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In the context of climate warming, plants will be facing an increased risk of

epidemics as well as the emergence of new highly aggressive pathogen species.

Although a permanent increase of temperature strongly affects plant immunity, the

underlying molecular mechanisms involved are still poorly characterized. In this study,

we aimed to uncover the genetic bases of resistance mechanisms that are efficient

at elevated temperature to the Ralstonia solanacearum species complex (RSSC), one

of the most harmful phytobacteria causing bacterial wilt. To start the identification

of quantitative trait loci (QTLs) associated with natural variation of response to R.

solanacearum, we adopted a genome wide association (GWA) mapping approach

using 176 worldwide natural accessions of Arabidopsis thaliana inoculated with the

R. solanacearum GMI1000 strain. Following two different procedures of root-inoculation

(root apparatus cut vs. uncut), plants were grown either at 27 or 30◦C, with the

latter temperature mimicking a permanent increase in temperature. At 27◦C, the

RPS4/RRS1-R locus was the main QTL of resistance detected regardless of the method

of inoculation used. This highlights the power of GWA mapping to identify functionally

important loci for resistance to the GMI1000 strain. At 30◦C, although most of the

accessions developed wilting symptoms, we identified several QTLs that were specific

to the inoculation method used. We focused on a QTL region associated with response

to the GMI1000 strain in the early stages of infection and, by adopting a reverse genetic

approach, we functionally validated the involvement of a strictosidine synthase-like 4

(SSL4) protein that shares structural similarities with animal proteins known to play a role

in animal immunity.
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INTRODUCTION

Global changes are predicted to increase the frequency of
extreme climate events and to accentuate abiotic stresses such
as temperature increase, drought, and water logging (Orlowsky
and Seneviratne, 2012; IPCC, 2014), thereby impacting crop
development (e.g., rate of photosynthetic carbon assimilation,
rate of leaf initiation, leaf expansion, root architecture, or
reproduction) and ultimately yield (Hatfield et al., 2011; Gray and
Brady, 2016). Amongst climatic risks, global surface temperature
is predicted to rise by the end of the century, from 1.0 up to 4.8◦C,
with higher frequencies and longer periods of heat waves (IPCC,
2014). While an increase of mean temperature constitutes one
of the major abiotic stresses that plants have to cope with (Bita
and Gerats, 2013; Suzuki et al., 2014), it is also expected to favor
the emergence of new pathogens and to increase the occurrence
of epidemics (Garrett et al., 2006; Evans et al., 2008; Bebber
et al., 2013). For example, recent studies reported that climate
change likely increased the emergence of highly aggressive and
invasive strains of rust Puccinia graminis, P. striiformis, and of the
oomycete Phytophthora infestans (Hovmoller et al., 2008; Singh
et al., 2011; Cooke et al., 2012; Bebber et al., 2013). These future
outbreaks are a major concern for the maintenance of global
food security. Therefore, identifying and studying the genetic and
molecular basis of defense mechanisms allowing plants to cope
with epidemics under higher temperature conditions is critical.

In their natural habitats, plants have evolved complex defense
responses to deal with the simultaneous and/or sequential
attacks from various bio-aggressors (e.g., viruses, bacteria, fungi,
oomycetes, and herbivores) (Roux and Bergelson, 2016). Defense
responses include plant preformed physical or chemical barriers
(e.g., rigid cell wall, presence of cuticles or trichomes, production
of toxic or repellent compounds) (Osbourn, 1996; Nurnberger
and Lipka, 2005) as well as immune signaling responses that
are activated upon pathogen recognition. This latter type of
resistance mechanism corresponds to a two-level defense system
described as the zig-zag model (Jones and Dangl, 2006; Dodds
and Rathjen, 2010). In the first level, microbial elicitors, called
pathogen- or microbe-associated molecular patterns (PAMPs or
MAMPs) are perceived by plant cell surface and transmembrane
pattern recognition receptors (PRRs) to initiate a signaling
cascade leading to the MAMP- or PAMP-triggered immunity
(MTI/PTI), that is efficient against a broad spectrum of
pathogens. To overcome PTI, pathogens produce virulence
factors called effectors which can promote effector-triggered
susceptibility (ETS) by interfering with host defense responses. In
turn, effectors can be specifically recognized by plant intracellular
resistance proteins, known as nucleotide binding site-leucine rich
repeat containing proteins (NLRs), thereby activating a second
level of plant defense, the effector-triggered immunity (ETI).
ETI results in a strong defense response often associated with a
hypersensitive response (HR), characterized by a rapid and local
cell death. However, this type of qualitative response is generally
specific to a single pathogen species, and even strain-specific,
thereby leading to a strong selection of virulent strains that
can bypass ETI (Roux et al., 2014). Another form of resistance
called Quantitative Disease Resistance (QDR), is characterized

by a reduction rather than an absence of disease (St Clair, 2010;
Mundt, 2014; Roux et al., 2014; French et al., 2016) and is typically
polygenic (Poland et al., 2009). Knowing that QDR provides a
durable and a broad-spectrum resistance, this form of resistance
appears to be unsurprisingly much more prevalent than ETI
in crops and natural plant populations (Young, 1996). The
characterization of the main molecular mechanisms underlying
PTI and ETI have paved the way to decipher basal and specific
immune responses, which is not currently the case of QDR’s
molecular mechanisms that remain largely unknown (Roux et al.,
2014).

