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Post-genomics era has witnessed the development of cutting-edge technologies that
have offered cost-efficient and high-throughput ways for molecular characterization of
the function of a cell or organism. Large-scale metabolite profiling assays have allowed
researchers to access the global data sets of metabolites and the corresponding
metabolic pathways in an unprecedented way. Recent efforts in metabolomics have
been directed to improve the quality along with a major focus on yield related traits.
Importantly, an integration of metabolomics with other approaches such as quantitative
genetics, transcriptomics and genetic modification has established its immense
relevance to plant improvement. An effective combination of these modern approaches
guides researchers to pinpoint the functional gene(s) and the characterization of massive
metabolites, in order to prioritize the candidate genes for downstream analyses and
ultimately, offering trait specific markers to improve commercially important traits. This
in turn will improve the ability of a plant breeder by allowing him to make more informed
decisions. Given this, the present review captures the significant leads gained in the
past decade in the field of plant metabolomics accompanied by a brief discussion
on the current contribution and the future scope of metabolomics to accelerate plant
improvement.
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INTRODUCTION

Recent years have witnessed huge developments in different ‘Omics’ fields, namely genomics,
transcriptomics, epigenomics, proteomics, metabolomics and phenomics. The information
generated by these ‘Omics’ approaches has enhanced precision and speed to the ongoing breeding
programs in developing climate smart and nutrition rich germplasm, which is key for ensuring food
security (Parry and Hawkesford, 2012). In recent times, the role of phenomics-based breeding has
become evident in improving the crop’s performance, and similarly, genomics has made notable
contribution in achieving higher genetic gains (Khush, 2001; Langridge and Fleury, 2011; Wang
et al., 2017; Xavier et al., 2017). Nevertheless, the diverse omics platforms have great potential in
improving the current understanding of important traits, enabling us to develop new strategies
for plant improvement. Among omics approaches, the metabolomics is the most complex and has
received inadequate attention in crop science, particularly for trait mapping and plant selections.
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Metabolites are indispensable component of plant metabolism
owing to their influence on plant biomass and architecture
(Turner et al., 2016). In recent years, metabolomics has
established itself as one of the major breakthroughs in
science, paving the way for accurate metabolite profiling in
microbes, plants and animals (Heyman and Dubery, 2016;
van Dam and Bouwmeester, 2016; Wuolikainen et al., 2016).
Metabolomics has the ability to detect a vast array of
metabolites from a single extract, thus allowing speedy and
precise analysis of metabolites. In other words, metabolomics
offers a comprehensive view of cellular metabolites like small
organic compounds, which participate in different cellular
events, thus representing the absolute physiological state of
a cell. In view of the rapidly advancing metabolomics, the
metabolite investigation of mutants and transgenic lines holds
potential to understand the metabolic networks and to pinpoint
the underlying candidate gene(s) (Fernie, 2003; Yonekura-
Sakakibara and Saito, 2006; Hong et al., 2016). Also, the
metabolomics helps to resolve gene‘s’ function: how a particular
gene impacts upon the metabolic pathway, and uncovers different
layers of regulation and interception between linked pathways
(Wen et al., 2015), which otherwise is difficult to achieve
by conventional assays like microarray (Kusano and Saito,
2012). An integrated approach accommodating inferences from
genomics, transcriptomics, proteomics, and metabolomics will
allow researchers for cataloging and prioritizing the genes
to improve important traits in crop species. Further, above-
mentioned omics studies have been further extended to explore
the associated regulatory steps such as epigenetic regulation,
post-transcriptional and post-translation modification. To this
end, the interactome network studies aiming to reveal molecular
interactions between biomolecules (nucleic acid, proteins, amino
acids, carbohydrates, lipids, etc.) deepen our knowledge about
the genotype–phenotype relationship (Vidal et al., 2011; Vadivel,
2015).

Metabolomics is being increasingly used in many crop
species irrespective of the availability of transgenic system
(Oikawa et al., 2008; Fernie and Schauer, 2009; Daygon
and Fitzgerald, 2013; Simó et al., 2014). The metabolomics
has the potential to facilitate selection of superior traits
and improvement of breeding materials (Zivy et al., 2015).
In conjunction with the advances in metabolomics, the
availability of whole genome sequence, genome-wide genetic
variants and cost-effective genotyping assays opens exciting
opportunity to effectively integrate metabolomics in crop
breeding programs (Hall et al., 2002; Fernie and Schauer,
2009).

The methods and tools employed in metabolomics study,
including the mass spectrometry (MS) and nuclear magnetic
resonance (NMR) spectroscopy have witnessed substantial
improvement. The currently available metabolomics platforms
have the capacity to allow large-scale metabolite surveys covering
both known as well as unknown metabolites. The deluge of such
data, however, makes annotation of metabolites a considerable
challenge (Matsuda et al., 2010; Lei et al., 2011). In this context,
the ever growing strength of bioinformatics tools coupled with
the establishment of metabolomics databases such as the one for

model plant Arabidopsis1, and others for various plant species2

have greater implications for metabolite annotation (Tohge and
Fernie, 2009; Afendi et al., 2012). A considerable amount of
data have resulted from metabolic surveys, which might support
plant improvement schemes focusing on the traits of agricultural
importance such as yield and stress tolerance. Further, rapid
generation of genome scale data by sequencing of DNA and RNA,
and by MS quantification of proteins and metabolites necessitates
integration of these information in order to devise a holistic way
of improving traits of interests (Pandey et al., 2016). Although,
most of the current studies are coming in well-established
model organisms, such studies may be of common occurrence
in other plant species as well. Scientific community currently
faces a herculean challenge of dealing with massive multi-omics
data for conducting systems-level analyses (Suravajhala et al.,
2016). In such scenario, improved statistical and bioinformatics
tools will be required to analyze these data sets together for
better consolidation, which can eventually be translated for
improving plant performance. In this review, we briefly describe
about the latest investigations on plant metabolites and the
application of metabolomics including metabolic engineering for
plant improvement.

ANALYTICAL TOOLS FOR
METABOLOMIC STUDIES

The modern metabolomics platforms involve generation of
metabolome data using two important techniques, namely NMR
and MS (Figure 1). The NMR based metabolite detection relies
upon the utilization of magnetic properties of nuclei of atoms
under magnetic field. The NMR is a non-destructive method
extensively used to identify metabolites with smaller molecular
weight (<50 kDa) for diverse applications like metabolite
fingerprinting, profiling, metabolic flux and extracting the atomic
structural information of compound present in the biological
samples (Winning et al., 2009). However, the poor sensitivity of
this technique owing to a limited coverage of low-abundance
biomarkers poses a major limitation that in turn restricts its
extensive use. Unlike NMR, greater sensitivity of MS allows
researchers to attain a wide coverage of metabolome data. This led
researchers to identify novel metabolic biomarker, and molecules
that can facilitate the reconstruction of metabolic pathways and
networks. Recently, MS has achieved greater accuracy with the
advances in the ionization methods such as atmospheric pressure
chemical ionization (APCI), electrospray ionization (ESI) and
MALDI-TOF (Issaq et al., 2009). For enhancing the throughput,
MS is usually combined with chromatography techniques
such as gas chromatography (GC), liquid chromatography
(LC), capillary electrophoresis (CE), fourier transform ion-
cyclotron resonance (FT-ICR) and field asymmetric waveform
ion mobility spectrometry (FAIMS). Notwithstanding the low
sensitivity and large sample requirement of NMR, its capacity
of identifying physical properties of ligands, binding sites on

1https://www.arabidopsis.org/biocyc/
2http://www.plantcyc.org/
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FIGURE 1 | Schematic representation of high throughput data analysis process. A set of raw data files is read after file conversion to desired formats. Data cleaning
involves cleaning input file to remove false positives through noise reduction and background correction. Feature extraction is used to differentiate individual peaks
from overlapped or closely aligned ones. Additionally, compounds can be identified by analyzing spectra and chemical compound structures available in the
metabolomics library or databases.

protein, uncovering structures of protein ligand complexes
and direct binding of target protein retains its use over
MS.

The GC-MS platform is widely used for non-targeted analysis
(Dutta et al., 2012). GC-MS approach involves derivatization
of samples which makes the compounds volatile; however,
this leaves underivatized compounds (except hydrocarbon)
unnoticed during analysis. Introduction of GC X GC-TOF-MS
has notably improved the separation of co-eluting peaks
(deconvoluted peak) and also facilitated higher sample
throughput (Ralston-Hooper et al., 2008). LC-MS mostly
uses ESI and APCI; it has been widely used for targeted and
non-targeted approach to detect both primary and secondary
metabolites of higher mass i.e., <1500 Da (Turner et al.,
2016). Additionally, the combination of UPLC with QTOF-MS
has increased the peak resolution, mass accuracy and rapid
identification of hundreds of metabolites in a short span of
time (Chawla and Ranjan, 2016). In addition to these platforms,
CE-MS provides high-resolution separation of different groups
of analytes (charged, neutral, polar and hydrophobic) in both
targeted and untargeted metabolomics studies (Ramautar
and de Jong, 2014). FT-ICR-MS driven by high-resolution
mass analysis facilitates detection of large-scale metabolite
species with high accuracy (Brown et al., 2005), which could
also be combined with separation techniques in order to
resolve “very complex matrices” (Schrader and Klein, 2004)
and to tackle other issues including ion separation (Lopes
et al., 2017). Additionally, FAIMS or differential mobility
spectrometry (DMS) an ion mobility based electrophoretic
technique coupled with MS. The FAIMS technology was
used for the detection of biological samples like volatile
compounds formed during bacterial growth (Zrodnikov and
Davis, 2012).

