Brechenmacher et al., 2009). A
time course of the proteomic changes occurring in root hairs
revealed that there is a specific induction of phospholipases
and phosphoglucomutases, as well as a lectin and an actin
isoform upon inoculation (Wan et al., 2005). Under uninoculated
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conditions, Brechenmacher et al. (2009) combined traditional
2D-PAGE and shotgun methods for the identification of 1,492
proteins present in root hairs, establishing a reference map for
future work.

Several recent studies have provided broad insights into the
systemic effects the legume-Rhizobium symbiotic interaction at
the root and, especially, leaf metabolic level (Staudinger et al.,
2012, 2016; Desalegn et al., 2016; Turetschek et al., 2016).
In all these studies, one of the major response found was
related to a significantly induction of the plant translational
apparatus and an accumulation of plant proteins involved in
stress responses.

Subcellular Proteomics Sheds Light on
Protein Localization at the Symbiotic
Interface
Proteomic approaches are particularly suited to gain
information about protein subcellular localizations. Analyses
of enriched fractions or, ideally, purified organelles, or sub-
organelle compartments allow the validation of protein
compartmentalization and isoform localization data.
Furthermore, subcellular fractionation provides valuable
information on the specific changes in the proteome of
organelles in response to various stresses, allowing for the
development of accurate proteomic pathways and networks
(Hooper et al., 2014). Legume plants have been also subjected
to this type of analysis. Most of work, however, has been done
under non-symbiotic conditions. Comprehensive reviews in the
field of subcellular proteomics in legumes have been published
elsewhere (Lee et al., 2013; Wang and Komatsu, 2016; Yin and
Komatsu, 2016). Thus, in the current review we will discuss
subcellular proteomic works with a symbiotic focus.

Nodules are complex structures containing a combination of
infected and non-infected plant cells. Infected cells are filled with
nitrogen-fixing bacteroids arranged in symbiosomes surrounded
by a specialized plant membrane named peribacteroidmembrane
(PBM). The identification of proteins present in this specialized
membrane is of key relevance, since it represents the direct
interface where nutrient and signal exchange occurs between the
legume host plant and Rhizobium bacteroids. In order to identify
which proteins are localized at the PBM, extensive proteomic
work has been carried out in this membrane fraction. Panter
et al. (2000) carried out one of the first studies, with the 2D-
PAGE analysis of the PBM of soybean nodules. The proteomic
characterization of the pea PBM and peribacteroid space, a much
more challenging approach, has also been studied (Saalbach et al.,
2002). In this work, proteins of the Coatomer-coated vesicles
like V-ATPase, BIP, were found in the PBM fraction, supporting
the role of the endomembrane system in PBM biogenesis. These
studies were followed by more comprehensive LC-MS/MS-based
analyses of the PBM in legumes such as L. japonicus (Wienkoop
and Saalbach, 2003), M. truncatula (Catalano et al., 2004), and
more recently, soybean (Clarke et al., 2015). Identification of
protein components in these membranes has been shown an
essential first step for increasing our knowledge on the metabolic
exchange processes between plant and bacteroid. For instance,

the proteomic analysis of the PBM in L. japonicus led to
the identification of a symbiosis-specific sulfate transporter 1
(SST1) and around 80 other abundant membrane or membrane-
associated proteins such as the hypersensitive response protein
and remorin (SYMREM1; Wienkoop and Saalbach, 2003). Both
SST1 and SYMREM1 have subsequently been characterized
in detail and shown to be relevant for nodule development
and functioning (Krusell et al., 2005; Lefebvre et al., 2010;
Toth et al., 2012; Domonkos et al., 2013; Kalloniati et al.,
2015).