Plants are exposed to multiple abiotic and biotic stresses
either in crop fields or in natural populations. However, studies
deciphering the molecular mechanisms governing plant response
to these combined stresses are scarce (Mittler, 2006; Suzuki et al.,
2014). Yet, several transcriptome studies recently demonstrated
that despite a certain overlap, each combination of stress
involves a unique response that could not be easily predicted
by the study of each stress individually, and leading to either
positive or negative effects on host immunity (Atkinson and
Urwin, 2012; Atkinson et al., 2013; Prasch and Sonnewald,
2013; Rasmussen et al., 2013; Suzuki et al., 2014; Onaga et al.,
2017). Remarkably, an increase in temperature (3–7◦C) was
demonstrated (i) to inhibit several major defense mechanisms
induced following a pathogen attack, regardless of the pathogen
and the plant species considered, or (ii) to suppress ETI-HR
related phenotypes. For example, in Arabidopsis thaliana, the
expression of two regulators of plant immunity, PAD4 and EDS1,
is down-regulated by a rise in temperature from 22 to 28◦C
(Yang and Hua, 2004). RPS4- or RPM1-mediated resistance
responses to Pseudomonas syringae pv. tomato (Pst) DC3000
strains are efficient at 22◦C but inhibited at 28◦C (Wang et al.,
2009). In addition, the HR triggered either by Pst DC3000 strain
containing the HopZ1A avirulent effector or by the RPW8 gene
conferring resistance against powdery mildew is suppressed by
a temperature above 28 and 30◦C, respectively (Xiao et al.,
2003; Menna et al., 2015). However, for Pst DC3000 strains
carrying the AvrRpt2 effector gene, contradictory results were
observed. Indeed, elevated temperatures led to either a resistance
inhibition (Wang et al., 2009) or a HR suppression without ETI-
mediated virulence suppression (Menna et al., 2015). Similar
examples of inactivation by an elevated temperature were also
reported in other plant species. Resistance conferred by the
Mi-1 gene to root-knot nematodes, by the N gene to tobacco
mosaic virus (TMV) and by the Cf4 and Cf9 genes to the fungal
pathogen Cladosporium fulvum are inactivated in tomato at
temperatures above 28, 30, and 33◦C, respectively (Whitham
et al., 1996; Hwang et al., 2000; de Jong et al., 2002). An elevated
temperature also negatively modulated plant defense response
linked to Rp1-D21 in maize (Negeri et al., 2013). By contrast,
partial or more efficient resistances related to Yr36, Xa7, and
Pi54 genes were also described against P. graminis in wheat (Fu
et al., 2009), Xanthomonas oryzae pv. oryzae and Magnaporthe
oryzae in rice, respectively (Webb et al., 2010; Onaga et al., 2017).
Although an increase of temperature can differentially balance
host immunity, the molecular mechanisms involved remain
elusive.
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The Ralstonia solanacearum species complex (RSSC) is
responsible for the bacterial wilt, one of the most harmful
disease causing tremendous yield losses in more than 200
plant species in tropical, subtropical, and warm temperate
areas worldwide (Elphinstone, 2005). The strains composing
the RSSC are phylogenetically represented by four phylotypes
according to their geographical origin (I: Asia, II: America,
III: Africa, IV: Australia-Indonesia-Japan) (Ailloud et al., 2015).
The ability of RSSC to quickly adapt to new host plants or
to the universal resistant reference Hawaii7996 tomato cultivar
(Wicker et al., 2007) is thought to be promoted by (i) many
molecular determinants involved in pathogenicity and host-
range specificity, (ii) large and variable repertoires of type III
effectors (T3Es), and (iii) a high evolutionary ability (Coupat
et al., 2008; Remenant et al., 2010; Genin and Denny, 2012).
In addition, climate warming has been recently proposed to be
involved in the expansion of the potato brown rot disease caused
by some RSSC strains in Bolivia (Castillo and Plata, 2016). Host
resistance to RSSC, which remains the most efficient strategy of
disease control, is generally controlled by a polygenic architecture
(Mangin et al., 1999; Wang et al., 2000; Carmeille et al., 2006).
In the model plant A. thaliana, the two molecular resistance
mechanisms identified so far involve the LRR receptor-like kinase
ERECTA (Godiard et al., 2003) and the RPS4/RRS1-R pair of
immune receptors (Deslandes et al., 2002; Le Roux et al., 2015),
respectively. Recently, Le Roux et al. (2015) demonstrated that
RPS4 with RRS1-R represent a DNA-bound immune receptor
complex with an integrated effector decoy that directly converts
the virulence activity of the PopP2 effector into activation of
immunity (Le Roux et al., 2015). Interestingly, this immune-
receptor pair also confers resistance to various pathogens
including the fungus Colletotrichum higginsianum, Pst DC3000
delivering the AvrRps4 effector, and the strain CFBP6943 of
Xanthomonas campestris pv. campestris (Xcc) (Narusaka et al.,
2009; Debieu et al., 2016). In addition, in contrast to the
well-characterized resistance against R. solanacearum GMI1000
strain identified in the A. thaliana accession Nd-1 (Deslandes
et al., 1998, 2002), a tolerant phenotype to R. solanacearum
BCCF402 strain in the A. thaliana Kil-0 accession, resulting in
the absence of symptom despite a high bacterial multiplication
in planta, was demonstrated to be also dependent on the PopP2
effector but with a specific allele of RRS1-R (Van der Linden
et al., 2013). Thus, these results suggest that RRS1-R may also
be involved in a QDR mechanism in the A. thaliana Kil-0
accession.

Despite the fact that a temperature increase is known
to affect host resistance to R. solanacearum in several plant
species (Hayward, 1991; Prior et al., 1996), no mechanism
of resistance that is efficient under a permanent increase
in temperature has been identified yet. Moreover, studies
reporting the genetic architecture and the molecular mechanisms
underlying the genetic diversity of plant responses to RSSC
are still lacking in the context of climate change. Therefore,
exploring natural genetic variation can help to identify uncovered
sources of resistance to RSSC that are efficient under elevated
temperature conditions. Thanks to the development of Next-
Generation Sequencing (NGS) technologies and appropriate

statistical methods (Bergelson and Roux, 2010), the method of
genome-wide association (GWA) mapping recently emerged in
plants and has been used so far in 11 species to fine map
genomic regions associated with natural variation of response
to a range of microbial enemies, including bacteria, fungi, and
oomycetes (Bartoli and Roux, 2017). Notably, five quantitative
trait loci (QTLs) identified by GWA mapping have been
subsequently functionally validated inA. thaliana, demonstrating
the power of this method to precisely dissect the intraspecific
genetic variation underlying pathogen resistance (Bartoli and
Roux, 2017). Therefore, in this study, we adopted a GWA
mapping approach to fine map QTLs associated with natural
variations of response to the R. solanacearum GMI1000 strain
among 176 worldwide natural accessions of A. thaliana. Two
inoculation methods were used and root-inoculated plants were
incubated at two different temperatures to mimic a permanent
increase of temperature.Whatever was themethod of inoculation
used, GWA mapping confirmed the RPS4/RRS1-R locus as the
main QTL of resistance detected at 27◦C, demonstrating the
power of this approach to functionally fine map important loci
for resistance to R. solanacearum. At 30◦C, most accessions
developed wilting symptoms, confirming the drastic effect
of the temperature increase (+3◦C) on the mechanisms
of resistance triggered by plants at 27◦C. Interestingly, we
detected several QTLs, underlying natural variation for early
plant defense response to R. solanacearum at 30◦C. A
reverse genetic approach revealed that one of these specific
QTLs at 30◦C involves a strictosidine synthase-like 4 (SSL4)
protein.