Exhaustive data set generated from above high throughput
tools are processed through data processing platforms like
MET-COFEA, Met-Align, ChromaTOF, MET-XAlign, etc.,
(Pegasus, 2007; Lommen et al., 2012; Kessler et al., 2014;
Zhang et al., 2014, 2015; Ma et al., 2016; Misra and van der
Hooft, 2016; de Souza et al., 2017). This basically includes
baseline correction, alignment, separation of co-eluting
peaks (deconvolution), normalization, etc. (Figure 1) prior
to identification of compounds. Metabolome databases like
METLIN, NIST, GOLM etc., can be used for identification of
metabolites (Johnson and Lange, 2015). Further, the identified
metabolites data are subject to statistical analysis such as
correlation map, principal component analysis (PCA), partial
least squares (PLS), K-means clustering, boxplot, heatmap,
reconstructing metabolic pathways etc., by using web tool and
softwares such as MetaboAnalyst, Cytoscape, Statistical analysis
tool etc., (Tsugawa et al., 2015; Xie et al., 2015). These analyses
are useful to monitor and identify metabolic markers associated
with several agronomic traits.

METABOLOMICS FOR IMPROVEMENT
OF FRUITS

Metabolomics studies have provided greater insights in fruit
biology specially related to ripening and quality. Tomato
(Solanum lycopersicum) is a rich source of carotenoids, anti-
oxidants and flavonoids (Tohge and Fernie, 2015). Metabolite
segregation pattern of 50 tomato cultivars showed close
agreement with segregation of fruit’s size (Moco et al., 2008).
Metabolome is useful to dissect the ripening event by plotting a
correlation with fruit transcriptome (Carrari et al., 2006; Osorio
et al., 2011). Metabolome can be used to elucidate diverse and
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differential biochemical pathways exist in the fruits of tomato
ILs and Ecotypes (Toubiana et al., 2012; Upadhyaya et al., 2017),
and the ancestral species through genome wide metabolic survey
(Perez-Fons et al., 2014).

Apple (Malus spp.) contains beneficial nutrients in the peel
and flesh, including antioxidants that reduce the risk of chronic
diseases such as asthma, cancer, cardiovascular disease, and
diabetes (Boyer and Liu, 2004). The metabolite contents of the
apple fruits are used to differentiate commercially important
cultivars (Cuthbertson et al., 2012). For example, the cultivar
‘Golden Delicious’ contains a high load of myo-inositol, sugars
and succinic acid; whereas, the cultivars ‘Red Delicious’ and
‘Fuji’ show relatively higher abundance of triterpene/sterols,
flavonoids, phenolic acids, stearic acid, anthocyanins, and
carbohydrates. The fruit peel extract of ‘Fuji’ contained high
levels of carbohydrate including glucose and sorbitol, and was
significantly differentiated from ‘Red Delicious’ and ‘Granny
Smith’ which contain high levels of unsaturated fatty acids
(oleic and linoleic acid). Spatial distribution of sugars and
organic acids between fruit layers has been elucidated in a
recent study on metabolic profiling of apple fruit (Cebulj et al.,
2017). The browning of apple fruits during storage renders them
unmarketable, thus exerting an adverse impact on the apple
industry. The metabolomics study on stored apple fruits showed
a difference in the level of primary metabolites with different time
duration (Hatoum et al., 2014). The increased levels of mannose
and xylose during post-harvest indicated a breakdown of cell
wall hemicellulose, which enhances fruit senescence. The study
by Hatoum et al. (2016) established a relation between metabolic
regulation during post-harvest storage and cellular respiration
and stress.

In recent years, the Kiwifruit (Actinidia Lindl. spp.) has
gained popularity in international markets due to its distinct
appearance and the health benefiting nutrients such as vitamin
C and fiber (Ward and Courtney, 2013). A total of 51
metabolites were detected during kiwifruit development and
ripening (Nardozza et al., 2013). The content of soluble sugars
and ascorbate significantly changes during ripening, which
eventually determines the fruit quality and taste (Nardozza
et al., 2013). Hence, the quality and flavor of Kiwifruit can be
improved by targeting the metabolites that can render consumer
acceptance. In Kiwifruit, application of synthetic cytokinin N-(2-
chloro-4-pyridyl)-N′-phenylurea significantly increases fruit size,
and affects the ripening processes by altering the accumulation
pattern of metabolites such as amino acids, sugars, organic acids
etc., (Ainalidou et al., 2015).

The quality and taste of orange (Citrus spp.) fruit depend on
the composition of metabolites such as organic acids, sugars,
vitamins, flavonoids, and carotenoids. The metabolomics study
of orange bud mutant ‘Hong Anliu’ (accumulates higher levels of
lycopene and sweeter than wild type) led to the identification of
130 metabolites that include acids, sugars, flavonoids, alkaloids,
limonoids, coumarins, amino acids, and plant hormones (Liu
et al., 2007; Pan et al., 2014). The flavor and the taste of ‘Hong
Anliu’ sweet orange was determined by the higher levels of
soluble sugars and lower levels of organic acids along with
differential levels of flavonoids at ripe stage.

The infection of Candidatus Liberibacter asiaticus, causal
agent of Citrus Huanglongbing disease, deteriorates juice quality
(Slisz et al., 2012). The infection leads to severe decrease in
glucose, fructose, sucrose and amino acids such as alanine,
arginine, isoleucine, leucine, proline, threonine, and valine;
whereas, it enhances the levels of citrate and phenylalanine.
Heat treatment of fruit is widely used as a means to avoid fruit
infection during post-harvest storage, which is well supported by
metabolomics study. In a study, the heat treatment significantly
decreased the content of organic acids and amino acid; however,
it promoted the accumulation of metabolites such as 2-keto-D-
gluconic acid, tetradecanoic acid, oleic acid, ornithine, succinic
acid, myo-inositol, glucose, fructose, sucrose, and turanose,
which reduces the risk of post-harvest infection (Yun et al.,
2013). Recently, ABA is reported to serve as a regulator of citrus
cuticular wax biosynthesis during fruit development (Wang et al.,
2016).

In grape (Vitis vinifera), the fruit setting relies upon the
abundance of metabolites, and is regulated by the reprograming
of hormones and sugar metabolism pathways (Domingos
et al., 2016). The effect of geographical distribution on
grape metabolite content is well documented (Son et al.,
2009). The grapes grown in the regions perceiving high
sun light-low rainfall show enhanced content of sugars and
amino acids, Na and Ca, along with low levels of organic
acids, suggesting the role of extrinsic factors on grape fruit
qualities. The metabolite abundance in grapes berry that
is reported to be stage specific and cultivar dependent,
regulates the ripening processes (Cuadros-Inostroza et al., 2016).
Stilbenes are the major polyphenols present in the grapes that
determine the quality of drinking wine. The MS analysis of
grapes allowed the detection of several bioactive stilbenes like
ampelopsin H, caraphenol, isohopeaphenol, trans-resveratrol,
Z- and E-astringin, piceatanno, Z- and E-piceid, B pallidol
and pallidol-3-O-glucoside and parthenocissin A (Flamini et al.,
2015). The study focused on the polyphenolics content of the
grape identified upto 450 compounds including anthocyanin,
glycoside aroma precursors, flavanols and procyanidins, flavones
and flavanones, phenolic acids and stilbenes. Particularly, this
study allowed identification of several 100 compounds, which
were used to build a new database of putative compounds (Grape
Metabolomics).

Pear (Pyrus communis), a member of Rosaceae, is grown
worldwide for its unique ‘melting’ texture. Japan is one of the
largest producers of pears. The metabolomics analysis of pear
fruit confirmed differential accumulation of ∼250 metabolites
during fruit development and ripening (Oikawa et al., 2015).
Ripening of pear fruit manifested accumulation of sugars (e.g.,
sucrose), sulphur-containing amino acids, phytohormone such as
ABA and brassinosteroids. This study reported detection of 15
phytohormones including abscisic acid, auxin, brassinosteroids,
gibberellins, jasmonic acid and salicylic acid. The blooming stage
shows a substantial increase of the metabolites (amino acids and
organic acids), which further decreases during fruit development.

Like pears, strawberry (Fragaria × ananassa) is rich in
secondary metabolites such as flavonoids. The process of
gain and loss of strawberry fruit flavors during evolution
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and domestication was illustrated by Aharoni et al. (2004).
The cultivated species of strawberry predominantly contain
terpenoids such as monoterpene linalool and the sesquiterpene
nerolidol. Whereas, the wild species were rich in the olefinic
monoterpenes and myrtenyl acetate. Surprisingly, these were
absent in the cultivated species (Aharoni et al., 2004). The
untargeted (GC-MS) and targeted (HPLC) based studies of
strawberry fruits were employed at seven different stages of
fruit development. The metabolic study revealed a shift in the
metabolite content during fruit development and ripening. The
strawberry ripening involved rise of free amino acid content, with
change in sugar content, including substantial changes in other
major metabolic pathways such as ester biosynthesis, shikimate,
and tricarboxylic acid (Zhang et al., 2011).

The effect of biotic stress and the fungicide (to avoid biotic
stress) on strawberry quality was evaluated by quantitative
estimation of primary and secondary metabolites accumulated
in the infected and non-infected fruits (Mikulic-Petkovsek
et al., 2013). The Colletotrichum nymphaeae infection induces
accumulation of sugars and reduces the organic acid content.
The infected fruits displayed altered content of metabolites such
as ellagic acid derivatives, flanonols, flavan-3-ols, oligomeric
procyanidins and total phenolics. Recent work by Nagpala et al.
(2016) revealed an increase in the polyphenol levels in white-
fruited species of strawberry as a result of infection from fungal
pathogens viz. Botrytis cinerea and Colletotrichum acutatum.

METABOLOMICS FOR IMPROVEMENT
OF LEGUME CROPS

Forage and grain legumes contribute 27% of the world
gross primary crop. The grain legumes alone cater 33% of
required human dietary protein, contribute to food security
and environmental sustainability (Graham and Vance, 2003;
Ramalingam et al., 2015). Notwithstanding the extensively
investigated model legumes, metabolomics studies in other
legumes remain limited. Concerning model legume, investigation
of the effect of rhizobial node factor (Nod) in Medicago revealed
a decrease in oxylipins (Zhang et al., 2012). In another study,
metabolic profiling of salt tolerant Lotus species uncovered
a series of changes involving metabolic adjustments of shoot
constituent for survival (Sanchez et al., 2011).

