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The functional reasons for isoprene emission are still a matter of hot debate. It
was hypothesized that isoprene biosynthesis evolved as an ancestral mechanism
in plants adapted to high water availability, to cope with transient and recurrent
oxidative stresses during their water-to-land transition. There is a tight association
between isoprene emission and species hygrophily, suggesting that isoprene emission
may be a favorable trait to cope with occasional exposure to stresses in mesic
environments. The suite of morpho-anatomical traits does not allow a conservative water
use in hygrophilic mesophytes challenged by the environmental pressures imposed or
exacerbated by drought and heat stress. There is evidence that in stressed plants the
biosynthesis of isoprene is uncoupled from photosynthesis. Because the biosynthesis
of isoprene is costly, the great investment of carbon and energy into isoprene must
have relevant functional reasons. Isoprene is effective in preserving the integrity of
thylakoid membranes, not only through direct interaction with their lipid acyl chains,
but also by up-regulating proteins associated with photosynthetic complexes and
enhancing the biosynthesis of relevant membrane components, such as mono- and
di-galactosyl-diacyl glycerols and unsaturated fatty acids. Isoprene may additionally
protect photosynthetic membranes by scavenging reactive oxygen species. Here we
explore the mode of actions and the potential significance of isoprene in the response
of hygrophilic plants when challenged by severe stress conditions associated to rapid
climate change in temperate climates, with special emphasis to the concomitant effect
of drought and heat. We suggest that isoprene emission may be not a good estimate
for its biosynthesis and concentration in severely droughted leaves, being the internal
concentration of isoprene the important trait for stress protection.

Keywords: climate change, drought and heat stress, fast-growing plants, isoprene biosynthesis vs. isoprene
emission, membrane protection, stomatal conductance
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WHY ISOPRENE EMISSION MAY
BECOME MORE RELEVANT IN A DRIER
AND WARMER CLIMATE?

Isoprene (2-methyl-1,3-butadiene), the major volatile organic
compound (VOC) emitted by biogenic sources, has driven
attention because of its impact on atmospheric chemistry and
climate (Atkinson, 2000). Globally, 0.5–0.6 Pg C are emitted as
isoprene annually, accounting for 50% of total biogenic volatile
organic compounds (BVOCs), and for 30% of non-methane
hydrocarbons emissions (Guenther et al., 2006, 2012). Isoprene is
highly volatile and reactive, and its emission by terrestrial plants
can substantially affect the concentration of tropospheric ozone
(O3), the lifespan of methane, and the nucleation, condensation
or coagulation of secondary aerosol(s) (Pike and Young, 2009;
Ying et al., 2015). In the present global change scenario, isoprene
emission (Isoe) is of major concern for several reasons.

First, urban population is expected to increase by
approximately 70% by 2050 (United Nations, 2015), and
growing megacities are hotspots of atmospheric gaseous and
particulate pollutants, with economic, sanitary and social
consequences (Baudic et al., 2016). For example, air pollution,
particularly tropospheric O3 and particulate matter, was
responsible of 34,143, and 17,800 excess deaths, in Italy and
France, respectively, during 2010 (Global Burden of Disease
[GBD], 2013; Mori et al., 2015; Baudic et al., 2016). While at null
nitrogen oxide (NOx) concentration, isoprene can even lower
tropospheric [O3], when levels of NOx are high, a single isoprene
molecule leads to the formation of several O3 molecules (Zeng
et al., 2008). In urban areas, where NOx concentration is high
(the so-called NOx-saturation regime), O3 production is highly
responsive to VOCs (Sillman, 1999; Deguillaume et al., 2008;
Ling et al., 2014). Thus, to limit O3 pollution in NOx-saturated
urban sites, policy actions aimed at reducing VOC emission may
be more effective and easier to actuate than the policies aimed
at decreasing NOx concentration (Baudic et al., 2016; Khedive
et al., 2017).

Second, conversion of isoprene-emitting forest to low-
emitting cropland to match the increasing demand for food,
globally decreased isoprene concentration by 15% during the
last century (Lathiere et al., 2010). However, the ongoing shift
to bioenergy crops (e.g., giant reed) and short rotation forests
(e.g., poplar) will likely increase isoprene load, particularly at
regional scale (Hardacre et al., 2013; Sharkey and Monson,
2014). For example, in South East Asia, the 27 Mha expansion
of land cultivated with oil palm, which can emit three times
more isoprene than the native crops (Fowler et al., 2011),
increased surface O3 by 11% (Ashworth et al., 2012). Similarly,
the expansion of short rotation forests (mainly poplar) in the
temperate northern hemisphere triggers the increase in isoprene
burden predicted for boreal Eurasia, North America, and China,
where O2/O3 mixing ratios are expected to increase up to
2.26 ppb (Ashworth et al., 2012; Hardacre et al., 2013; Zenone
et al., 2016).