MATERIALS AND METHODS

Bacterial Strain, Plant Material, and
Growth Conditions
The wild type R. solanacearum GMI1000 strain used in all
inoculation experiments was grown in complete BG medium as
described by Plener et al. (2010). A collection of 176 A. thaliana
worldwide accessions was used in this study (Table S1). Five to
10 seeds of each accession were directly sown on Jiffy pots (Jiffy
Products International AS, Norway) and stratified for 48 h at 4◦C
in order to release seed dormancy. Accessions were then grown in
a growth chamber under controlled conditions for 4 weeks [22◦C,
70% relative humidity (RH), 9 h of light] prior to phenotyping
experiments. The 38 T-DNA insertion mutants (Ws-0 and
Col-0 background) corresponding to 21 genes included in a
80 kb genomic region underlying a QTL of early plant defense
response to R. solanacearum were identified using the online
Arabidopsis gene mapping tool T-DNA express (http://signal.
salk.edu/cgi-bin/tdnaexpress) (Table S2) and ordered from the
Nottingham Arabidopsis Stock center (http://arabidopsis.info/).
Corresponding seeds were sown and stratified as described
above and grown in greenhouse conditions (26.5 ± 1.5◦C, 16 h
light). Progenies of genotyped homozygous of each mutant were
harvested and grown for 4 weeks as described above before
inoculation. The Col-0 accession (N60000), susceptible to the
R. solanacearum GMI1000 strain, was used as a control in all
experiments.
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Plant Inoculation and Phenotyping
Four-week-old plants were used in all experiments. Plant
response to R. solanacearum GMI1000 strain was assessed at
27 and 30◦C using two inoculation conditions: (i) the UNCUT
condition previously described (Lohou et al., 2014), where the
roots were not wounded thereby mimicking natural infection,
and (ii) the CUT condition (Deslandes et al., 1998) where the
roots were sectioned with scissors, ∼1 cm from the bottom of
the Jiffy pot, giving the bacteria a direct access to the xylem
vessels. Plants were soaked for 15min in 2 L per tray of a
bacterial suspension at 1.107 bacteria/mL and 1.108 bacteria/mL,
for the CUT and the UNCUT conditions, respectively. Inoculated
plants were then transferred in growth chambers with controlled
conditions at 27 or at 30◦C (75% HR, 12 h light, 100µmol m−2

s−1). The wilting symptoms were scored on an established 0 to
4 disease index scale (Deslandes et al., 1998) with the score 0
and 4 corresponding to healthy and dead plants, respectively.
Symptoms were monitored from 3 to 13 days after inoculation
(dai), and from 3 to 10 dai for plants incubated at 27 and 30◦C,
respectively.

Natural Variation of QDR
Experimental Design
For each “CUT condition x temperature treatment” combination,
an experiment of 1,152 plants was set up using a randomized
complete block design (RCBD) of two experimental blocks. Each
block was represented by six trays of 96 positions. Each block
corresponded to 576 plants with three replicates per accession
(n = 528 = 176 accessions ∗ three replicates) and the control
accession Col-0 placed in the same five positions within each tray
(n = 30 = 6 trays ∗ five replicates). In each block, the remaining
18 positions in the trays were left empty.

For each “UNCUT condition × temperature treatment”
combination, an experiment of 570 plants was set up using a
RCBD of three experimental blocks. Each block was represented
by three trays of 64 positions. Each block corresponded to 192
plants with one replicate per accession (n= 176) and the control
accession Col-0 placed in 14 positions across the three trays
(n = 14). In each block, the remaining two positions in the trays
were left empty.

Statistical Analyses
For each “CUT/UNCUT condition × temperature treatment”
combination, we used the following mixed model (MIXED
procedure in SAS9.3; SAS Institute Inc., Cary, NC, USA) to
explore the natural genetic variation of the disease index at each
time point of phenotyping:

disease indexijc = µ + blocki + accessionj + blockixaccessionj

+covColc + εijc (1)

where µ is the overall mean of the phenotypic data, “block”
accounts for differences in micro-environmental conditions
between the two or three experimental blocks; “accession”
corresponds to the genetic differences among the natural
accessions; “block × accession” accounts for genetic differences
among the natural accessions depending on the block; covCol is
a covariate accounting for tray effects within blocks (phenotypic

mean of the four or five Col-0 replicates per tray was used
as a covariate); and “ε” is the residual term. Normality of the
residuals was not improved by transformation of the data. The
factor “block” was treated as a random factor, whereas the factor
“accession” was treated as a fixed factor. Significance of the
random effect was tested with likelihood ratio tests of models
with and without this effect. Least-square means (LSmeans) were
obtained for each natural accession and were subsequently used
for GWA mapping analyses. Broad-sense heritabilities (H2) at
each time point of phenotyping were estimated from the mean
square (MS) of equation (1) using a formula adapted fromGallais
(1990). Due to the absence of Col-0 control plants in some
trays of the “UNCUT condition × 27◦C” combination, the term
“covColc” was not modeled in Equation (1).

GWA Mapping
The 176 natural accessions used in this study have been
genotyped for 214,051 SNPs evenly spaced across the genome
(Horton et al., 2012). In order to fine map the genomic regions
associated with natural disease index variation at each time of
phenotyping for each “CUT/UNCUT condition × temperature
treatment” combination, we ran a mixed model implemented
in the software EMMAX (Efficient Mixed-Model Association
eXpedited; Kang et al., 2010). This mixed model includes a
genetic kinshipmatrixK based on the 214,051 SNPs as a covariate
to control for population structure in themapping panel. Because
of bias due to rare alleles, we only considered SNPs with minor
allele relative frequency (MARF) > 10% (Brachi et al., 2010;
Kang et al., 2010). Manhattan plots illustrating the results of
phenotype-genotype associations at all stages of infection at 27
and 30◦C, in the CUT and UNCUT conditions of inoculation
are presented in Figures S1–S4, respectively. Corresponding Q-
Q plots and lists of the most significantly associated SNPs (i.e.,
top SNPs with a –log10 p-value > 4) are depicted in Figures S5,
S6 and Table S3.