Stress conditions such as salinity and anoxia result in an
accumulation of alanine, and its biosynthesis co-substrates such
as glutamate and GABA, and succinate in soybean (Rocha
et al., 2010b). Differential expression was also obtained for
genes involved in nitrogen fixation and fermentation in root.
Interestingly, a negative correlation was observed for the amino
acid derived from glycolysis and the TCA cycle during water
logging, and several TCA cycle enzymes were induced upon
exposure to water logging (Rocha et al., 2010a). Likewise, an
attempt to elucidate the metabolic changes associated with
flooding stress in soybean led authors to identify a set of 81
mitochondria associated metabolites, thus suggesting a boost
in concentrations of metabolites involved in respiration and
glycolysis such as, amino acids, NAD and NADH coupled with

the depletion of free ATP (Komatsu et al., 2011). Under drought
and salinity conditions, metabolite phenotyping of four different
Mediterranean accessions of lentil suggested a decrease in
intermediates of the TCA cycle and glycolytic pathway (Muscolo
et al., 2015). Importantly, this study yielded metabolite markers
for specific stress; such as threonate, asparagine/ornithine and
alanine/homoserine for NaCl, drought and salinity, respectively.
Another study that aimed to assess the impact of water deficiency
on Lupinus albus demonstrated plant stem serving as a storage
organ for sugars and amino acids (Pinheiro et al., 2004).
Importantly, tolerant plant accumulated significantly higher level
of metabolites such as asparagine, proline, sucrose and glucose
in the stem stelar region (Pinheiro et al., 2004). The authors
proposed reorganization of nitrogen and carbon metabolism
pathways in plants in order to tolerate salinity stress. In soybean,
consistent increase in pinitol (sugar alcohol, osmoprotectant)
was reported in the tolerant plant at both normal and drought-
stressed conditions (Silvente et al., 2012). Similarly, accumulation
of sucrose, free amino acids and soluble proteins was observed in
tolerant soybean in response to water stress (Tripathi et al., 2015).

METABOLOMICS FOR IMPROVEMENT
OF CEREAL CROPS

Cereals remain the prime source of nutrition worldwide owing
to their grains rich in vitamins, minerals, carbohydrates and fats
(Sarwar et al., 2013). Cereals have been widely studied in order
to quantity variation in metabolites and their association with
sequence variation (Chen et al., 2014, 2016). In rice, different
research groups have harnessed the potential of metabolomics
in order to explore the metabolites diversity between different
varieties and natural variants (Kusano et al., 2007; Redestig et al.,
2011; Gong et al., 2013; Hu et al., 2014, 2016; Kusano et al.,
2015; Chen et al., 2016; Okazaki and Saito, 2016). Similarly,
metabolomics studies in maize have allowed researchers to
differentiate and subsequently select the superior genotypes with
enhanced nutritional composition (Matsuda et al., 2012; Wen
et al., 2014; Venkatesh et al., 2016). Recently, metabolomic
approach has been utilized to survey chemical diversity between
different maize and rice variety and its natural variants (Chen
et al., 2016). In maize, drought stress is reported to be regulated by
amino acid metabolism (Obata et al., 2015). Photorespiration is
tightly regulated under drought as the two amino acids involved
in this pathway, glycine and serine are rendered up-regulated.
Further, accumulation of glycine and myo-inositol was reported
to relate with grain size of maize under drought, implicating these
metabolites as potential markers for identifying drought tolerant
maize (Obata et al., 2015). Similar work in rice demonstrated
drastic induction of certain compounds in tolerant plants such as
allantoin, galactaric acid, glucose, gluconic acid, glucopyranoside
and salicylic acid, which could be considered as metabolite
markers to address drought stress in rice (Degenkolbe et al.,
2013). As demonstrated in sorghum by Ogbaga et al. (2016), the
plant’s ability to acquire and reorganize its metabolic status in
order to cope with drought shows considerable variation within
species. Under drought condition, sorghum variety having a
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greater tolerance to drought (Samsorg 17) accumulated sugars
and sugar alcohols in comparison with less drought tolerant
variety (Samsorg 40) that accumulated free amino acids. Marked
abundance of soluble sugars with amino acids was also observed
in the roots of tolerant barley plants under salinity stress (Shelden
et al., 2016). Like drought, chilling stress is also known to induce
accumulation of amino acids and carbohydrates. For example,
chilling stress caused substantial changes in metabolic profiles
of rice varieties viz. Nipponbare (Japonica) and 19-11 (Indica)
(Zhang et al., 2016). The chilling tolerance of Nipponbare
involved metabolic adjustment to activate antioxidation pathway
by modulating key metabolites such as γ-glutamylisoleucine,
γ-glutamylglutamine, 5-oxoproline, glycine, glutamate, adenine
dinucleotide and putrescine (Zhang et al., 2016). Further,
chilling stress activates glycolytic pathway, however, normal
activity is resumed during recovery phase. In both wheat
and barley, cold stress expedites the amino acid pool and
induces the GABA-shunt genes to promote conversion of
glutamate to GABA (Sutka and Snape, 1989; Mazzucotelli
et al., 2006). It is well established that cereal grains accumulate
flavones/flavone-glycosides, which protects plants from various
stresses (Caasi-Lit et al., 2007). For example, rice produces
plenty of flavone-glycosides to protect it from abiotic stress
and herbivores (Adjei-Afriyie et al., 2000; Matsuda et al., 2012).
However, examination of herbivore-induced defense system in
maize showed an increase in azealic acid, N-hydroxycinnamoyl
tyramines, phospholipids, tryptophan, and 1,3-benzoxazin-4-
ones (Marti et al., 2013). Accumulation of resistance related
metabolites is also reported during plant–pathogen interaction.
For instance, a tolerant variety of wheat can accumulate
a wide range of metabolites conferring tolerance such as
coumaroylputrescine and coumaroylagmatine during fusarium
head blight (Kage et al., 2016). Further, evaluation of these
hydroxycinnamic acid amide compounds and their placement on
metabolic pathways has led to the identification of an important
gene agmatine coumaroyl transferase (ACT).

IMPACT OF HIGH CO2 STRESS ON THE
METABOLOME AND ITS ATTRIBUTES
TOWARD QUALITY AND YIELD

According to a report of the intergovernmental panel on
climate change (IPCC), anthropogenic activity, deforestation and
combustion of fossil fuel could boost CO2 level upto 700 ppm
by 2100 (IPCC, 2013)3. The CO2 uptake and water availability
are directly connected to photosynthesis and plant growth, and
CO2 sequestration by plants helps in maintaining terrestrial
ecosystems (Weltzin et al., 2003; Reich et al., 2006; Arora and
Boer, 2014). A recent study by Liu et al. (2016) has shown
the impacts of elevated atmospheric CO2 on plant growth rate,
biomass and leaf area. Terrestrial plants and phytoplankton
significantly utilize increased atmospheric CO2 to increase their
biomass (Lawlor and Mitchell, 1991; Schippers et al., 2004; Forkel

3https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WGIAR5_SPM_brochure_
en.pdf

et al., 2016). However, enhanced CO2 levels might promote
grass species in the long term (Smith et al., 2000), which is
an encouraging finding concerning food crops such as cereal.
Sustaining crop performance in the face of growing CO2 levels
remains a key challenge of 21st century agriculture. Therefore,
studies are required to understand the metabolic composition
and the relevant alterations on metabolome due to high CO2
stress.

Effect on Quantity
Fruit, grain and tuber are the ultimate sink organs of the
plant. The growth of these sink organs is directly depends on
the partitioning of photosynthate from source organ to sink
(Marcelis, 1996; Osorio et al., 2014). The sink organs store
variety of metabolites which depends on species, source strength,
composition of allocated photosynthate and plant requirement
(Edson et al., 1995; Heuvelink, 1997; Cuzzuol et al., 2005; Kanai
et al., 2007; Albacete et al., 2014; Li et al., 2015). To date several
reports have been published that have focused on the correlation
of high CO2 with yield (harvesting sink organ) in commercial
crop species (Schippers et al., 2004). For instance, high CO2
was reported to cause a significant increase in productivity
due to the increased level of photosynthesis in rice, wheat
and soybean (Teramura et al., 1990). More recent studies in
wheat and rice validated stimulation of yield under greater
amount of atmospheric CO2 (Cai et al., 2016; Fitzgerald et al.,
2016). Though, the increase in soybean was quite consistent,
it was not as significant and high as reported in the case of
rice and wheat (Morgan et al., 2005; Ziska and Bunce, 2007).
Coupling enrichment of CO2 with drought stress in barley to
examine yield loss rescue ability of elevated CO2 suggested
that modern barley cultivar could perform better under climate
change (Schmid et al., 2016). Similar result was obtained earlier
in potato in which enriched CO2 farming led a 54% increase
of tuber yield (Miglietta et al., 1998). Likewise, enhanced CO2
level registered higher yield in cotton, however, it was lower than
the yield obtained under elevated temperature (Osanai et al.,
2017).

Effect on Quality
Obtaining crop produce with high quality also remains a global
concern, especially at a time when a substantial proportion
of the population worldwide is affected with nutrition related
disorders (Bohra and Singh, 2015). Though enhanced yield
was witnessed as a result of elevated CO2, will this be able
to meet the demand concerning nutritional quality and food
security as most of these studies are being conducted in
cereals that are rich in carbohydrate. Also, though elevated
CO2 in atmosphere increases yield, it affects the C/N ration
in C3 and C4 plants by altering nitrate assimilation (Taub
and Wang, 2008; Bloom et al., 2012). For instance, as shown
by Bloom et al. (2014), wheat grown in the elevated CO2
open field condition manifests slower nitrate metabolism. The
reduced nitrogen in cereal results from increased levels of
carbohydrates (Idso and Idso, 2001). Metabolomics studies of
wheat grown under CO2 enriched atmosphere have shown a
substandard accumulation of amino acids, and a significant
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increase in fructose, fructan and lipidic content in grains (Högy
et al., 2009, 2010b). In soybean leaves, ureide (derived from
urea) and total amino acid levels were increased at the early
season, but, later it resumed to initial level (Rogers et al.,
2006). Similarly, a combination of temperature and elevated
CO2 efficiently decreases the levels of amino acids in root of
Chinese cabbage (Reich et al., 2016). In the strawberry fruit,
elevated CO2 and high temperature increase the sugar and
sweetness index along with a reduction in the antioxidant
and nitrogen content (Sun et al., 2012b). CO2 enrichment
has also shown encouraging results in other crops, such as
increase of vitamin A and C in tomato, and vitamin C
in orange fruit (Idso and Idso, 2001). Taken together, it
becomes evident that crop grown in elevated CO2 obtains
higher yield to a certain extent; however, this may drastically
affect the nutritional content, especially nitrogenous amino
acids.