Third, species from all taxonomic groups have spread around
the world, mostly because of human activities. These biological

invasions may alter the emission profile of volatiles. For
instance, Llusià et al. (2010) have found a lower emission of
isoprenoids in native species growing in Hawaii, compared to
co-occurring alien species. This was attributed to the lower
emission potential of native species relative to aliens, within any
given phylogenetic line, though further research is required to
upscale this phenomenon. Similarly, tree genera characterized
by extensive speciation and hybridization have been reported to
emit isoprene more frequently than their phylogenetically nearest
non-speciose genera (Dani et al., 2014). Isoprene, being highly
volatile (Henry’s law constant of 7,780 Pa m3 mol−1, Harley,
2013), is a ‘quick’ metabolite capable of improving photosynthetic
performance under physiological (non-stressful) (Pollastri et al.,
2014) and under transient, usually mild-to-moderate, stress
conditions (Loreto and Fineschi, 2015; Maja et al., 2016).
Furthermore, it provides protection against generalist pests
(Llusià et al., 2010; Harrison et al., 2013); thus alien species, which
lack specialist parasites, may greatly benefit from being emitters
(Laothawornkitkul et al., 2008; Mithofer and Boland, 2012).

Finally, Isoe is exponentially linked to temperature, thus global
warming is expected to increase the load of volatile compounds
(Fares et al., 2011; Lahr et al., 2015). Nonetheless, a conclusive
picture of the effect of climate change on Isoe and hence on the
chemistry of the atmosphere is far from being drawn, as the wide
range of co-occurring environmental factors (e.g., rising CO2)
may have synergic or antagonistic effects on isoprene biosynthesis
(Dieleman et al., 2012).

We focus our discussion on the effects of concomitant stress
factors on the biosynthesis and emission of isoprene, with the
aim of further exploring isoprene functional roles in hygrophylic
plants challenged by ‘novel’ environmental pressures associated
to climate change in temperate climates (e.g., Cfa, Cfb in Koppen
Geiger classification).

EXPLORING THE SIGNIFICANCE OF
ISOPRENE IN PLANTS CHALLENGED BY
STRESS

The functional reasons for Isoe are still a matter of debate
(Sharkey and Monson, 2017). It was hypothesized that isoprene
biosynthesis (Isos) evolved as an ancestral mechanism in plants
adapted to high water availability, to cope with transient and
recurrent oxidative stresses during their water-to-land transition
(Vickers et al., 2009; Loreto et al., 2014). Consistently the tight
association between Isoe and species hygrophily suggests that
Isoe may be a favorable trait to cope with occasional exposure
to stresses in mesic environments (Harrison et al., 2013; Monson
et al., 2013; Loreto et al., 2014). Instead, xeric evergreen species
inhabiting harsher environments, which require constitutive
emissions over a longer time-scale level, generally produce
compounds less volatile than isoprene, such as monoterpenes
and sesquiterpenes (Loreto and Fineschi, 2015). Fast-growing
hygrophilous Quercus species, such as most North American
and some European oaks (e.g., Q. robur) emit isoprene, whereas
isoprene is replaced by monoterpenes in xeric oaks, such asQ. ilex
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and Q. suber (Loreto et al., 1998, 2009; Sharkey et al., 2008). This
conforms the notion that marked differences in gene sequences
encoding isoprene synthase have been found not only between
plant groups, but also within each individual group (Dani
et al., 2014), and suggests that environmental conditions may
have contributed shaping the evolution of isoprenoid synthesis
(Monson et al., 2013).

Several fast-growing, isoprene-emitting plants have moved to
areas with harsher climate conditions than those of habitats they
evolved (Owen et al., 2013). In many instances, extended periods
of rainfall scarcity, which usually occur in combination with
high both solar irradiance and air temperature may pose serious
challenges to plant survival, not only to the profitable production
of biomass. Furthermore, the suite of morpho-anatomical traits
(e.g., low tissue density, thin cuticle, large vessels, high vein
density, see Reich, 2014) does not allow a conservative water
use in hygrophilic mesophytes and their ability to withstand
combined stress conditions may greatly depend on the so-called
metabolic plasticity, which mostly involves secondary metabolites
(Tattini et al., 2015). There is evidence that the biosynthesis of
isoprenoids is stimulated via ROS-signaling (Fanciullino et al.,
2014). This may help explain why the biosynthesis of secondary
metabolites, particularly of isoprene is generally uncoupled from
photosynthesis (AN) in drought-stressed leaves (Affek and Yakir,
2003; Loreto and Schnitzler, 2010; Centritto et al., 2011).