Gene Ontology and Biological Pathways Enrichment

Tests
To determine the biological processes involved in response to R.
solanacearum GM1000 strain at 30◦C and perform comparisons
between the two inoculation methods used, we first tested for
each “CUT/UNCUT condition × time point of phenotyping”
whether SNPs in the 0.1% upper tail of the –log10 p-value
distribution were over-represented in each of 736 Gene Ontology
Biological Processes from the GOslim set (Consortium, 2008).
A total of 10,000 permutations were run to assess significance
using the samemethodology as described inHancock et al. (2011)
(Table S4). For each significant enriched biological process at a P
< 0.05, we then retrieved the identity of all the genes containing
SNPs in the 0.1% upper tail of the –log10 p-value distribution
(Table S5). Finally, each list of genes, corresponding to each
phenotyping time point, was used after removal of duplicates,
to identify biological pathways significantly over-represented
(P < 0.01) with the classification superviewer tool on the
university of Toronto website (http://bar.utoronto.ca/ntools/cgi-
bin/ntools_classification_superviewer.cgi) using the MAPMAN
classification (Provart and Zhu, 2003; Tables S6, S7).
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T-DNA Insertion Mutants’ Validation, Plant
Assays, and Statistical Analyses
For each of the 38 T-DNA insertion mutants located in a QTL
region of early A. thaliana defense responses to R. solanacearum
(see Results section), 12 seedlings were genotyped to check the
presence of the T-DNA insertion and to identify homozygous
plants. For each seedling, one leaf was collected and used for
genomic DNA extraction was adapted from QIAGEN DNeasy
kit R©as described in Mayjonade et al. (2016). For genotyping,
primer pairs were designed using the T-DNA primer design
online tool (http://signal.salk.edu/tdnaprimers.2.html). All the
primer sequences and corresponding PCR fragment sizes are
listed in Table S2. For one PCR reaction, 2µL of genomic DNA
(10 ng/µL) were added to a PCR master mix composed of:
1µL (10 pM) of each primer composing the LP+RP or RP+BP
primer pairs (see Table S2), 0.5µL (10mM) dNTPs, 0.2µL
(10µ/µL) of GoTaq R© DNA polymerase (Promega, Madison,
WI, USA), 5 µL of 5X GoTaq buffer and 16.2µL of sterilized
water. The PCR cycling conditions were as follow: 95◦C for
2min; 10 cycles at 95◦C for 30 s, 62 to 52◦C for 30 s (touch-
down, 1◦C decrease at each cycle) and 72◦C for 1min; 30 cycles
at 95◦C for 30 s, 52◦C for 30 s, and 72◦C for 1 min; 72◦C for
2min.

T-DNA insertion mutants were inoculated using the CUT
inoculation method with a bacterial suspension of 1.107

bacteria/mL and transferred at 30◦C. Three to six independent
experiments were made for each T-DNA insertion mutant. In
all experiments, plants were organized according to a RCBD.
To test whether the disease index was statistically different
between the wild type Col-0 and each T-DNA mutant, we used
a Kruskal-Wallis analysis under the R environment version 3.3.2
(R_Development_Core_Team, 2013). The dynamics of T-DNA
mutant lines response to the R. solanacearum GMI1000 strain
was drawn using ggplot2 package (http://ggplot2.org/) showing
the confidence interval.

RNA Extractions and RT-qPCR
RNA extractions and RT-qPCR analyses were performed as
previously described (Le Roux et al., 2015) using two leaves from
healthy plants. Primer pairs used are listed in Table S8.

RESULTS

Extensive Genetic Variation among
Worldwide Accessions of A. thaliana for
the Response to R. solanacearum: Effects
of Temperature and Inoculation Methods
Based on the phenotyping of 176 worldwide accessions of A.
thaliana, we detected substantial genetic variation in the response
to the GM1000 strain for each “temperature treatment ×

inoculation method” (Figure 1; Tables 1, 2), with the presence of
resistant accessions to R. solanacearum at 30◦C (Figures 1B,D).
The high broad-sense heritability estimates observed at all stages
of infection suggests that plant response to R. solanacearum is
genetically controlled even at early stages of infection (Figure 1;
Tables 1, 2). In both inoculation methods, accessions were on
average more susceptible at 30◦C compared to 27◦C (CUT – 10
dai, F = 136.9, P < 0.0001; UNCUT – 7 dai, F = 227.1, P <

0.0001) (Figure 1). At 27◦C, accessions were on average more
susceptible in the CUT condition than in the UNCUT condition
(13 dai, F = 17.0, P < 0.0001) (Figure 1). At 30◦C, although
the accessions had on average a similar disease index at the late
stages of infection (6 dai: F = 3.85, P = 0.0509; 7 dai: F = 0.02,
P = 0.8889; 10 dai: F = 0.89, P = 0.3472), the dynamics of
disease induction was faster in the CUT condition compared to
the UNCUT condition at the early stages of infection (3 dai: F =

58.7, P < 0.0001; 4 dai: F = 88.7, P < 0.0001; 5 dai: F = 17.9,
P < 0.0001) (Figure 1).

In both methods of inoculation, variation in disease index
at 30◦C was significantly correlated with variation in disease

FIGURE 1 | Genetic diversity of plant response to R. solanacearum GMI1000 strain in the CUT and UNCUT conditions of inoculation at 27 and 30◦C. The red line

represents the mean of disease index over all the accessions. Inoculation was performed at 27◦C (A,C) and 30◦C (B,D) on 4-week-old plants for which roots have

been cut (A,B) or left uncut (C,D). dai, days after inoculation; DI, disease index.
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index at 27◦C (Figure 2). However, the correlation coefficient
of Pearson was strongly different from 1 (CUT condition,
95% confidence intervals: 0.037–0.357; UNCUT condition, 95%
confidence intervals: 0.087–0.383). The observation of crossing
reaction norms between 27 and 30◦C suggests that the genetic
architecture of the response of A. thaliana to the R. solanacearum
GMI1000 strain is different between these two temperatures
(Figure 2).

A Major QTL Corresponding to the Immune
Receptor Pair RPS4/RRS1 Locus Confers
QDR to the R. solanacearum GMI1000
Strain at 27◦C
In the CUT condition, GWA mapping revealed a unique peak of
association on the long arm of chromosome 5 whose significance
increased with the stages of infection (Figure S1). Thirteen
days post-inoculation, the three most associated SNPs (SNP-5-
18325032, P = 5.37 × 10−13, MARF = 0.125; SNP-5-18325565,
P = 3.55 × 10−9, MARF = 0.237; SNP-5-18325915, P =

8.65 × 10−9, MARF = 0.151) were located in the RPS4 gene
(At5g45250) (Figures 3A–C), that encodes the RPS4 immune
receptor. Previously described as cooperating genetically and
molecularly with RRS1-R for resistance to R. solanacearum
(Narusaka et al., 2009), RPS4 and RRS1 gene are localized near
each other and are inserted in opposite directions. Therefore,
the identification of the RPS4/RRS1 locus as the major resistance
QTL to R. solanacearum confirms the suitability of a GWA
mapping approach to investigate the genetic bases of resistance
responses to this bacterial pathogen.