Post-Translational Modifications Fine-Tune
Symbiotic Events
One of the strengths of mass spectrometry-based proteomic
approaches is that it allows the identification of post-translational
modification (PTM) sites in proteins, something that cannot be
accurately predicted with genomic information alone. PTMs have
a huge impact on plant signaling and metabolism, contributing
to the regulation of protein activity, stability/degradation,
interactions, and ultimately gene expression. In recent years, the
number of studies focused on the identification of PTMs in plants
has considerable grown (for an extensive review, see Friso and
van Wijk, 2015). Particular interest has received the large-scale
identification of phosphoproteins at early stages of the legume-
Rhizobium symbiotic interaction. The reason behind this interest
is that a number of protein kinases have been shown essential
for rhizobial infection and/or nodule development. These include
LysM-domain-containing receptor kinases, implicated in the
binding of Nod factors, as well as other membrane receptor-
like kinases and calcium/cadmodulin-dependent protein kinases
(Antolín-Llovera et al., 2014). Analysis of the phosphoproteome
at early symbiotic stages has been carried out in L. japonicus roots
(Serna-Sanz et al., 2011), soybean root hairs (Nguyen et al., 2012),
and M. truncatula roots both applying discovery proteomics
(Rose et al., 2012) and targeted approaches (van Ness et al., 2016).
These studies are important first steps toward understanding how
Nod-factor signaling is transmitted from the plasma membrane
and decoded to activate the developmental reprogramming
root cells undergo to allow nodule formation. Previous
studies identified several phosphoproteins present in mature
nitrogen-fixing nodules, including several phosphopeptides in
sucrose synthase 1 and alkaline invertase, the main sucrose-
degrading enzymes in this specialized organ (Wienkoop et al.,
2008). Similarly, large-scale analyses of M. truncatula roots
(Grimsrud et al., 2010) or during nodulation (Marx et al.,
2016) have allowed the identification of a repertoire of in vivo
phosphorylated peptides and phosphorylation motifs, which can
be queried online (http://www.phospho.medicago.wisc.edu and
http://compendium.medicago.wisc.edu, respectively).

Ubiquitination is another PTM that plays important roles
for rhizobial infection and nodule organogenesis in legumes.
For instance, proteins such as the receptor kinase M. truncatula
LYK3 has been found ubiquitinated in vitro by the E3 ubiquitin
ligase PUB1 (Mbengue et al., 2010) and a deubiquitinating
enzyme named AMSH1 has been shown to be required for
the establishment of an effective symbiosis in L. japonicus
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(Małolepszy et al., 2015). However, to our knowledge, the large-
scale identification of ubiquitinated proteins under symbiotic
conditions has not been carried out to date.

The role of the signaling molecule nitric oxide and its
associated protein modifications, nitrosylation and nitration, has
also drawn considerable attention in legume studies. At the level
of root nodules, two proteins have been identified as targets
of Tyr nitration: the ammonium-assimilating enzyme glutamine
synthetase (GS; Melo et al., 2011; Blanquet et al., 2015) and the
hemeprotein leghemoglobin (Sainz et al., 2015). In the latter work
it was found that leghemoglobin not only plays an important role
as anO2 transporter butmay also act as sink of toxic peroxynitrite
and thus be part of a protective mechanism in symbiosis.

Other PTM studies in the field include the identification of
sulfenylated proteins in the M. truncatula-S. meliloti symbiosis
(Oger et al., 2012). Interestingly, both in the plant and bacterial
partners a large proportion of the identified proteins were
related to the glycolytic pathway, tricarboxylic acid cycle and
amino-acid metabolism, including one of the nodule-enhanced
sucrose synthase isoforms. Additionally, a cytosolic isoform of
glutamine synthetase has been found as a target of sulfoxidation,
although this modification did not alter the activity of the enzyme
(Matamoros et al., 2013).

PROTEOMIC STUDIES ON THE
LEGUME-AM FUNGI SYMBIOSIS

The plant-AM fungi (Glomeromycota) is the most extensively
observed association with roots of land plants (>80%; Schüβler
et al., 2001). The symbiotic interaction includes formation of
appressoria on the root surface, the entrance into the root
epidermis, proliferation within the cortical parenchyma and the
formation of arbuscule structures (Giovannetti et al., 1996).
These hyphal branches are surrounded by a plant-derived plasma
membrane, called periarbuscular membrane (Alexander et al.,
1989; Harrison, 1999). Similarly to the PBM, this membrane is
the actual site of the plant-microbe interaction. AM symbiosis
is described as a bilateral nutritional beneficial association
whereby AM fungi supply plants primarily with phosphorus
and also nitrogen, while plants provide corporate fungi with
carbohydrates (Harrison, 1999). At the gene level, the induction
of phosphate transporter genes during AM symbiosis has been
reported in several plant species (Rausch et al., 2001; Harrison
et al., 2002; Paszkowski et al., 2002). By analyzing the protein
profiles of the periarbuscular membrane, the localization of such
transporters can be confirmed, as demonstrated in the model
legume M. truncatula (Harrison et al., 2002). Further proteomic
works in this legume have identified changes in the levels of H1-
ATPase and a predicted glycosylphosphatidylinositol-anchored
blue copper-binding protein in response to AM-association
(Gianinazzi-Pearson et al., 2000; Bestel-Corre et al., 2004; Valot
et al., 2006). The high H1-ATPase activity was described to
support the existence of an active nutrient transport between the
partners (Ferrol et al., 2002).