The lack of correlation between AN and isoprene
biosynthesis/emission becomes clearer when plants concurrently
face multiple stresses. Indeed, there is compelling evidence
that carbon sources alternative to recently fixed CO2 may have
particular significance when photosynthesis is constrained by
stress (Brilli et al., 2007). These alternative carbon sources may
include: non-structural carbohydrates (Kreuzwieser et al., 2002;
Funk et al., 2004; Schnitzler et al., 2004); phosphoenolpyruvate
imported from the cytosol (Rosenstiel et al., 2003; Fortunati
et al., 2008; Jardine et al., 2010); re-fixation of respired CO2
(Loreto et al., 2004); isoprenoid precursors from the cytosolic
mevalonate pathway (Flügge and Gao, 2005); photorespiratory
carbon (Jones and Rasmussen, 1975). Carbon derived from
photorespiration may have particularly value in sustaining
Isos when plants experience intense drought and heat stresses
(Jardine et al., 2014). Drought stress depresses photosynthesis
to a greater extent than photorespiration (Atkin and Macherel,
2009), particularly at high temperatures (Centritto et al.,
2011), while elevated temperatures enhance both the substrate
(DMADP) availability and the activity of isoprene synthase
(Rasulov et al., 2010). Air temperature mostly regulates Isos in
plants growing at light intensities that saturate photosynthesis
(Monson, 2002; Mayrhofer et al., 2005; Fares et al., 2011;
Niinemets and Sun, 2015), since Isoe does not saturate even at
very high photosynthetic photon flux density (>2000 µmol m−2

s−1, Geron et al., 2006; Loreto and Schnitzler, 2010).
In plants concurrently experiencing water and heat stress,

stomatal closure reduces latent heat and exacerbates sensible heat
load (Tattini et al., 2015). In particular, hygrophilic isoprene-
emitters steeply close stomata, even at moderate drought, to
avoid tissue dehydration (Brilli et al., 2007; Tattini et al., 2015;
Velikova et al., 2016). These are the conditions under which

isoprene biosynthesis is largely stimulated. Isoprene has been
reported to enhance drought resistance of many fast-growing
species, including tobacco and poplars. In all cases, isoprene-
emitting lines showed reduced depression of photosynthesis, and
less oxidative damage than non-emitting lines, when exposed to
drought (Ryan et al., 2014; Tattini et al., 2014; Vanzo et al., 2017).

ISOPRENE MODE OF ACTION: FACTS
AND SPECULATIONS OF AN OPEN
DEBATE

Because isoprene is costly for leaves (20 ATP and 14 NADPH
for each molecule of isoprene produced by CO2 fixation
through photosynthesis) (Sharkey and Yeh, 2001) the great
investment of leaves for Isos under stressful conditions must
have functional reasons (Sharkey and Monson, 2017). Isoprene
may play multiple functions in countering the detrimental
effects of supernumerary photons reaching the chloroplast,
when the leaf ability to process radiant energy to carbon
fixation is severely constrained by environmental stressors
(Loreto and Schnitzler, 2010). Isoprene is effective in preserving
the integrity of thylakoid membranes (Velikova et al., 2011,
2015). Populus × canescens lines where Isos is suppressed
displayed reduced photosynthetic electron transport rate (ETR)
during heat stress, and did not recover photosynthesis at the
level of the corresponding isoprene-emitting lines after relief
from stress (Behnke et al., 2007). The protective functions
of isoprene on membrane-associated processes (also observed
under ‘physiological’ conditions, Pollastri et al., 2014) may not
depend simply on the hydrophobic interaction between isoprene
and the lipid acyl chains of membranes (Siwko et al., 2007), as
isoprene concentration inside membranes is too low to effectively
modulate their bulk lipid phase (Harvey et al., 2015). Benefits
for membrane stability associated to Isoe may also result from
both the up-regulation of proteins associated with photosynthetic
complexes (Velikova et al., 2014) and the enhanced biosynthesis
of relevant membrane components, such as mono- and di-
galactosyl-diacyl glycerols and unsaturated fatty acids (Velikova
et al., 2015). In simpler terms, isoprene-induced improvement
in the use of radiant energy to carbon fixation may reduce
the risk of photo-oxidative stress in isoprene-emitting leaves.
Protection of photosynthetic membranes may be induced by
isoprene indirectly, as isoprene is also known to scavenge reactive
oxygen species (ROS) (Loreto and Velikova, 2001; Affek and
Yakir, 2002; Velikova et al., 2004). The antioxidant effect of
isoprene is especially clear in the case of singlet oxygen (1O2), the
most dangerous ROS in chloroplasts. This effect was empirically
demonstrated by Velikova et al. (2004), and has now been
theoretically framed (Zeinali et al., 2016). ROS scavenging inside
leaves explains the formation of isoprene oxidation products,
mostly methyl-vinyl-ketone and methacrolein, in plants exposed
to a wide range of stressors, especially heat, in both controlled
(Jardine et al., 2012, 2013) and field conditions (Cappellin et al.,
2017).