In the UNCUT condition, we detected two neat peaks of
association. The first association peak, at the beginning of
chromosome IV, was detected at the late stages of infection
(Figure S2), with the top SNP (SNP-4-5080256, P = 4.93 ×

10−7, MARF = 0.429) located in a transposable element gene
(At4g08100) belonging to the gypsy-like retrotransposon family
(Figures 3D,E). The significance of the second association peak
located on the chromosome V also increased with the stages
of infection (Figure S2). Similarly to the CUT condition, the
four most associated SNPs at 13 dai (SNP-5-18325565, P =

1.60 × 10−10, MARF = 0.252; SNP-5-18325032, P = 2.80 ×

10−9, MARF = 0.123; SNP-5-18322558, P = 1.19 × 10−8,
MARF = 0.301; SNP-5-18323844, P = 4.85 × 10−7, MARF =

0.295) were also found in RPS4 (Figures 3D,F). These results
suggest that although the major QTL was common for the two
methods of inoculation, medium/minor QTLs can be specific to
the inoculation method and/or to the stage of infection.

Different Genetic Architectures at 30◦C
Highlight Different Plant Defense
Response Mechanisms
In agreement with the small correlation coefficients observed
at the phenotypic level between 27 and 30◦C (Figure 2), GWA
mapping revealed a different genetic architecture at 30◦C, with
no association peak located in the RPS4/RRS1 locus or at its
close vicinity (Figures S3, S4). In addition, for each phenotyping
time point, less than 2% of the 100 most significant associated
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FIGURE 2 | Correlations of temperature conditions, 27 and 30◦C, in response

to R. solanacearum inoculation of the worldwide collection of A. thaliana, at 5

days after inoculation. Inoculation was performed on 4-week-old plants for

which roots have been cut (A) or left uncut (B). The red line represents the

mean of disease index. dai, days after inoculation; DI, disease index.

SNPs (i.e., top SNPs) were shared between the two inoculation
methods at 30◦C (Figures S3, S4), suggesting that the genetic basis
of response to R. solanacearum largely differs between the CUT
and UNCUT conditions. Different significantly over-represented
functional classes assigned using the MapMan classification,
(supported from >97.5% bootstrap replicate), in which gene
lists corresponding to the top SNPs for each “CUT/UNCUT
condition × time point of phenotyping” fall in, also support this
observation. In the CUT condition, numerous genes involved
in RNA processing and RNA regulation were found at 3 and 4
dai, whereas genes related to the perception and the regulation
of plant response to biotic or abiotic stresses (i.e., leucine rich
repeat protein, NBS-LRR protein, Cystein rich receptor like
kinase protein, cytochrome P450) and protein degradation were
mostly found at later stages of infection (Table S6, Figure 4A).
By contrast, genes retrieved in the UNCUT condition were
significantly over-represented in metabolic pathways at 3–5
dai, with genes having a role in hormone metabolism, defense
response to biotic and abiotic stresses (CYP450 family 705
subfamily A; flavonoid synthase), cell wall modification and
signaling. Genes retrieved at 6 and 7 dai reflect an intense protein
metabolism activity with numerous genes involved in protein
synthesis and degradation (Table S7, Figure 4B).

Interestingly, for both inoculation methods, we observed
playful dynamics of the association peaks along the infection
stages (Figures S3, S4). For example, in the CUT condition,
we detected multiple association peaks specific to the 5 dai
stage (Figure 5A). In particular, GWA mapping revealed an
association peak located at the end of chromosome III supported
by 12 SNPs with an association score above 3, embedded in a
region of 80 kb (Figure 5B). Similarly, in the UNCUT condition,
GWA mapping revealed multiple association peaks specific to
the 6 dai stage (Figure 6A). More specifically, two association
peaks caught our attention as they are supported by numerous
top SNPs, including those the most significantly associated to the
plant response to R. solanacearum at the 6 dai stage (Table S3),
and overlap with candidate genes known to be involved in plant

response to different pathogens. The first one is located at the
end of chromosome III, with the top SNP (SNP-3-22-260-125)
located in the promoter region of the EIF4G (At3g60240) gene
(Figure 6B). The second one is located at the beginning of
chromosome V, with the six most associated SNPs all located
within the CesA3 (At5g05170) gene (Figure 6C).

QDR to the R. solanacearum GMI1000
Strain at 30◦C in the Cut Condition Is
Conferred by a Gene Encoding for a
Strictosidine Synthase-Like Protein 4
Since neat association peaks at the early stages of infection
could be detected (Figures 5B, 6B,C), we therefore investigated
the molecular mechanisms underlying plant response to
R. solanacearum at 30◦C. To functionally validate one of those
peaks, we focused on the QTL region identified at the bottom of
chromosome III at 30◦C in the CUT condition (Figure 5B). We
screened this 80-kb QTL region (Figure 5C) by genotyping 38 T-
DNA insertionmutants publically available and corresponding to
21 candidate genes (Table S2). T-DNA insertions were confirmed
by genotyping and sequencing the T-DNA flanking sequences
for 24 mutants. Homozygous progenies were produced and their
responses to R. solanacearum at 30◦C were scored. Out of the
21 mutants tested, two allelic mutants of the At3g51420 gene,
named ssl4-1 (N683907), and ssl4-2 (N684981), for which the
altered gene expression was confirmed by RT-qPCR (Figure S7),
exhibited a significant higher level of resistance from 4 to 7 dai
compared to wild-type Col-0 (Figures 5D,E). These data indicate
that At3g51420 is a gene that increases the susceptibility to the R.
solanacearum GMI1000 strain at 30◦C. This gene, that encodes
for a strictosidine synthase-like protein 4 (SSL4), belongs to a
family of four genes (SSL4, 5, 6, and 7) organized in tandem at
this locus. Interestingly, knocking-down of one of the three other
genes of the SSL family [ssl5 mutant (N659319)], has also led
to a higher level of resistance from 4 to 7 dai (Figures 5C,F).
Representative symptoms observed at 5 dai for ssl4-1, ssl4-2,
and ssl5 mutants compared to Col-0 accession are shown in
Figure S8. Together, our data reveal that both SSL4 and SSL5
can be considered as susceptibility genes since they promote the
development of wilting symptoms of Col-0 plants in response to
the GMI1000 strain.