Recently, Abdallah et al. (2014) examined the profile of
the M. truncatula root membrane proteome after microsomal

enrichment. The most abundant organelle components that
were retrieved encompassed the plastid, the nucleus and
the plasma membrane. Comparing AM-colonized vs. non-
mycorrhized plants, they found a lysine/histidine transporter,
as well as a differential abundance of about 100 other proteins
upon mycorrhization, including known sulfate transporters,
the above described H1-ATPase and blue copper protein.
Comparison betweenmutants with contrasting AM-colonization
genotypes showed differences at the level of appressorium-
responsive proteins (Amiour et al., 2006). Another proteomic
study on M. truncatula roots colonized with two different
Glomus species identified a conserved plant responses to
mycorrhizal colonization, which include proteins related to
redox homeostasis, carbon metabolism, and energy generation
(Recorbet et al., 2010). In this regard, a closer look into the
root plastid proteome revealed that arbuscule development was
potentially slowing down the hosts anabolic reactions such as
N assimilation, fatty acid biosynthesis, glycolysis, and pentose
phosphate pathway (Daher et al., 2016). Authors also proposed
that the reduced C and N assimilation was concurrent with the
reallocation of other molecules, possibly to be stored as N-rich
compounds. In addition and in accordance with investigations of
the leaf proteome of P. sativum (Desalegn et al., 2016), they also
found an AM symbiosis-induced oxidative stress signature.

All in all, a strong influence of the AM symbiosis on the plant
metabolism has been evidenced by these proteomic studies, a
response that may be comparable to the previously described
systemic resistance induced by rhizosphere bacteria (van Loon
et al., 1998).

PROTEOMICS AS A TOOL TO IDENTIFY
STRESS RESPONSES IN LEGUMES
UNDER SYMBIOTIC CONDITIONS

Legume-Microbe Interactions and Abiotic
Stress Alleviation
Although a number of proteomic studies have been published
on the response of legumes to abiotic stresses, in most studies,
however, plants under study have not been grown under
symbiotic conditions. For instance, analyses of peanut (Arachis
hypogaea L.) varieties with contrasting tolerance to water deficit
have shown a relation between plant tolerance to the stress
and the abundance of proteins involved in stress signaling and
wax biosynthesis in leaves (Kottapalli et al., 2009). A similar
approach was taken by Katam et al. (2016) who identified
proteins related to nitrogen metabolism, defense and cellular
biogenesis exclusively in the tolerant peanut cultivar. Abiotic
stress responses in a major legume crop like soybean have been
reviewed elsewhere (Hossain et al., 2012, 2013; Hossain and
Komatsu, 2014; Komatsu et al., 2015). Here we will focus on the
proteomic works analyzing the effects of abiotic stress of legumes
grown under symbiotic conditions.

Regarding the legume-Rhizobium symbiosis, the effects of
drought stress on the M. truncatula nodule proteome have been
characterized in most detailed. Proteomic analysis of the plant
protein fraction of drought-stressed nodules showed a general
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decline in enzymes involved in symbiotic nitrogen fixation
and N assimilation (Larrainzar et al., 2007). In contrast, the
microsymbiont showed an accumulation of chaperonins and
heat-shock proteins, along with enzymes involved in energy
metabolism. In a later study, the application of an integrative
proteomic and metabolic approach to M. truncatula nodules
allowed the identification of the main effects of drought
followed by a recovery treatment (Larrainzar et al., 2009).
Both works highlighted the role of enzymes related to sulfur
assimilation in nodules, with the identification of a specific,
nodule-enhanced methionine synthase isoform responding to
water deficit conditions. Thus, in a subsequent work, Larrainzar
et al. (2014) analyzed in detail the involvement of sulfur
metabolism in the nodule response to drought. Gene expression
and absolute quantification of proteins in the methionine and
ethylene biosynthesis pathways were found strongly down-
regulated during drought, demonstrating the contribution of
nodule sulfur metabolism and the phytohormone ethylene for
nodule functioning under water deficit conditions. Using a split-
root system and proteomics, local inhibition of nitrogen fixation
and nodule metabolism was evidenced in M. truncatula and
soybean plants partially exposed to drought stress (Gil-Quintana
et al., 2013). More recently, the drought response of two legume
species was compared, finding a similar molecular response to
drought but a higher drought tolerance in the tropical legume
(Gil-Quintana et al., 2015). In this study, protein isoforms that
share same function and location could be identified across
species.