Elevated CO2 was reported to exert a huge impact on
mustard seed oil quality due to an increase in starch and
oil content of seed at the expense of protein. The excess of
carbohydrate affects the lipid composition of mustard seed,
thus causing an increase in the concentration of oleic acid,
and a simultaneous decrease in the content of linolenic acid
and nervonic acid (Högy et al., 2010a). The CO2 enrichment
is reported to reduce the erucic acid (undesired factor) while
improving mustard seed quality (Uprety et al., 2010). In
groundnut, elevated CO2 directed storage of high-quality oil in
seeds of two varieties JL 24 and ICGV 91114 (Yadav et al., 2011)
corroborated with the results reported in mustard. Similarly,
sunflower seed showed a decrease in amino acids, proteins and
minerals at high CO2 concentration, however, oil load with
health-benefiting unsaturated acids was increased (Pal et al.,
2014).

EFFECT OF BIOTIC AND ABIOTIC
STRESS ON PLANT LIPIDOME

Lipids are an important constituent of cell membrane enclosing
organelles and suborganelles, in which various biochemical
reactions occur. Modern lipidomics has facilitated profiling of
lipids to understand lipid dynamics and biosynthesis on exposure
to a range of stresses (Kosma et al., 2010; Burgos et al., 2011;
Szymanski et al., 2014; Hou et al., 2016; Li et al., 2016; Tenenboim
et al., 2016).

Plants adjust their lipid structure according to varying
environmental conditions (Tenenboim et al., 2016). For
instance, cold tolerant plants increase the levels of desaturated
glycerolipids to maintenance membrane fluidity (Sakamoto
et al., 2004; De Palma et al., 2008; Degenkolbe et al.,
2012). Freezing plants up to a sublethal temperature can
induce the level of lysophospholipids, phosphatidic acid, and
phosphatidylglycerol (Welti et al., 2002; Zhang et al., 2013a).
In contrast, tolerance to heat stress involves an increase in
saturated glycerolipids (Larkindale and Huang, 2004). Recently,
MS based analysis revealed remodeling of lipids, antioxidants
and galactolipids in tomato plant during high temperature

stress (Spicher et al., 2016). A combined glycerolipidomic and
transcriptomics study provided insight on lipid remodeling,
and regulatory genes involved in lipid biosynthesis and heat
stress management (Burgos et al., 2011; Szymanski et al.,
2014; Higashi et al., 2015; Légeret et al., 2016; Narayanan
et al., 2016a,b). Most strikingly, high temperature can induce
dramatic increase of lipid antioxidant such as α-tocopherol
and plastoquinone/-ol, and saturation of membrane lipids like
galactolipids and phosphatidyl ethanolamine (Spicher et al.,
2016).

Hypoxia represents another important type of abiotic stress
that plant faces due to excessive watering or flood and leads to
limited O2 availability and increased salinity for a submerged
plant (Rajapakse et al., 2009). According to Xie et al. (2015),
plant cell synthesizes and accumulates unsaturated ceramides, a
class of sphingolipids under hypoxia. More recently, root lipidic
content of two barley genotypes was examined to understand
the mechanism underlying their tolerance to salinity stress
(Natera et al., 2016). Phosphorus availability during stress
is known to directly affect the membrane lipid texture. For
instance, Arabidopsis grown in phosphorus-deficient condition
can induce replacement of phospholipids with non-phosphorus
SQDG class lipids (galactolipids) (Essigmann et al., 1998;
Härtel et al., 2000). These galactolipids are mostly associated
with plastic thylakoid membrane, and phosphorus deprivation
causes its enrichment in the roots extraplastidic membrane for
survival.

Compared to abiotic stress, lipidomics studies of biotic stress
are scanty. During biotic stress, lipid peroxidation occurs due to
formation of reactive oxygen species (ROS), ultimately leading to
program cell death (PCD) (Zoeller et al., 2012). A recent report
suggests inositol phosphorylceramide synthase as instrumental
to coordinate the PCD, a mechanism acquired by plants for
its self-defense to limit biotrophic pathogens (Wang et al.,
2008). Lipid peroxidation results in formation of jasmonate
and oxylipins, which are signaling molecules during plant
immune response (Shah, 2005). Recently, nearly 100 membrane-
associated lipids were quantified in response to methyljasmonate
and cerium, suggesting increase of lysophosphatidylcholine,
phosphatidic acid and phosphatidylcholine associated with PCD
(Yang et al., 2008). Plant–pathogen interaction also impacts
upon plant cuticle that serves as a first physical barrier limiting
pathogen invasion along with protecting plants from other
physical damages (Jenks et al., 1994). The cuticle layered
over epidermal cells, is mainly composed of wax and cutin
(Samuels et al., 2008; Mazurek et al., 2017). The cutin is mainly
composed of hydroxylated C16 and C18 (Cheng and Walden,
2005; Kunst and Samuels, 2009). The permeability of cuticle
relies upon its composition, which can restrict the invasion
of fungal pathogens such as Botrytis cinerea (Saladié et al.,
2007; Curvers et al., 2010). The role of cuticle in relation to
plant defense against pathogen invasion is well described in
the recent articles (Chassot and Métraux, 2005; Bessire et al.,
2007; Chassot et al., 2008; Raffaele et al., 2009; Reina-Pinto
and Yephremov, 2009; L’Haridon et al., 2011; Buxdorf et al.,
2014; Serrano et al., 2014; Lara et al., 2015; Fernández et al.,
2016).
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INTEGRATING LAYERS OF
METABOLOMICS AND OTHER OMICS
SCIENCE

Epigenetic Modifications and Plant
Metabolites
Epigenetic modification refers to DNA methylation and histone
modification, which in turn alters the gene expression in a
heritable fashion without causing any change in the underlying
DNA sequence (Bird, 2007). For example, deformity of the
flower in the toadflax (Linaria vulgaris) mutant was created due
to extensive methylation and suppression of cyc-like gene that
controls flower symmetry (Cubas et al., 1999). Research during
the last decade has led to a significant gain in the knowledge
related to epigenetic influence on metabolism, however, most
of the studies were confined to animal system (Kaelin and
McKnight, 2013; Petersen et al., 2014; Paul et al., 2015). The
reason may be less availability of epigenetic mutants in the plants.
In plant breeding, the epialleles can serve as a novel source of trait
variation.

In Arabidopsis, disruption of MSH1 caused altered plant
growth phenotypes due to hypermethylation of chromosome
segments (Virdi et al., 2015). Hypomethylation of RAV6
promoter in rice Epi-rav6 mutant resulted altered leaf size and
grain size, via modulating brassinosteroid (BR) homeostasis
(Xianwei et al., 2015). In maize, the IPA mutation affects
the biosynthesis and accumulation of phytic acid in the
seed, which influences germination along with affecting plant
growth and responses to various environmental conditions
(Pilu et al., 2009). The maize epigenetic mutation lpa1-241
leads to drastic reduction of phytic acid and higher level
of free inorganic phosphate in seeds. Similarly, epigenetic
regulation of maize booster1, Pericarp color1, purple plant1
and red1 genes impacting upon anthocyanin and flavonoid
biosynthesis is well documented (Della Vedova, 2004; Chandler
and Alleman, 2008; Mach, 2012). In tomato, whole genome
bisulphite sequencing of fruit revealed methylation of 1% of
the total genomic region (Zhong et al., 2013). Further, it was
demonstrated that epigenetic modification is not static during
tomato fruit development and ripening, instead methylation of
the promoter region significantly decreases for ripening specific
genes such as ripening inhibitor (RIN) and colorless non-ripening
(CNR). In fact, DNA methylation regulates fruit phenotype
by altering wide range of primary and secondary metabolites
in tomato. For example, methylation of SBP-box promoter of
epigenetic mutant Cnr results in severe decline of ethylene
and carotenoids, thus affecting fruit shelf life (Manning et al.,
2006). Additionally, the interaction of CNR with RIN affects the
expression of ripening related gene (Oa et al., 2011). The rin
mutant exhibits reduced levels of carotenoids, downregulation
of ethylene, amino acids, organic acids and sugars (Osorio
et al., 2011). A recent study in tomato has demonstrated that
methylation in the promoter region of the gene 2-methyl-6-
phytylquinol methyltransferase (VTE3) affects biosynthesis and
accumulation of γ- and α-tocopherols (Quadrana et al., 2014).
VTE3 underlies VTE quantitative trait locus (QTL) that is

responsible for the modulation of important metabolic QTL.
Domestication of allotetraploid cotton has resulted 12 million
differentially methylated cytosines, which includes more than 500
genes contributing to agronomyic traits including seed dormancy
and flowering time (Song et al., 2017).