DISCUSSION

In this study, we explored the genetic diversity of responses
to R. solanacearum in A. thaliana under elevated temperature
conditions (i) to estimate the extent of genetic diversity in
response to this combined abiotic-biotic stress, (ii) to describe
the genetic architecture of plant response to the bacterial wilt
disease, and (iii) to unravel the genetic bases of QDRmechanisms
that are efficient under a permanent increase of 3◦C. Because
R. solanacearum is a soil borne pathogen that penetrates into
the plants through the roots, we also aimed at studying how the
infection process could modulate the response of A. thaliana to
R. solanacearum. For this, two inoculation methods were used:
(i) the CUT condition in which the roots were cut allowing
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FIGURE 3 | The genetics of quantitative disease resistance to R. solanacearum GMI1000 strain at 27◦C, identified by GWA mapping at 13 dai in the CUT and

UNCUT conditions of inoculation. Whole genome scan of 214,051 single-nucleotide polymorphisms (SNPs) for association with disease index at 13 dai across 152

accessions that have germinated for which roots have been cut (A). Zoom showing the absence of QTLs of resistance in the CUT condition of inoculation on the

chromosome IV, compared with the UNCUT condition thereafter (B). Zoom spanning a genomic region on the chromosome V from 17.8 to 18.8Mb containing the

QTL of resistance located in the RPS4/RRS1 locus (C). Whole genome scan of 214,051 single-nucleotide polymorphisms (SNPs) for association with disease index at

13 dai across 163 accessions that have germinated for which roots remained uncut (D) and focus on two genomic regions corresponding to two QTLs of resistance

observed on chromosomes IV (D) and chromosome V (E). The red circle indicates the top SNP (SNP-4-5080256, P = 4.93 × 10−7, MARF = 0.429) corresponding

to a QTL of resistance detected at the beginning of chromosome IV in the UNCUT condition. The green circles highlight the top SNPs corresponding to the major QTL

of resistance detected on the long arm of chromosome V in the UNCUT (SNP-5-18325032, P = 5.37 × 10−13, MARF = 0.125) and CUT (SNP-5-18325565, P =

1.60 × 10−10, MARF = 0.252) conditions.

the bacteria to access directly to the xylem vessels and (ii) the
UNCUT condition, in which the roots were not injured to mimic
natural infection.

Significant Natural Genetic Variation Is
Observed in A. thaliana Challenged with
R. solanacearum, at Both 27 and 30◦C
In our study, we observed a drastic effect of elevated temperature
on A. thaliana defense response to R. solanacearum. At
30◦C, most accessions were on average more susceptible,
with wilting disease progression being always faster regardless
of the inoculation condition used. These results corroborate
several previous studies describing that elevated temperatures
generally inhibit resistance responses (Whitham et al., 1996;
Hwang et al., 2000; de Jong et al., 2002; Xiao et al., 2003;
Wang et al., 2009; Zhu et al., 2010; Menna et al., 2015).
At the same time, we also observed an extensive genetic
diversity of response among A. thaliana accessions challenged
with the GMI1000 strain as well as high estimates of broad-
sense heritability across the stages of infection at 30◦C, as it
was also the case at 27◦C. These results reveal the existence
of resistant accessions to R. solanacearum with a genetically
controlled response at the two temperatures tested. However,
the crossing reaction norms observed between 27 and 30◦C
suggest that the genetic architecture of A. thaliana for the
response to R. solanacearum can largely depend on abiotic

conditions. Such a temperature-dependent genetic architecture
has been previously reported in A. thaliana for diverse
phenotypic traits such as flowering time (Lempe et al., 2005) and
fertility-related traits (Bac-Molenaar et al., 2015; Thoen et al.,
2017).

The Major QTL Associated with Resistance
to R. solanacearum at 27◦C, Underlying the
RPS4/RRS1 Locus, Is Not Detected at 30◦C
Whatever was the method of inoculation, GWA mapping
revealed a major QTL on the long arm of chromosome V with
an increasing temporal significance at 27◦C, suggesting that a
simple genetic architecture governs the defense response to the R.
solanacearum GMI1000 strain. For both inoculation conditions,
the most significant SNPs were found in the RPS4/RRS1 locus,
known to be involved in one of the best characterized resistance
mechanism to R. solanacearum in A. thaliana (Deslandes et al.,
2002; Le Roux et al., 2015). Interestingly, a previous GWA
study also identified this locus to be responsible for specific
QDR in response to the Xcc CFBP6943 strain (race 6) (Debieu
et al., 2016). Therefore, our results demonstrate the potential of
GWAS to identify major loci associated with natural variation
of resistance to R. solanacearum, as previously shown for several
other bacterial pathogens, predominantly in A. thaliana (Huard-
Chauveau et al., 2013; Debieu et al., 2016; Roux and Bergelson,
2016; Bartoli and Roux, 2017).
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FIGURE 4 | Simplified representation of MapMan classification pathways found to be significantly over-represented (P < 0.01). Genes list were retrieved from

enrichment tests performed using the SNPs in the 0.1% upper tail of the −log10 p-value distribution for each time point of phenotyping in the CUT (A) and UNCUT

(B) conditions at 30◦C (Tables S6, S7).

By contrast, at all phenotyping time points, no significant
association peak underlying the RPS4/RRS1 genomic region was
detected at 30◦C. This result supports, for the first time, that
the resistance mechanism conferred by this immunoreceptor
pair is impaired at 30◦C. The thermosensitivity of PTI and
R-gene-mediated defense for different pathogens in different
plant species has been reported in several studies (Whitham
et al., 1996; Hwang et al., 2000; de Jong et al., 2002;
Xiao et al., 2003; Yang and Hua, 2004; Wang et al., 2009;
Menna et al., 2015). In addition, the dwarf phenotype of
several autoimmune mutants such as bon1 and snc4-1D or
snc2-1D, mkk1 mkk2, and bir1-1 can be totally or partially
suppressed above 28◦C (van Wersch et al., 2016). This is
also the case for the autoimmune response of A. thaliana
transgenic lines constitutively expressing the RPS4 immune
receptor (Heidrich et al., 2013). To date, the mechanisms
involved in such temperature-inhibition of immune responses
remain largely uncharacterized. Interestingly, Cheng et al.
(2013) proposed that plants preferably activate ETI signaling
at low temperatures while they use PTI signaling at elevated
temperatures.