Induced systemic resistance and the positive effect of microbes
in the plant immune system has received considerable in
recent years (van Wees et al., 2008). In this line, the effect
of Rhizobium in priming plant metabolism in response to
salt and drought stress has been analyzed in M. truncatula
using a combination of proteomic and metabolomic techniques
(Staudinger et al., 2012, 2016). These works highlighted the
involvement of another group of nodule proteins in the plant
response to drought; the family of lipoxygenases, enzymes related
to lipid metabolism and jasmonate biosynthesis. Additionally,
authors found an influence of the Rhizobium symbiosis on the
abundance levels of stress responsive proteins prior application
of the stress treatment. In subsequent works, plants grown under
symbiotic conditions were found to present reduced levels of
leaf senescence under drought stress, regardless the efficiency
of the Rhizobium strain used (Staudinger et al., 2016). Authors
concluded that, besides increased jasmonate biosynthesis and
potassium ion concentrations, allocation of reserves to osmolytes
and a shift in carbon partitioning from starch to sugar are key
responses for the observed symbiont-induced stay-green effect.

The plant-AM symbiosis has been shown to have a positive
impact on the plant nutritional status, thus, improving growth
and crop productivity. In legumes, an overall enhanced tolerance
to abiotic stress has been also reported (Ruiz-Lozano et al.,
2001). However, specifically in the field of proteomics applied to
the legume-AM symbiosis, works describing this positive effect
are scarce. One of the few examples are the analyses by Aloui
and colleagues focused on the changes in the proteome of M.
truncatula roots (Aloui et al., 2009) and shoots (Aloui et al.,

2011) when colonized with the AM fungus G. intraradices in
cadmium (Cd)-free and Cd-contaminated substrates. Authors
identified nine out of 15 proteins changing under Cd treatment
in non-mycorrhizal roots that were not observed in Cd-treated,
colonized roots. In shoots Cd induced the accumulation of
proteins related to photosynthesis in plants under symbiotic
conditions. As a conclusion, when exposed to Cd, symbiotically
grown plants partially escapedmetal toxicity through a concerted
increase in shoot biomass and thanks to allocation plasticity
strategies compared to non-symbiotic plants.

Collectively, in the last decade proteomics research has
provided a significant contribution to the understanding of the
legume symbiotic interactions in response to biotic and abiotic
stress. A summary of the main conclusions drawn can be found
in Figure 1.

Biotic Stress Responses and Plant
Defense under Symbiotic Conditions
Symbiotic interactions and responses to a pathogen attack share
some features especially at the early stage of the interaction.
Legume hosts initially recognize their symbiotic partners as
potential threats, activating plant defense responses that are
subsequently down-regulated at later stages (Zamioudis and
Pieterse, 2012). Since plants under symbiotic conditions appear
to show an improved tolerance to abiotic stresses, it could be
hypothesized that a similar pattern would be observed when
challenged by pathogens. In terms of proteomic analysis, few
are the works that have analyzed this question and most studies
have been carried out on legumes grown under non-symbiotic
conditions. One of the few works on the topic analyzed the
proteomic changes occurring during the tripartite interactions
with S. meliloti, mycorrhizal fungi, and the pathogenic oomycota
Aphanomyces euteiches inM. truncatula roots (Schenkluhn et al.,
2010). Among the proteins detected after inoculation either
with G. intraradices and/or S. meliloti the highest increase
in relative content was observed for a calmodulin-2, which
could be related to the activation of Nod- and Myc-factor
signaling cascades. In agreement with previous studies, authors
observed the activation of proteins involved in antioxidant
defense and/or scavenging of reactive oxygen species. At later
stages the pathogen induced the expression of a different set
of proteins including pathogen response (PR) proteins, Kunitz-
type proteinase inhibitors, a lectin, and proteins related to
primary carbohydrate metabolism. Interestingly, the induction
of these pathogen responses occurred to a lesser extent in
plants under mixed infections (i.e., symbiotic plants infected
with A. euteiches), which indeed reinforces the idea of the
beneficial effects of symbiosis toward pathogenic infections. A
similar observation was made when analyzing the leaf proteome
and metabolome of pea plants after the co-inoculation with R.
leguminosarum and AM fungi, or either of those combined with
the pathogenic fungi Didymella pinodes (Desalegn et al., 2016).
The Rhizobium symbiosis considerably increased the levels of
proteins involved in the pisatin pathway upon pathogen attack
compared to mycorrhized, co-inoculated plants or plants under
non-symbiotic conditions. Hence, it was concluded that proteins
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FIGURE 1 | Summary of the main conclusions drawn from proteomic studies of symbiotic legume plants and their interactions under abiotic and biotic stress