Correlation Analyses of Transcriptomics
and Metabolomics
Researchers increasingly focus on correlating metabolome
with genomic segments to discover genetic determinants of
regulatory pathways to improve compositional quality of crops
species (Riedelsheimer et al., 2012; Gong et al., 2013; Strauch
et al., 2015). Metabolome study in Arabidopsis has enriched
the understanding of the metabolism and biosynthesis of
glucosinolate, oil biosynthesis and oligosaccharides in seed
(Bentsink et al., 2000; Kliebenstein et al., 2001; Hobbs et al., 2004).
Recent advances have revealed an association of genetic variants
with metabolites that could be used for metabolic engineering
across various plant species such as Arabidopsis, broccoli, maize,
mustard, potato, rice, sesame, tomato, and wheat (Schauer et al.,
2005, 2006; Kusano et al., 2007; Yonekura-Sakakibara et al.,
2007; Laurentin et al., 2008; Rochfort et al., 2008; Tohge and
Fernie, 2012; Khakimov et al., 2014; Cho et al., 2016; Wen et al.,
2016). For example, study of Arabidopsis ecotypes Landsberg
erecta from Cape Verdi Islands revealed a strong correlation of
fatty acid desaturase 3 with the unsaturated fatty acid content
(linoleic and linolenic acids) in seeds (Hobbs et al., 2004).
The flavonoid biosynthesis in Arabidopsis is regulated by gene
flavonol 7-O-rhamnosyltransferase, its transcripts accumulate
with the flavonoid abundance in floral buds (Yonekura-
Sakakibara et al., 2007). Another study revealed induction of eight
novel anthocyanins out of 1800 metabolites in an overexpression
line of MYB transcription factor encoding PAP1 gene (Tohge
et al., 2005). These approaches in tomato and populus enabled
gathering in-depth knowledge about the flavonoid biosynthetic
pathway (Spencer et al., 2005; Morreel et al., 2006). Concerning
the flavonoid metabolism pathway, a strong correlation between
transcripts and metabolites was inferred in potato through
combining transcriptomics and metabolomics approaches (Cho
et al., 2016). The study captured interaction between 22
metabolites and 119 transcripts, which strongly regulate the
anthocyanin content of light-red Hongyoung and dark-purple
Jayoung potatoes. Analysis of 210 recombinant inbred lines
(RILs) derived from Bay × Sha facilitated detection of more
than 400 QTLs for 243 metabolites. Total 11 QTL clusters
were obtained, of which five overlapped with expression QTLs
reported in earlier studies. Importantly, epistatic interactions
were noted in eight QTL clusters (Rowe et al., 2008). In a similar
fashion, genetic interactions explained the metabolic variation
in maize (Wen et al., 2016). Two RIL populations (B73/By804
and Zong3/Yu87-1) were phenotyped for 155 metabolites and
detected > 800 QTLs from both populations, majority of which
had smaller effect sizes. This work provided deeper insights
on flavonoid pathway, highlighting the significance of the p
locus. Notably, 32 QTLs were cross validated between the two
populations, whereas 57 associations detected in the genomic
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regions that overlapped with the QTLs detected earlier in
genome-wide association studies (GWAS) performed by Wen
et al. (2014). In rice, 2,800 metabolite QTLs (mQTLs) were
detected for 900 metabolites showing strong association with
24 candidate genes involved in various metabolic biosynthetic
pathways, including O-glycosyl flavonols (Gong et al., 2013).
Recently, metabolic profiling of leaf and fruits of five wild
relatives of tomato (S. chmielewskii, S. habrochaites, S. neorickii,
S. pennellii, and S. pimpinellifolium) showed a wide range of
metabolome variability that are important for stress response,
and also contribute to nutritional richness (Schauer et al., 2005).
Another study that combined transcriptomics and metabolomics
of tomato fruits revealed a strong correlation between the
ripening-induced transcripts and metabolites specific to the
Krebs cycle and sugars (Carrari et al., 2006). A more recent study
consolidating profiling patterns of transcripts, proteins, and
metabolites of ripening defective mutants non-ripening (NOR),
never-ripe (Nr) and ripening-inhibitor (RIN) suggested shifts
in the primary metabolites that eventually reduced metabolic
activities during ripening (Osorio et al., 2011). Metabolite
QTLs analysis based on metabolic profiling of 76 introgression
lines (ILs) of tomato has uncovered a strong regulation of
seed metabolism during fruit development (Toubiana et al.,
2012). Recently, a tomato Eco-TILLING population showed wide
variation in the folate content in the fruits (Upadhyaya et al.,
2017). Additionally, the genome-wide metabolomic survey of ILs
and the ancestral species Solanum pennellii led to identification
of important compounds such as Vit-E etc. and importantly,
this analysis assigned nearly 2,000 compounds to the tomato
genome (Perez-Fons et al., 2014). Interestingly, the segments
introgressed from S. pennellii (Chromosomes 3, 6, 8, and 12)
into ILs were reported to alter isoprenoids and tocopherols
content at the fruit level and the study led authors to associate
the differential expression of metabolites with photosynthesis
and photorespiration. Similarly, metabolic profiling of aneuploid
wheat highlighted the genes regulating variation in the branched
chain amino acids and accumulation of trehalose in mature grain
(Francki et al., 2015).

Further, the use of metabolic information in genome wide
predictions, as demonstrated by Riedelsheimer et al. (2012) in
hybrid maize, opens up novel opportunities to considerably
enhance genetic gains. Similarly, modern techniques such as the
epigenome wide association studies (EWAS) employed recently
in human (Petersen et al., 2014) may also be extended to
plants to better capitalize on the potential of trait-associations
like “methylome-metabotype association” for accelerating plant
improvement. Additionally, recent interactome network studies,
which focus on molecular interactions between biomolecules
(nucleic acid, proteins, amino acids, carbohydrates, lipids, etc.)
provide deeper insights on correlation between genotype and
phenotype (Vidal et al., 2011; Vadivel, 2015; Zivy et al., 2015).

Combining Proteome Analysis with
Metabolite Profiling
In addition to genomics, proteomics in combination with
other modern high throughput approaches such as genomics

and transcriptomics has contributed to revolutionize the
omics era, and has paved the way to decipher the complex
molecular mechanism underlying various commercial traits
(Weckwerth, 2008; Barros et al., 2010; Ricroch et al., 2011;
Ramalingam et al., 2015). For instance, the effect of pollutant
ozone (O3) was studied in rice because it damages cellular
tissue by creating ROS, thus altering photosynthetic ability that
severely reflects in yield loss. It was reported that exposure of
O3 to rice leaves significantly induced oligopeptidase-B and
proteasome subunit alpha type1, which are involved in the 20S
proteasome alpha subunit that mediate ATP dependent protein
degradation (Cho et al., 2008). Further, O3 exposure induced
accumulation of stress and metabolism related proteins such as
glutathione peroxidase, aconitate hydratase, fumarylacetoacetase
hydrolase, dehydrogenase P protein, and thiamine biosynthetic
protein. These protein modulations in O3 exposed leaves were
concomitant with dramatically increased levels of free amino
acids, nucleotides and glutathione. A combined proteomics and
metabolomics approach in response to temperature induced
stress in Arabidopsis revealed several important markers
(Wienkoop et al., 2008). Cold or heat stress induces production
of osmolytes (metabolic markers) proline, glutamine, raffinose
and galacinol. In Arabidopsis, these metabolites were identified
along with protein markers chloroplastidic glyceraldehyde-
3-phosphate dehydrogenase (GAPDH), cytosolic GAPDH,
chloroplast chaperonin, cyclophilins, protein 78, COR6.6 and
several RNA binding proteins. Heavy metals are potential
threat to crop productivity, accumulation of these elements
causes developmental and physiological changes. For example,
cadmium (Cd) accumulation retards plant growth and causes
chlorosis (Prasad, 1995; Moulis, 2010). Such investigation has
involved several plant species such as Arabidopsis, mustard,
soybean, flax, Medicago, rice, pea, tomato, and spinach to
understand the cellular responses to Cd stress (Villiers et al.,
2011). Cadmium induced toxicity in rice drastically affects
the expression of RuBisCO, Calvin’s cycle and kreb’s cycle
enzymes, which leads to attenuation of carbohydrate and amino
acid metabolism. Further, the use of these platforms has been
extended to understand biotic stress (Salekdeh and Komatsu,
2007; Lodha et al., 2013). Study of chickpea roots infected by
Fusarium oxysporum suggested efficient and increased carbon
and nitrogen metabolism, accumulation of phytoalexins, and
lignification coupled with enhanced accumulation of proteins
related to pathogenesis (Kumar et al., 2016). Similarly, a system
biology approach to understand the response of microbial
symbioses on the pea plant metabolism under Didymella pinodes
infection reports systemic resistance via adjustment of proteome
and metabolome (Desalegn et al., 2016). The rhizobia associated
resistant plants showed induction of amino acid, TCA, and
secondary metabolism, including the pisatin, and proteins
associated with pisatin biosynthesis. Coupling metabolomics
with other omics tool has enabled researchers to acquire deeper
knowledge of molecular events involved in important biological
process required for plant sustainability (Figure 2). As a result,
metabolomics has been exploited in several plant species to
better understand the biological phenomena including plant
development and stress response (Table 1).
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FIGURE 2 | An overview for the use of ‘omics’ approaches for crop improvement.

EXAMPLES OF PLANT IMPROVEMENT
THROUGH METABOLIC ENGINEERING

Metabolites are the ultimate downstream factors that regulate and
decide the cell fate; hence the content of metabolite directly affects
organ physiology and often signifies the quality of fruits. The
improvement of gene annotation is important to validate the gene
function. In fact, it facilitates the use of these genes in the field
of crop sciences to improve the quality and yield. This section
describes significant leads achieved in the field of crop species
through metabolic engineering.

Altering Photosynthate Levels to Change
Fruit Dimensions
Fruit development and weight are significantly correlated with
the metabolic composition of fruit (Osorio et al., 2014). The
development of fruit represents substantial change of organic acid
(predominantly citrate and malate) and sugars that determines
the final quality of the ripe fruits (Azzi et al., 2015). Unlike
leaves, fruits act as a sink and its development depends on the
translocation of photo-assimilates of leaves than that of own
photosynthesis products (Bénard et al., 2015). The impact of
phloem translocate on fruit development and size was evident
by concomitant increased growth for both flower and fruits with
increased levels of photo-assimilate by reducing the number of
flowers or fruits per truss (Baldet et al., 2006). For example, the

incubation of tomato plant in the dark significantly reduces fruit
size and shape due to repression of cell cycle genes of fruit which
severely affects the cell number and cell size (Bohner and Ban,
1988; Bertin et al., 2002; Baldet et al., 2006).