In this first GWA study onR. solanacearum, we have identified
at 27◦C, in both inoculationmethods, the RRS1-containing locus,
originally mapped by a conventional positional cloning approach
(Deslandes et al., 2002). Therefore, we clearly showed that the
study of natural diversity of plant response to R. solanacearum
is a powerful strategy to fine map genomic regions governing
susceptible and resistance responses to bacterial wilt. We also
showed that an increase in temperature strongly impacts plant
defense responses to R. solanacearum preventing the detection of
RSP4/RRS1 locus at 30◦C most likely due to a loss of function of
this immunoreceptor pair.

GWA Analyses at 30◦C Highlight Playful
Dynamics in the Genetics of Response to
R. solanacearum Depending on the
Inoculation Procedure
Owing to GWA analyses carried out on the phenotypic data
monitored every day after inoculation, a more pronounced
playful dynamics of association peaks along the infection stages
was observed at 30◦C than at 27◦C. Among the multiple
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FIGURE 5 | The genetics of quantitative disease resistance to R. solanacearum GMI1000 strain at 30◦C, identified by GWA mapping at 5 dai in the CUT condition of

inoculation. Whole genome scan of 214,051 single-nucleotide polymorphisms (SNPs) for association with disease index at 5 dai across 141 accessions having

germinated (A). Zoom spanning a genomic region on the chromosome III from 18.5 to 19.5 Mb containing a QTL of early plant defense response to R. solanacearum

(B). Zoom showing the 80 Kb genomic region underlying the QTL of early plant defense response to R. solanacearum, containing 31 annotated genes. Red frames

indicate genes coding for AtSSL4 (At3g51420) and AtSSL5 (At3g51430) (C). Dynamics of disease symptoms after inoculation with the GMI1000 strain in wild type

Col-0 genetic background and ssl4-1 mutant at 30◦C. Means ± SD of the means (ssl4-1 n = 60; Col-0 n = 40) from three independent inoculations (D). Dynamics of

disease symptoms after inoculation with the GMI1000 strain in wild type Col-0 genetic background and ssl4-2 mutant at 30◦C. Means ± SD of the means (ssl4-2 n =

83; Col-0 n = 59) from four independent inoculations (E). Dynamics of disease symptoms after inoculation with the R. solanacearum GMI1000 strain in wild type Col-0

genetic background and ssl5 mutant at 30◦C. Means ± SD of the means (ssl5 n = 124; Col-0 n = 77) from six independent inoculations (F). Symbols *, **, and ***

denote significant difference observed between Col-0 and each mutant at P < 0.05, P < 0.01, and P < 0.001 respectively, in Kruskal-Wallis analyses. The red circle

indicates the top SNP (SNP-3-18972992, P = 4.70 × 10−6, MARF = 0.142) corresponding to the major QTL of resistance detected at the end of chromosome III.
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FIGURE 6 | The genetics of quantitative disease resistance to R. solanacearum GMI1000 strain at 30◦C, identified by GWA mapping at 6 dai in the UNCUT condition

of inoculation. Whole genome scan of 214,051 single-nucleotide polymorphisms (SNPs) for association with disease index at 6 dai across 158 accessions that have

germinated (A) and focus on two genomic regions corresponding to QTLs of early plant defense to R. solanacearum observed at the end of chromosome III (B) and at

the beginning of chromosome V (C). The red circle indicates the top SNP (SNP-3-22260125, P = 5.65 × 10−8, MARF = 0.127) corresponding to a QTL of resistance

detected at the end of chromosome III. The green circle highlights the top SNP (SNP-5-1530992, P = 4.04 × 10−8, MARF = 0.189) corresponding to a QTL of

resistance detected at the beginning of chromosome V.

peaks identified, comparison of the 100 top SNPs at each
phenotyping time point revealed that less than 2% were
shared between the CUT and UNCUT conditions, suggesting
that the genetic basis of response to R. solanacearum largely
depend on the infection process. Enrichment tests performed
to determine the most important processes set up by the
plant in response to R. solanacearum at 30◦C for both
inoculation conditions also support these specificities. Indeed,
only few genes were found to be significantly over-represented
in both conditions and correspond to the same miscellaneous
functional class at 3 dai. Interestingly, they mainly encode
for CYP450 subfamily 71 and 705 (CYP705) proteins as well
as uridine diphosphate glycosyltransferases (UGT) known to
be involved in plant response to biotic and abiotic stresses
(Ross et al., 2001; Bak et al., 2011). In the CUT condition, at
early infection stages, most genes underlying significantly over-
represented biological processes correspond to regulatory genes.
For instance, many genes encoding transcription factors (TF)
were retrieved at 3 and 4 dai, suggesting a rapid transcriptional
reprogramming in the early stages of infection. Interestingly,
at later infection stages (i.e., from 5 to 7 dai), many genes are
involved in calcium-dependent signaling, pathogen perception
(TIR-NBS-LRR proteins) and regulation of biotic and abiotic
stress responses (LRR- and cystein rich receptor like kinase
proteins). For example, CRK28 and its interacting partner
CRK29, were recently demonstrated to enhance plant immune
responses (Yadeta et al., 2017). By contrast, genes retrieved
with the UNCUT condition are predominantly involved in
metabolic processes. In particular, genes underlying significantly
over-represented biological processes at early infection stages
correspond to Brassicaceae-specific CYP705 family and flavonol
synthases. Even if the role of the CYP705 family is poorly
characterized, the CYP705A1 was described as participating in
the formation of a volatile homoterpene, (E)-4,8-dimethyl-1,3,7-
nonatriene (DNMT), involved in the A. thaliana resistance to
the root-rot pathogen Pythium irregular (Sohrabi et al., 2015).
In addition, flavonoids are well-described molecules known to
be important for response to other organisms or environmental

stresses (Mierziak et al., 2014). At later infection stages (i.e.,
from 5 to 6 dai), candidate genes have primarily a role
in cell wall formation. Interestingly, among virulence factors
used by R. solanacearum, cell wall-degrading enzymes such as
pectinolytic and cellulytic enzymes, can promote invasion of
roots and/or penetration of xylem vessels (Liu et al., 2005).
Such specific processes could allow certain accessions to restrict
bacterial penetration at the early stages of infection on intact
roots. Indeed, through the inoculation of plants with intact or
cut roots, Turner et al. (2009) dissected in R. solanacearum
the steps involved in root colonization of the model legume
plant Medicago truncatula. While two distinct T3Es (Gala7
and AvrA) are involved in the early stages of colonization,
suggesting that specific basal defense mechanisms are rapidly
manipulated by the bacteria, Gala7 alone was shown to play
a major role in the later stages of infection in cut roots
(Turner et al., 2009).