conditions. Center image represents a M. truncatula plant and a magnified image of nodulated roots (left) and schematic representation of cells containing AM fungi

(right).

and pathways involved in symbiotic interactions might indirectly
be linked to specific pathogen-response pathways. However,
the regulatory link between the different molecular responses
induced by symbionts and pathogens remains unknown. In fact,
when in a subsequent work the effect of the symbionts and
pathogen disease levels were compared on two pea cultivars with
differential susceptibility, the influence of the microsymbiont was
found superimposed by genotypic resistance traits (Turetschek
et al., 2016).

INTEGRATIVE PLANT PROTEOMICS AND
LEGUME/SYMBIONT DATABASES

The storage and public availability of large proteomic data
resources is of great interest for the wider distribution of
proteomic data in the scientific community. Several databases
give either access to proteome sequence information of fully
sequenced genomes and their functional annotation such as
the Universal Protein Resource (UniProt, http://www.uniprot.
org) or even of mass spectrometry spectral identification
like ProMEX (Hummel et al., 2007; Wienkoop et al., 2012).
Nevertheless, to date genomic databases for most plant model
species, including legumes, lack proteome subcellular localization
annotation (Hooper et al., 2016). One of the best-characterized
subcellular proteome is that of the non-legume model plant
A. thaliana, which is stored in the SUBA3 database (Tanz
et al., 2013). Recently, subcellular localization data based
on gene co-expression have been extended for agriculturally

relevant plants including soybean (Obayashi et al., 2014). An
extension of this database integrating proteomic data of those
species has been also made publically available (Hooper et al.,
2016).

Although a summary of the main databases specific for
legume plants has been published elsewhere (González et al.,
2015; Ramalingam et al., 2015), the current section reviews
some additional databases that were not included above. The
platform for integrative legume biology (LEGOO; https://
www.legoo.org) offers a tool for the automatic annotation of
several legume proteomes including these of M. truncatula, G.
max and L. japonicus. One of the strengths of this database
is that it allows for the rapid identification of orthologous
genes/proteins across different legume species, simplifying the
task of tracking down proteins with multiple IDs. Recently,
Lotus Base an integral information portal providing genomic,
proteomic, and expression resources for the model legume
L. japonicus has been also made available (https://lotus.au.
dk; Mun et al., 2016). Regarding data on post-translational
modification, Schulze et al. (2015) have summarized the online
databases available in the field of phosphoproteomics for
a range of plant species, including the model legume M.
truncatula.

In terms of databases focused on the microsymbionts,
one useful platform is the RhizoGATE (http://www.cebitec.
uni-bielefeld.de/CeBiTec/rhizogate; Becker et al., 2009), which
collects several databases containing genomic and transcriptomic
information of a number of Rhizobium species. Similarly,
the RhizoBase (http://genome.microbedb.jp/rhizobase; Fujisawa
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et al., 2014) is a manually-curated genome annotation database
containing genome data for Rhizobium, including the option
of downloading data on several microsymbiont proteomes.
However, to our knowledge, the only database containing
proteomic spectral and experimental metadata on Rhizobium is
ProMEX, including spectral peptide information on S. meliloti
(955 entries) and B. japonicum (157 entries).