Despite the large body of evidence summarized above, there
are open questions that still challenge the idea that isoprene
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might have a definite role in plant protection. Why did only
about 20% of the plants worldwide develop the capacity to
emit isoprene? (Loreto and Fineschi, 2015). Why are these
plants spread all over biomes and climatic areas (Loreto and
Fineschi, 2015), and are not concentrated where stress protection
becomes more relevant for securing plant survival, growth, and
reproduction?

In many instances, Isoe increases under mild to moderate
drought, but declines steeply when plants face severe drought
(Brilli et al., 2007, 2013; Centritto et al., 2011; Tattini
et al., 2014, 2015). Therefore, it has been hypothesized that
isoprene plays a beneficial role only in response to mild
stress, whereas non-volatile, more stable metabolites, produced
through the same metabolic pathway of isoprene (the MEP
pathway, i.e., carotenoids and abscisic acid), serve functions
of greater significance when plants are challenged by severe
stress. This is a revisited formulation of the “opportunistic
hypothesis”, firstly postulated by Owen and Peñuelas (2005).
For example, in Xerophyta humilis, Isoe ceased at 5% RWC,
but zeaxanthin replaced isoprene to enhance membrane
stability, thus allowing prompt chloroplast re-assembly upon
re-watering of this resurrection plant (Beckett et al., 2012).
Recent evidence suggests that isoprene may serve antioxidant
functions (sensu lato) of increasing significance in plants
concurrently challenged by drought and heat. Indeed, the
activities of primary antioxidants, such as antioxidant enzymes,
and the concentration of zeaxanthin may decrease in high
light-exposed plants during the hottest hours of the day,
whereas biosynthesis and emission of isoprene are promoted
in the same conditions (Brunetti et al., 2015; Tattini et al.,
2015).

Isoprene emission might even have a regulatory role,
differentially setting the flow of carbon in the MEP pathway
along stress progression. The transient increase of isoprene
biosynthesis/emission in drought-stressed leaves might serve
to use of excess reducing power, limiting the accumulation
of dimethylallyl diphosphate (DMADP) and its consequent
feedback down-regulation of the whole MEP pathway (Banerjee
et al., 2013; Ghirardo et al., 2014). Sustained isoprene formation
under stress conditions may also indirectly contribute to
increase the carbon flux into the MEP pathway leading to
the de novo biosynthesis of foliar abscisic acid, the stress
hormone controlling stomatal aperture in drying soil to
prevent water loss (Zhang and Davies, 1987). This effect
might be exacerbated when plants concurrently face high solar
irradiance and temperatures, which are known to increase the
availability of DMADP (Mayrhofer et al., 2005; Sharkey and
Monson, 2014). Thus, internal isoprene concentration (not
isoprene emission) might ‘prime for drought stress response,’
triggering a general protective function that also involves
changes in non-volatile isoprenoids, soluble carbohydrates
and phenylpropanoids (Tattini et al., 2014). This may sustain
the need of large metabolic adjustments of hygrophylic
plants suddenly facing the unpredictable pressures imposed
by “anthropogenic” planting sites, where microclimates
can be very different from those where these species have
evolved.

FIGURE 1 | The relationship between (A) internal isoprene concentration
(Isoi); (B) percent of fresh assimilated carbon lost as isoprene emission (Ciso);
(C) isoprene emission (Isoe) and stomatal conductance (gs). Isoprene
concentration was calculated using a simplified version of the equation
proposed by Singsaas et al. (1997), as Isoi = 2.83 × Isoe/gs, where the factor
2.83 is the ratio of the diffusion coefficient of water vapor through air to that of
isoprene through air; Ciso = 5 × (Isoe, µmol m−2 s−1)/(AN, µmol m−2