In addition to the association peak identified at 5 dai
in the CUT condition, GWA analyses revealed two other
neat association peaks in the UNCUT condition, with the
top SNPs located in the promoter region of the EIF4G gene
and within the CesA3 gene. EIF4G is a translation initiation
factor that belongs to protein families participating in the
eukaryotic translation initiation complex. EIF4G was identified
as a recessive resistance gene impairing multiplication of the
cucumber mosaic virus (CMV) and of the turnip crinkle virus
(TCV) in A. thaliana (Yoshii et al., 2004), or conferring high
resistance to the rice yellow mottle virus in rice (Albar et al.,
2006). The CesA3 gene belongs to a family of 10 CesA genes
identified in A. thaliana of which 9 encode cellulose synthase
subunits with known function. CesA1, -2, -3(IXR1), -5, and -
6(IXR2) were shown to participate in the cellulose production
during the primary cell wall formation, while CesA4 (IRX5), -
7 (IRX3), -8(IRX1), and -9 are involved in the secondary cell
wall cellulose synthase complex (Endler and Persson, 2011).
Hernández-Blanco et al. (2007) demonstrated that mutation in
CesA4, -7, and -8, involved in secondary cell wall formation,
enhanced tolerance to Botrytis cinerea and Plectosphaerella
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cucumerina fungi as well as to R. solanacearum. Strikingly,
performing inoculation at 27◦C with plants for which roots
were cut, the authors showed that the ixr1-1/cev1 mutant,
altered in CesA3 expression, was susceptible to R. solanacearum.
Clearly, further studies are needed to functionally validate
the implication of these candidate genes in tolerance to R.
solanacearum at elevated temperatures in the early infection
stages.

As in many cases in which genetic mapping approaches
were developed to identify resistance mechanisms to pathogens
(Cook et al., 2012; Roux et al., 2014; Fukuoka et al., 2015),
we found in our study that several QTLs control QDR to
R. solanacearum at 30◦C in a playful manner specific to the
inoculation method. Interestingly, the CUT condition highlights
different processes that could be related to the perception
and regulation pathways, dependent on temperature, of well-
conserved microbial signatures such as ubiquitous effectors and
PAMPs. On the other hand, the UNCUT condition revealed
processes associated to plant development andmetabolismwhich
could reflect strategies set up by the plant to limit bacteria
penetration and propagation in root tissues at the early stages
of infection. As demonstrated by Turner et al. (2009) on the
bacterial side and proposed by Roux et al. (2014), these processes
could involve host components, sequentially manipulated by
effectors during host colonization.

A QDR to R. solanacearum Efficient at
30◦C Is Conferred by a Strictosidine
Synthase-Like Protein 4
At 5 and 6 dai in the CUT condition, a neat association peak
was identified at the end of the chromosome III, corresponding
to another QTL involved in early defense response at 30◦C. The
phenotyping of several T-DNA insertion mutants corresponding
to genes underlying this QTL allowed the functional validation
of At3g51420 (AtSSL4) as a gene of susceptibility to the R.
solanacearum GMI1000 strain. Indeed, two allelic mutants were
found to be significantly more resistant compared to wild-
type Col-0 susceptible plants. The At3g51420 gene belongs
to a subset of four genes (AtSSL4-AtSSL7), arranged in
tandem, which shows a strong similarity with genes encoding
for hemomucin membrane-anchored immune proteins from
Drosophila melanogaster. These proteins contain strictosidine
synthase-like (SSL) domain related to plant and Caenorhabditis
elegans SSL proteins. Because hemomucin proteins from
Drosophila have immune-related functions, Sohani et al. (2009)
explored the possible role of AtSSL4-AtSSL7 in plant defense
response. Contrary to other AtSSLs genes, AtSSL4 appeared to
be slightly up-regulated upon wounding stress but not induced
following inoculation with CMV and Alternaria brassicicola
(Sohani et al., 2009). Still, these data do not exclude the possibility
that AtSSL4 could be regulated by other pathogens, like R.
solanacearum. Among the knockout mutants corresponding to
the three other AtSSLs genes, the ssl5mutant was also found to be
more resistant to R. solanacearum at 30◦C, from 3 to 10 dai. This
result also suggests thatAtSSL5 could be a gene of susceptibility to
R. solanacearum. Interestingly, unlike AtSSL4, AtSSL5 expression

is induced by salicylic acid, known to be a defense signaling
compound, and is strongly up-regulated upon CMV and
A. brassicicola inoculation (Sohani et al., 2009). In tomato, SSL
gene expression is also up-regulated following the roots infection
by Fusarium oxysporum f.sp. radicis-lycopersici (Manzo et al.,
2016). Strictosidine synthase participates in the production of
a wide range of monoterpenoid indole alkaloids important for
plant defense response (Kibble et al., 2009) and Manzo et al.
(2016) proposed that SSL could be involved in the incompatible
interaction with the fungus. Thus, our result is the first
demonstration of a role of plant SSLs in the resistance response to
a bacterial pathogen. The enzymatic activity of proteins encoded
by AtSSL4-AtSSL7 has not been demonstrated yet (Kibble et al.,
2009). Nonetheless, knowing that SSLs expression is highly
regulated in different plant species upon pathogen attack, the
resistance spectrum conferred by these mutants to other RSSC
strains and other pathogens will be investigated at elevated
temperatures.

CONCLUSION

To our knowledge, this study is the first report of significant
genetic variation in A. thaliana in response to R. solanacearum
at elevated temperature. Our results also highlight that plant
defense responses are strongly impacted at 30◦C and differ
according to the inoculation procedure. By combining a GWA
mapping approach with the response to combined stresses, we
identified three neat association peaks underlying QDR to R.
solanacearum that are efficient at elevated temperature. Among
the most interesting genes underlying the QTLs identified,
we functionally validated AtSSL4 as a susceptibility gene that
plays a role in R. solanacearum infection at 30◦C. Apart from
AtSSL4, other genes underlying additional QTLs also constitute
good candidates for QDRs that might represent new sources
of sustainable resistance to the RSSC in the context of climate
warming. In addition, the inhibition of the RPS4/RRS1 resistance
signaling at 30◦C represents an interesting tool to investigate the
impact of elevated temperature on ETI-related processes.
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