In order to investigate the correlation between sugar content
and fruit size, the hexokinase 1 (AtHXK1) of Arabidopsis
was over expressed in tomato plant (Menu et al., 2004). The
overexpression line showed reduced fruit size due to reduction
of cell expansion concomitant with reduced photosynthate.
Additionally, transgenic fruits exhibited reduced respiratory rates
accompanied by reducing ATP levels. The load of sucrose
known to involve in the early stage of fruit development,
import of sucrose in fruits is much needed in young fruits that
influence fruit set and development (D’Aoust et al., 1999). The
establishment of relations between glycolysis, sucrose metabolism
and organic acid biosynthesis was profound from the transgenic
plants expressing malate dehydrogenase (mMDH) in tomato
(Nunes-Nesi et al., 2005). The enhanced fruit dry mass of RNAi-
mMDH plants was concomitant with enhanced photosynthetic
ability, which improved carbon assimilation. The silencing
of mMDH promoted the accumulation of redox stabilizing
compounds such as l-galactono-1,4-lactone precursor of ascorbic
acid. The silencing of l-galactono-1,4-lactone dehydrogenase
(Gal-LDH) substantially affecting cell size that resulted in
smaller fruits (Alhagdow et al., 2007). Additionally, silencing
of the key enzyme of ascorbate biosynthesis GDP-D-mannose
3,5-epimerase (GME) results defect in cell expansion and
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biosynthesis of cell wall non-cellulosic components (Gilbert et al.,
2009). This finding suggests the direct influence of ascorbate
in the process of channeling energy during respiration and
photosynthesis, and fruit metabolite levels during tomato fruit
development (Azzi et al., 2015).

Exploring MYB Transcription Factors to
Improve Fruit Quality
In eukaryotes, MYB family transcription factors represent huge
family, which controls diverse function such as development,
metabolism, and stress related response. Sequencing of the
Arabidopsis genome leads to the discovery of the several
MYB transcription factors which are mostly characterized to
R2R3-MYB family (Dubos et al., 2010). In fruit anthocyanin
biosynthesis regulated by R2R3-MYB transcription factor
family. The red color of apple skin requires accumulation
of anthocyanin, which is controlled by the expression of
anthocyanin biosynthetic gene expression. MYB transcription
factor MdMYBA and MdMYB10 positively regulates anthocyanin
content in apple fruits by binding to the promoter region
of anthocyanin biosynthesis genes (Ban et al., 2007; Espley
et al., 2007). Interestingly, low temperature and UV-B exposure,
enhance the expression of MYB, which enhances anthocyanin
accumulation (Ban et al., 2007). Expression of MdMYBA under
35S promoter in tobacco results remarkable increase in the
anthocyanin content of flowers. MdMYB10 share homology to
PAP protein and overexpression of MdMYB10 in apple up-
regulate anthocyanin in the whole part of regenerated transgenic
plants, including the transformed callus (Espley et al., 2007).
In Arabidopsis overexpression of MdMYB results elevated level
of anthocyanin only in seeds, but not in the leaves. Like
tobacco, Arabidopsis also lacks bHLH which interact with MYB
to enhance the anthocyanin accumulation (Takos et al., 2006).
In addition to bHLH, MYB also interacts with WD-repeat
proteins and regulates anthocyanin biosynthesis through “MBW”
complex, which is formed of MYB, basic helix-loop-helix (bHLH)
TFs and WD-repeat proteins (Jaakola, 2013).

In strawberry, overexpression of FaMYB10 resulted elevated
levels of anthocyanin in the leaves, flowers, fruits, and roots
(Lin-Wang et al., 2010, 2014). Recent studies suggest hormonal
regulation of MYB expression: during ripening auxin negatively,
but ABA positively regulates the expression of FaMYB10 in
strawberry receptacles (Medina-Puche et al., 2014). In contrast
to strawberry, overexpression of FaMYB1 in tobacco suppressed
the accumulation of anthocyanin and flavonol by repression
of tobacco homolog (Aharoni et al., 2001). MYB regulates the
flavonoid levels in capsicum, Chinese bayberry and grape by
up-regulating flavonoid biosynthetic genes encoding chalcone
synthase (CHS), chalcone isomerase, flavanone 3-hydroxylase
(F3H), flavonoid 30-hydroxylase (F30H), dihydroflavonol
4-reductase (DFR), anthocyanidin synthase (ANS) and UDP
glucose: flavonoid 3-O-glucosyltransferase (UFGT) (Walker
et al., 2007; Niu et al., 2010; Li et al., 2011). In grapes, VvMYBA1
and VvMYBA2 regulates the anthocyanin content of berries, for
instance, inactivation of VvMYBA2 due to mutation in conserved
domain results in white berries (Walker et al., 2007).
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Normally the fruits of cultivated tomatoes do not accumulate
high levels of anthocyanin in the peel or flesh. However, the
peel of tomatoes wild relative S. chilense relatively accumulate
high levels of anthocyanin under control of MYB family
transcription factor anyhocynin1 (ANT1) (Mathews et al., 2003).
Schreiber et al. (2012) showed overexpression of S. chilense
ANT1 and ANT2 in tomato cultivar exceptionally increased the
levels of flavonoids in the cotyledon, leaves, floral organ and
fruit peel. Additionally, the accumulation of flavonoid such as
naringenin chalcone in the tomato fruit peel is controlled by
SLMYB12, downregulation of it results colourless peel phenotype
in yellow mutant, which was rescued by overexpression of MYB12
(Schreiber et al., 2012). In tomato, the green shoulder at the top
end is very common in wild type, but this phenotype lacks in
uniform ripening (u) mutant. The U gene encodes for protein
GOLDEN2-LIKE (GLK); a transcription factor, GARP subfamily
of the MYB super family. Interestingly, overexpression of either
SLGLK1 or SLGLK2 in both u and U background Ailsa Craig
mimicked hp fruit phenotype such as enhanced chloroplast and
high carotenoids (Nguyen et al., 2014).

Improving Fruit Shelf Life
The initial evidence of ethylene in ripening led researchers to
target genes such as ACS and ACO, which were involved in
ethylene biosynthesis. The antisense ACS and ACO transgenic
plants produce non-climacteric tomato fruits which ripen in
presence of external ethylene (Hamilton et al., 1990; Oeller et al.,
1991; Picton et al., 1993). Similar results were obtained in other
agronomic crops transgenic like melon and papaya (Kumar et al.,
2014). Later metabolite SAM and ACC, precursors of ethylene
biosynthesis was targeted to achieve delayed ripening. SAM
methyltransferases regulates the levels of SAM, which methylate
homocysteine to methionine. SAM hydroxylase breaks SAM to
methyl thioadenosine and homoserine instead of S-adenosyl-L-
homocysteine thus resulting in low level of SAM. Good et al.
(1994) demonstrated the expression of the SAM hydroxylase in
tomatoes fruit results reduced levels of ethylene and delayed
ripening. On the other hand, the expression of prokaryotic ACC
deaminase in tomato plant effectively decreases the available
cellular ACC, which facilitates ethylene formation. The bacterial
ACC deaminase protein is able to reverse the breakdown of ACC
into α-ketobutyric acid and ammonia. Transgene expression of
ACC deaminase enzyme in tomato resulted reduced ethylene
levels that delayed ripening and enhanced post-harvest life (Klee
et al., 1991). In apple, disruption of MdACS3 gene using a
transposon-tagging technique confers prolonged shelf life of
fruits (Wang et al., 2009).

Respiration has huge impact on fruit shelf life. To elucidate the
role of respiration on fruit texture and post-harvest sustainability,
the levels of Krebs cycle intermediates were manipulated in
tomato. The recent report of Centeno et al. (2011) revealed
that malate and fumarate plays significant role in the post-
harvest transpirational water loss. The upregulation of both
malate and fumarate in the transgenic of tomato antisense Malate
dehydrogenase (MDH) resulted enhanced post-harvest shelf life
due to decreased amount of post-harvest transpirational water
loss (Centeno et al., 2011).

Metabolic Engineering of
Phytohormones to Improve Quality and
Stress Tolerance
Improving Quality
The growth and development of plant is facilitated by hormones.
The function of phytohormones in the tissue and organ
differentiation was evident from the hybrids in Arabidopsis
(C24/Col), where increased IAA level enhanced leaf cell
numbers and reduced salicylic acid (SA) level promoted
size of photosynthetic cells (Groszmann et al., 2015). The
overexpression of Brassica gene shoot meristemless (STM) in
Arabidopsis reduced the level of abscisic acid (ABA) and
cytokinins, caused an enhanced growth of SAM and the
ectopic meristem, which eventually reflected as lobed leaves, and
increased number of reproductive organs such as flowers and
siliques (Elhiti and Stasolla, 2012).

A recent work suggests cross talk between hormones during
growth and development (Kumar et al., 2014). In tomato,
inhibition of AUXIN RESPONSE FACTOR 7 (SlARF7) can
produce seedless parthenocarpic fruits (De Jong et al., 2009; De
Jong et al., 2011). Similarly, suppression of ARF4 and GH3 genes,
combined with high ethylene production in AP2a suppressed
transgenic lines suggest ethylene mediated response of auxin
(Karlova et al., 2011). Interestingly, non-climacteric fruits, such
as grape and citrus are much more dependent on the ABA (Setha,
2012).