s−1) × 100. Non-linear correlations have been drawn using the following
exponential decay curve, Isox = a −b × χ. Data points derive from the
experimental data reported in: Brilli et al. (2007) (Populus alba:  ); Brilli et al.
(2013) (Eucalyptus citriodora: �); Funk et al. (2004) (P. deltoides: N); Tani et al.
(2011) (Quercus serrata:  ); Tattini et al. (2014) (Nicotiana tabacum: #); Tattini
et al. (2015) (Platanus × acerifolia:  ); Velikova et al. (2016) (Arundo donax:
�); Pegoraro et al. (2004) (Q. virginiana: N); Dani et al. (2014) (N,
E. occidentalis and E. camaldulensis: N); Staudt et al. (2016) (Q. pubescens:
�); Marino et al. (2017) (P. nigra: �); Brunetti et al., personal communication,
(Moringa oleifera: 1).
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IS ISOPRENE EMISSION A GOOD
PROXY OF INTERNAL ISOPRENE AND
OF PLANT STRESS RESPONSE?

Isoprene emission has been usually taken as a good estimate of
Isos, but Isoe might largely differ from Isos, e.g., as consequence
of drought-induced declines in stomatal conductance (gs). It has
been hypothesized that stomata cannot control the emission of
VOCs with high Henry’s low constant, such as isoprene, even
during rapid reductions in gs (Niinemets and Reichstein, 2003).
If Isos remains constant or even increases when stress induces
stomatal closure, then the increased gradient between the internal
and external concentration of isoprene should compensate for
the increased resistance to isoprene outflow. However, under
chronic or severe reductions of gs, isoprene concentration inside
the leaf (Isoi) largely exceeds Isoe (Velikova et al., 2016), and Isoi
might represent a more suitable estimate of Isos compared to Isoe
(Brunetti et al., 2015; Tattini et al., 2015).

It has been also speculated that lipid membranes are saturated
with isoprene even at low emission rates (because isoprene is
highly hydrophobic in its nature), and that any increase in
Isos will increase isoprene diffusion through membranes rather
than enhancing its membrane concentration (Vickers et al.,
2009). However, recent results discussed above revisited this
concept and showed that isoprene concentration in membranes
is generally low (Harvey et al., 2015). Therefore, it cannot
be excluded that steep reductions of gs may induce large
accumulation of isoprene inside leaves, on a short time-scale,
thereby altering membrane composition (Velikova et al., 2015),
while providing efficient antioxidant and priming functions.

The decline in gs is a good proxy of drought stress severity
in isohydric hygrophylic plants. The best-fit analysis reported
in Figure 1 shows a highly significant exponential decay of
Isoi with increasing gs (Figure 1A), because drought stress
strongly enhances Isoi for gs < 200 mmol m−2 s−1, whereas
Isoi is unresponsive to higher gs. The severity of drought also
significantly correlates with the investment of freshly assimilated
carbon (Ciso) to Isos (Figure 1B), indicating that a growing
fraction of photosynthetic carbon sustains isoprene formation
when the stress severely reduces gs. Ciso has also been widely
shown to positively correlate with the unbalance between the
ETR and AN (Morfopoulos et al., 2014). In fact, ETR/AN often

increases as drought become more severe, especially when AN is
constrained by diffusional limitations (at stomatal or mesophyll
level) rather than by biochemical limitations, as observed in fast-
growing mesophytes, which are usually strong isoprene emitters
(Loreto et al., 2014; Haworth et al., 2016). In contrast, there is a
poor correlation between Isoe and gs (Figure 1C). In our survey,
Isoe is almost unresponsive to mild and moderate drought-
induced depressions in gs, in both high (Platanus × acerifolia,
Populus nigra, P. deltoides, on average Isoe of 40.0 nmol m−2 s−1)
and low isoprene emitters (Eucalyptus occidentalis, Nicotiana
tabacum, on average Isoe of 4.0 nmol m−2 s−1). In species
with intermediate isoprene emission rates (on average Isoe of
10.8 nmol m−2 s−1), instead, Isoe either declines (P. alba,
E. citriodora) or increases (Moringa oleifera) following drought-
induced depression of gs. Data of our meta-analysis may help
explain why isoprene emission fails representing the intensity
of drought and heat stresses in current models (Harrison et al.,
2013; Morfopoulos et al., 2013; Sharkey and Monson, 2014). We
conclude that Isoi and Ciso, representing isoprene accumulation
inside leaves, may allow better estimation than isoprene emission
of the functional responses of plants to stress. However, we are
aware that accuracy of gs measurements is inherently low for
gs < 20 mmol m−2 s−1 so that calculations of Isoi (and to less
extent of Ciso as well) have to be taken with some caution at
very severe drought. The issue is of interest and merits further
investigation.
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