One major challenge of proteomic data is that the vast amount
of information generated is difficult to present in a convenient,
accessible way, thus mostly ending up in huge lists of metadata
that are difficult to access for further work. Additionally, transfer
of knowledge from one organism to another is very restricted;
even if protein functions can be estimated based on sequence
similarity, their localization and specific responses to stress
varies depending on the plant species. One example of such
comparative approach can be found in Gil-Quintana et al. (2015),
who compared the M. truncatula and soybean root nodule
proteome in response to drought. Authors found that the nodule
proteome in response to stress in grain and forage legumes was
very similar, suggesting that proteome research conducted on the
model legume might be extended to other economically relevant
crop legumes.

Taken together, there are several legume-specific proteomic
databases available. The development of a platform gathering
and allowing the analysis of this proteomic information in
legumes, similarly to the MASCP gator for the visualization
and extraction of proteomic information in A. thaliana (Joshi
et al., 2011), might be a future goal in the legume-symbiosis
community.

CONCLUSION AND FUTURE
PERSPECTIVES

This work reviews some of the most important outcomes
of proteomic analysis of the legume-Rhizobium and -AM
symbiosis and their interactions with abiotic and biotic
stresses. It has become evident that symbiotic interactions
have a significant, positive impact on the plant fitness
levels, improving their tolerance to stress conditions and
pathogen attack. Although, supplementation based on nitrogen
fertilizers under optimal conditions may still lead to higher
crop yield in global terms, the positive influence of the
microsymbiont should be taken into consideration for future
breeding programmes, particularly now under the predicted
climatic change scenarios.

During the last decade, improvements in terms of speed
and accuracy of mass spectrometric instruments has led to
about one order of magnitude increase in the amount of high-
throughput proteomic data obtained, with the identification
of >1,000 different proteins per experiment. However, these
improvements have not yet been fully exploited in the field of
the legume-microbial symbiosis. There is, for instance, growing
interest in extending the work on endogenous plant peptides
described to act as signaling molecules and shown to be involved
in plant-microbe communication (van de Velde et al., 2010).
Hence, application of peptidomic techniques may significantly

contribute to unravel the plant control mechanisms for both
beneficial and pathogenic interactions in the root microbiome.
One example of potential applications is the use of MALDI
mass spectrometric imaging, a technique that allows for the
visualization of spatial protein distributions, recently applied to
analyze changes in the levels of endogenous peptides and proteins
at different developmental stages in M. truncatula (Ye et al.,
2013; Gemperline et al., 2016). Similarly, other relatively novel
proteomic techniques are slowly being introduced in the field,
including, isotopic labeling strategies for protein turnover (Lyon
et al., 2014, 2016), or absolute quantification studies (Lehmann
et al., 2008; Larrainzar et al., 2009). Combinations of spatial and
temporal experiments are rare and there is a need of performing
phenotyping of protein abundance at the organelle level to
improve our understanding of the legume symbiotic interactions.
In this regard, it would be of great interest to connecting protein
localization with organelle abundance profiling (Parsons and
Heazlewood, 2015). This can be done through the combination
of (i) unbiased approachs using e.g., spectral count or LFQs
(Maxquant; Hoehenwarter and Wienkoop, 2010; Wienkoop,
2013a) for all proteins belonging to a target organelle (provided
that subcellular localization is known) and (ii) selective reaction
monitoring (Wienkoop, 2013b; Recuenco-Munoz et al., 2015)
of proteotypic peptides selected from abundant and organelle-
specific proteins. Also, non-aqueous fractionation, a technique
that has been demonstrated to be useful for the integrative
subcellular analysis of metabolites and proteins (Arrivault et al.,
2014), has thus far not been applied for legume symbiosis
research.

Taking into account the large number of proteins involved in
response to abiotic and biotic stresses that have been identified,
it is now necessary to integrate and compile this information
in an accessible way so that this proteomic data and the
numerous potential markers identified are analyzed in terms of
their contribution to symbiotic and pathogen signaling, nodule
formation and nitrogen-fixation efficiency, as well as in improved
stress tolerance. The growing application of CRISPR/Cas9
technology and the availability of mutant lines for several model
legumes will most likely contribute to this end. Interactions
between plant genomic and proteomic specialists and integration
of their techniques are key aspects that need to be strengthened
in the future.
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