In tomato, suppression of ABA biosynthetic gene 9-cis-
epoxycarotenoid dioxygenase1 (NCED1) results non-climacteric
pattern of ripening due to low levels of ethylene (Sun et al.,
2012a). In fact, ABA negatively regulates carotenoid levels in
fruits. For example, ABA deficiency in hp3, flc and sit mutants
of tomato causes over-pigmentation in fruits (Galpaz et al.,
2008). Similar phenotype was evident in SlNCED1 silenced
transgenic tomato fruits, which accumulates high levels of
lycopene and β-carotene (Sun et al., 2012a). In banana, ABA
in coordination with ethylene promotes cell wall hydrolysis and
fruit softening (Lohani et al., 2004), whereas in grapes ABA
promotes fruit colouration and softening (Cantín et al., 2007).
In non-climacteric fruits such as strawberry and grapes, ABA
influences the flavonoid content, but in the ethylene dependent
manner, because application of 1-methylcyclopropene (MCP, an
ethylene inhibitor) delays anthocyanin accumulation. The role of
ABA in flavonoid biosynthesis was confirmed through the rescue
of colourless phenotype in NCED silenced strawberry fruits after
exogenous ABA treatment (Jia et al., 2011). Likewise, methyl
jasmonate enhances anthocyanin accumulation in the strawberry
fruit peel by up-regulating phenyl-propanoid pathway related
genes (CHS, DFR, UFGT, PAL1, C4H, CHI and F3H). In addition,
MeJA and SA are also known to be involved in fruit softening
(Srivastava and Dwivedi, 2000; Concha et al., 2013). Recent work
of Liu et al. (2012) provides direct evidences for the role of
jasmonate in carotenoid biosynthesis. The jasmonate deficiency
in the tomato mutants def1 (defective in the octadecanoid
synthesis pathway) and spr2 (suppressor of pro-systemin-mediated
responses2) reduces the lycopene content due to downregulation
of carotenogenesis (Liu et al., 2012).
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Response to Stress
Mass spectrometry based plant metabolomics has geared up the
evaluation of metabolite responses to stress (Jorge et al., 2016;
Tenenboim and Brotman, 2016). For instance, ABA is recognized
as the stress response hormone that signals shoot for anti-
transpirant activities such as reduction of leaf size and stomatal
closure during water deficit condition (Wilkinson and Davies,
2002; Davies et al., 2005) and facilitates deeper root growth by
altering root architecture under scarcity of water and nitrogen
deficiency (Spollen et al., 2000). ABA mediated drought tolerance
in plants involves modulation of root aquaporins, and enhanced
cell turgor pressure management by affecting the biosynthesis
of antioxidant enzymes and soluble solutes (Chaves et al., 2003;
Parent et al., 2009). The over expressing NCED1 gene in tomato
leading to stomatal closure during water deficiency confers
tolerance against drought (Thompson et al., 2007). However,
the increased stomatal closure in the NCED1 over expressing
transgenic line affects the overall carbon assimilation, which
exerts a dramatic influence on the number of seeds. Therefore,
the repercussions of the ABA-induced drought resistant in plant
includes reduced crop yield, sterile pollen and seed dormancy
(due to elevated levels of ABA) (Ji et al., 2011). As a remedy, use
of drought inducible gene (ABA3/LOS5, in rice) and promoter
(era1, in canola) increases the ABA level along with the crop
yield.

The growth hormone cytokinin (CK), acting antagonistically
to the senescence hormone ABA, and promotes proliferation and
differentiation of cell or tissue, thus preventing premature
senescence. Agronomic trait stay green (enhanced the
photosynthetic activity) in drought tolerant genotypes allows
accumulation of higher levels of CK in tissue and xylem sap.
This CK accumulation promotes normal grain filling and limits
premature leaf senescence (Borrell et al., 2000). Researches have
used the CK biosynthetic gene isopentenyl transferase (ipt) for
improving crop performance under drought stress. To date, ipt
gene has been tested in many crop species such as rice, pea,
tobacco and cassava for high yield under reduced irrigation
(Qin et al., 2011). The grain productivity in barley and rice
was reported to improve under limited water supply through
enhancing CK content by attenuation of cytokinin oxidase gene
(Ashikari et al., 2005; Zalewski et al., 2010).

Brassinosteroids (BRs) are new class of phytohormones
that regulate a wide range of bio-physiological activities
such as plant growth, root development, flowering and
reproduction, seed germination, and biotic and abiotic responses.
Arabidopsis was widely used to study the genotype to phenotype
correlation in the BRs biosynthetic or signaling mutants.
For example, the BRs mutants exhibit hypersensitivity to
the seed germination inhibition exerted by the ABA, and
the exogenous application of BRs rescues the low seed
germination phenotype in gibberellin (GA) mutant (Vriet
et al., 2012). Overexpression of hydroxysteroid dehydrogenase1
(HSD1, encodes a putative enzyme in BRs synthesis) gene
in Arabidopsis resulted reduced seed dormancy compared
to wild type (Baud et al., 2009). Similarly, in Arabidopsis
overexpression of DWARF4 (DWF4) gene rescued the ABA seed
inhibition phenotype (Divi and Krishna, 2009). Interestingly, the

overexpression of DRAWF4/CYP90B1 gene in crop plants such
as rice registered a positive response with respect to agronomical
traits. The overexpression DRAWF4/CYP90B1 transgenic rice
showed increased CO2 uptake and enhanced photosynthetic
efficiency, which increased the seed yield (Sakamoto and
Matsuoka, 2008; Wu et al., 2008). The CYP85A2 (encodes BRs
biosynthetic enzymes) mutant confirmed the role of BRs in
reproduction. The cyp85a2 mutant exhibited phenotype similar
to Arabidopsis mutant seuss because it lacks proper development
of reproductive organs like ovule (Nole-Wilson et al., 2010).
Furthermore, the downregulation of BRs in the maize nana
plant1 and dwarf brassinosteroid-dependent1 (brd1) mutants
result minimized male flowers (Hartwig et al., 2011; Makarevitch
et al., 2012). Recently, disruption of squalene synthase (SQS)
gene in rice by RNA-interference reduced the overall sterol
content, including BRs, which reduced the stomatal conductance
to provide drought tolerance during vegetative and reproductive
stages (Manavalan et al., 2012). Apart from abiotic stress, BRs
provides resistance against a broad range of diseases in potato,
rape seed, rice, tomato and tobacco (Vriet et al., 2012). For
example, the elevated levels of BRs in Brassica juncea improves
the resistance against potent fungal pathogen Botrytis cinerea
(Wang et al., 2012).

5-hydroxy tryptamine (serotonin) acts as neurotransmitter
in animal system (Seo et al., 2008). Moreover, in plants,
serotonin assumed as intermediate between tryptamine and IAA
during auxin biosynthesis, but still more work and evidence
is required to approve this hypothesis (Tivendale et al., 2010).
Recently, the role of serotonin in senescence was demonstrated
in rice leaf tissue (Kang et al., 2009). During senescence, leaf
tissue synthesizes and accumulates high levels of serotonin to
maintain cellular integrity. Additionally, inhibition of serotonin
biosynthesis causes early senescence of leaf (Kang et al., 2009).
Hence, serotonin could be used as a potential marker for
senescence.

Biofortification Enabled Nutrient
Enrichment of Crops
Enhancing the Level of Provitamin A
The deficiency of vitamin A causes night blindness, which can
further result in complete blindness. Interestingly, β-carotene
acts as pro-vitamin A, and it was targeted to reduce the deficiency
of vitamin A. Considering rice as one of the major staple food
especially in the Asian region; the supplementation of vitamin
A via β-carotene was initiated by enrichment of rice endosperm
to produce golden rice (Ye et al., 2000; Paine et al., 2005).
This approach involved, upregulation of carotenoid biosynthetic
pathways in rice endosperm, which includes transgene expression
of phytoene synthase (psy, from daffodil and maize) and phytoene
desaturase (crt1, from Erwinia uridovora) under endosperm
specific Glutelin (Gt1). This resulted in an increase of up
to 27 fold (37 µg/g) in the β-carotene levels in golden
rice. Interestingly, transgene overexpression of three bacterial
carotenoids biosynthetic genes CrtB, CrtI, and CrtY, encoding
phytoene synthase, phytoene desaturase, and lycopene β-cyclase,
respectively, resulted ∼40 fold increase of the β-carotene and

Frontiers in Plant Science | www.frontiersin.org 15 August 2017 | Volume 8 | Article 1302

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-01302 August 3, 2017 Time: 16:49 # 16

Kumar et al. Metabolomics for Plant Improvement: Status and Prospects

∼100–200 fold increase for total carotenoid (Diretto et al., 2010).
Till date, several attempts have been made toward enrichment of
β-carotene in important staple crop food species such as cassava,
maize, potato and sweet potato (Martin et al., 2011; Tan and Zhao,
2017).

Enhancing the Level of Folates
Folates belongs to the class of vitamin B, act as Co-factors for
C1-metabolism (one-carbon transfer reactions) such as amino
acid metabolism, nucleotide biosynthesis and the methylation
cycle (Hanson and Roje, 2001). Deficiency of folate in
human causes birth defect, increases cardiovascular disease and
megaloblastic anemia. Plants are capable of biosynthesizing
folate in mitochondria and plastids from pterins. Pterins
are synthesized from guanosine-50- triphosphate (GTP) and
p-aminobenzoate (PABA) (Hanson and Roje, 2001). The
overexpression of folate biosynthetic gene GTP-cyclohydrolase 1
(GTPCH1) in transgenic tomato enhanced the pterins content
of ripe fruits, which resulted two-fold increase in the folate
content (Díaz de la Garza et al., 2004). Recently, a transgenic
lettuce expressing synthetic codon-optimized gene GTPCH1
was generated, which had showed 2.1–8.5 fold higher levels
of folate compared to non-transgenic plant (Nunes et al.,
2009). However, previous attempts suggest 100 times increased
folate content in the overexpression transgenic rice, which
contains two transgenes from Arabidopsis, GTPCH1 and
aminodeoxychorismate synthase (ADCS) (Storozhenko et al.,
2007; Dong et al., 2014). Naqvi et al. (2009) generated an elite
inbred of transgenic Maize, in which, the kernel endosperm
contained double amount of folate, six fold of ascorbate and
169 fold of β-carotene. Interestingly, they used four genes from
different sources; PSY1 from maize under glutenin promoter
and CRT1 from Pantoea ananatis, GTPCH1 from Escherichia
coli and dehydroascorbate reductase (DHAR) from rice under
barley D-hordein promoter (Naqvi et al., 2009). Notably, the
above mentioned leads are crop/genotype dependent, because
transgenic lines of potato and Arabidopsis failed to accumulate
higher levels of folate (Blancquaert et al., 2013). Hence, a better
understanding of folate pathway is required, which could be
useful and applicable to enhance the folates content in wide range
of plant species.

Altering the Levels of Flavonoids
Flavonoids play an important role in the maintenance of fruit
quality. It represents a huge family of secondary metabolites that
consists of more than 6000 compounds (Hichri et al., 2011).
The peel of fleshy fruits like grape and strawberry accumulates
flavonoids such as anthocyanin, catechin, epicatechin, quercetin,
kaempferol, myricetin, and isorhamnetin. Butelli et al. (2008),
ectopically expressed the Del/Ros1gene (from snapdragon plant)
in tomato under fruit specific E8 promoter. As a result,
the fruits of Del/Ros1 tomato transgenic lines accumulated
substantial amount of anthocyanin (lycopene is the major
secondary metabolite in cultivated tomatoes) due to the increased
expression of anthocyanin biosynthetic genes (Butelli et al.,
2008). Recently, the genetically engineered purple tomato
was investigated to demonstrate the impact of anthocyanin

(antioxidant) on prolonging fruit shelf life and resistance against
fungal infection (Zhang et al., 2013b).

Altering Flavor and Aroma
The flavor and aroma of fruit are important and it influences
the customer choices. Over the past decades, most of the
research on fruit and vegetable crop species was mainly
focused on the yield and resistance. Genome wide association
mapping and metabolite assisted quantitative trait loci analysis
has helped to fish out useful genes that confers aroma of
rice grain (Daygon, 2016). The recent advancement in the
field of metabolomics and the available metabolic network
databases has fascinated researcher to focus on flavor and
aroma. Breeding has long served toward improvement of flavor;
however, it was dedicated more toward a balance between sugar:
organic acid ratio and the post-harvest management (Jones
and Scott, 1983). Recent studies on flavor and aroma include
metabolic engineered tomato. The heterologous expression of
Clarkia breweri plant S-linalool synthase (LIS) gene in tomato
resulted accumulation of S-linalool and 8-hydroxylinalool at
the ripe stage of fruit (Lewinsohn et al., 2001). In addition to
S-linalool, the transgenic exhibited increased levels of geranial,
limonene, myrcene, and β-ocimene, and a decrease in nor-
isoprenes. Similarly, the metabolic analysis of fruits from
the overexpression lines of tomato alpha-Zingiberene synthase
(ZIS, encodes for sesquiterpene synthase) transgenic showed
higher levels of alpha-zingiberene and other sesquiterpenes,
such as 7-epi-sesquithujene, alpha-bergamotene, beta-bisabolene
and beta-curcumene, whereas control fruit showed absence
of sesquiterpenes (Davidovich-Rikanati et al., 2008). Zawirska-
Wojtasiak et al. (2009) studied the aroma in transgenic cucumber.
The GC/MS based study of transgenic cucumber expressing
transgene preprothaumatin II gene under 35S promoter showed
enhanced production of (E, Z)-2,6-nonadienal (Zawirska-
Wojtasiak et al., 2009).

Fragrance of flowers is known to play multiple roles including
attraction of pollinators and the interaction between plant
and their surroundings. The ornamental plants like lisianthus
(Eustoma grandiflorum) produces beautiful flowers, but these
lacks floral scent (Aranovich et al., 2007). Transformation of
lisianthus with benzyl alcohol acetyltransferase (BEAT; obtained
from Clarkia breweri) under constitutive CaMV 35S promoter
generated substrate dependent transgenic which produced 5–7
times higher levels of benzyl acetate (aromatic compound) when
treated with benzyl alcohol (Aranovich et al., 2007). Interestingly,
the recent report displayed the role of the aroma profile in stress
tolerance. For example, omega-3 fatty acid desaturases FAD3 and
FAD7 genes (involves in the conversion of C18:2 to C18:3, a
precursor for hexanals and its derivatives) were over expressed in
tomato to achieve cold stress tolerance (Domínguez et al., 2010).
The overexpression transgenic tomato exhibited increased levels
of 18:3/18:2 and (Z)-hex-3-enal/hexanal ratio with enhanced
cold stress tolerance. Similarly, ectopic expression of aroma
biosynthetic transgenes, such as strawberry linalool/nerolidol
synthase (FaNES1) in Arabidopsis and potato, maize terpene
synthase (TPS10) gene in potato, and patchoulol synthase (PTS)
coupled with FPP synthase in tobacco was used to improve
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defense management from plant pest (Dudareva and Pichersky,
2008).

Metabolomics to Cater Biofuel Demand
Burgeoning petroleum demand worldwide motivates researchers
to explore renewable and alternative sources, such as biodiesel.
In the current omics era, a refined understanding of biochemical
pathways is being used to genetically improve biodiesel crop
species, including jatropha, soybean, mustard, pongamia, algae,
etc. The oil composition of the plant determines its quality.
Currently, agronomical suitable jatropha (Jatropha curcas) is
extensively grown as an alternative source of energy (Kumar et al.,
2015). The oil content of jatropha seed is rich in polyunsaturated
fatty acid mainly linoleic acid, which is vulnerable to oxidation
and has negative impact on the quality. Silencing of fatty acid
desaturase (FAD2s) in jatropha by Qu and colleagues significantly
lowered the level of linoleic acid, while increasing the oleic acid
content by 78%. To improve the yield and oil quality of jatropha
under water deficient condition, three transgenics were raised
by overexpressing genes GSMT and DMT (encodes enzyme
catalyzes glycine betaine catalyses), PPAT (encodes an enzyme
that catalyzes CoA biosynthetic pathway) and NF-YBI (encodes
transcription factor NF-Y subunit) (Tsuchimoto et al., 2012).
A range of candidate genes have been identified and characterized
so far in jatropha, which are either involved in the metabolism
of fatty acid or contribute to improve the seed oil content
during stress. These genes include PIP2 encoding aquaporin
protein, betaine aldehyde dehydrogenase, 16-fatty acid desaturase,
ω6-fatty acid desaturase, ω3-fatty acid desaturase, diacylglycerol
acyltransferase and long chain acyl coenzyme A synthetase (Kumar
et al., 2015). Similar to jatropha, castor is another excellent
source of biodiesel because of its transesterified oil, which is
soluble in alcohol without heating (Sujatha et al., 2008). Castor
yield was improved by overexpressing the Cry1Ab gene, which
provides resistance against feeders (Malathi et al., 2006). A non-
transgenic method targeting induced local lesions in genomes
(TILLING) was also used to increase the quality of caster seed
oil by knocking out the gene that encodes ricin (alkaloid inhibits
protein synthesis)4. The use of seed oil as biodiesel has been
extended to many plant species such as coconut, cotton, mustard,
pongamia, sunflower, etc. (Vaughn et al., 2009; Dwivedi et al.,
2011; Lafont et al., 2015; Ortiz-Martínez et al., 2016; Saydut et al.,
2016).

Photosynthetic water micro algae are also a rich source of
oils that are mainly composed of unsaturated fatty acids. The
simple cellular structure of these microorganisms, and their only
dependency on CO2, water and the sunlight for their rapid
growth renders algal derived biodiesel more accessible than
that obtained from higher plants. Attempts aiming at genetic
manipulation of algae were undertaken to increase the oil content
(Beer et al., 2009). The overexpression of DGAT (gene from the
fatty acid biosynthetic pathway) in Chlamydomonas reinhardtii,
however, produced unintended result, i.e., no increase for total
fatty acid content (La Russa et al., 2012).

4www.arcadiabio.com

Biofuels are also obtained through fermentation of sugars
yielding alcohol such as ethanol and butanol. In sugarcane,
the load of sucrose, trehalulose and isomaltulose was obtained
by overexpressing trehalulose synthase and sucrose isomerase
(Wu and Birch, 2007; Hamerli and Birch, 2011; Arruda,
2012). Similarly, xylanases from bacterial and fungal source
was expressed in crop plants such as barley, potato, rice,
sunflower, and tobacco (Willis et al., 2016). Xylanases degrade
β-1,4-xylan to pentose sugar, which can easily be fermented to
alcohols. In addition, several other hydrolases (endo-Glucanases,
cellobiohydrolases, β-glucosidases, glycosyl hydrolase etc.) were
overexpressed to improve the biofuel availability from plants
(Willis et al., 2016).

METABOLOMICS: AN INTEGRAL PART
OF KNOWLEDGE-BASED PLANT
BREEDING

The last decade has witnessed tremendous advancements in
technologies followed by their deployment in understanding
different facets of biology to understand the complex biology
of desired traits. Knowledge-based plant breeding (KPB) utilizes
all the meaningful information inferred from analysis of the
large-scale data pertaining to genome, epigenome, transcriptome,
metabolome, and proteome that collectively lead to a particular
phenotype. The data generated from these ‘Omics’ approaches
enable better understanding of the systems biology of the
trait, so far mostly contributed by systems genetics and
genomics, and to some extent transcriptomics. The other ‘Omics’
approaches, including metabolomics and proteomics have also
started contributing toward generating important information,
which can become an integral component of KPB, thereby
strengthening the approach further for achieving higher genetic
gain.

Technological advancement has contributed to improve the
efficiency of plant breeding techniques via precise selection
of desired plants. An easy access to the different ‘Omics’
platforms will cause a paradigm shift in breeding process
by facilitating plant selections based on the genome-scale
information generated at different levels of biological processes.
The plant breeders will gradually embrace these developments,
which in turn will help them to make informed decisions.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Advances in plant metabolomics in recent time has allowed
the precise selection of desirable traits along with offering
opportunities to undertake metabolic engineered plants. The shift
of technology from single metabolite analysis to high throughput
assays generating footprints of a variety of metabolites in one
go has paved the way for discovery/construction of better
models for metabolite networks, and the identification of
robust biomarkers. In the last decade, the implementation of
metabolomics in conjunction with other omics technologies
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has not only uncovered a plethora of known as well as
novel metabolites, but also allowed to determine their specific
contribution toward improving key plant attributes such as
quality, yield, shelf life, etc. To this end, high throughput
genotyping/sequencing platforms based on NGS technology
has been a tremendous support as a cost-effective and high-
throughput means to elucidate the architecture of metabolic
traits. The newly created avenues such as GWAS, GS and EWAS
that allow efficient integration of metabolite profiling could
provide a great impetus to metabolomics assisted breeding. We
anticipate that the integration of metabolomics and the other

omics tools greatly improves the ability of a plant breeder in
order to design and develop agronomically superior plants, thus
enabling rapid development of high-performing crop genotypes
that adequately meet the challenges of 21st century agriculture.
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