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Plants respond to cold stress by modulating biochemical pathways and array of

molecular events. Plant morphology is also affected by the onset of cold conditions

culminating at repression in growth as well as yield reduction. As a preventive

measure, cascades of complex signal transduction pathways are employed that

permit plants to endure freezing or chilling periods. The signaling pathways and

related events are regulated by the plant hormonal activity. Recent investigations have

provided a prospective understanding about plant response to cold stress by means

of developmental pathways e.g., moderate growth involved in cold tolerance. Cold

acclimation assays and bioinformatics analyses have revealed the role of potential

transcription factors and expression of genes like CBF, COR in response to low

temperature stress. Capsella bursa-pastoris is a considerable model plant system for

evolutionary and developmental studies. On different occasions it has been proved that

C. bursa-pastoris is more capable of tolerating cold than A. thaliana. But, the mechanism

for enhanced low or freezing temperature tolerance is still not clear and demands

intensive research. Additionally, identification and validation of cold responsive genes

in this candidate plant species is imperative for plant stress physiology and molecular

breeding studies to improve cold tolerance in crops. We have analyzed the role of

different genes and hormones in regulating plant cold resistance with special reference

to C. bursa-pastoris. Review of collected data displays potential ability of Capsella as

model plant for improvement in cold stress regulation. Information is summarized on

cold stress signaling by hormonal control which highlights the substantial achievements

and designate gaps that still happen in our understanding.
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INTRODUCTION

Environmental stresses hamper seed germination, plant growth,
development and productivity (Chinnusamy et al., 2006; Zaynab
et al., 2017). During chilling or freezing stress, plants adjust
a repertoire of metabolic pathways to tolerate the conditions
(Xin and Browse, 2000; Tang et al., 2006). Temperate plants
acquire low temperature tolerance by means of cold acclimation
(Wang et al., 2004). During cold acclimation process, precise
regulation of various genes i.e., cold-regulated (COR) and
transcription factors (TFs) is carried out (Gong et al., 2002;
Zhou et al., 2014). In the recent years, many reports have
supplemented the knowledge regarding different genes and
their associated machinery for cold stress tolerance (Barrero-
Gil and Salinas, 2013; Peng et al., 2015). Several transcriptional,
post-transcriptional, and post-translational regulators have
been recognized for chilling or freezing temperature-induced
expression of COR genes (Lin et al., 2016).

Changes in membrane fluidity are vital contributors in
response to temperature fluctuations (Ruelland et al., 2009). It
is considered that cold stimulus is transduced by unspecified
modes to the nucleus. The degree of cold tolerance in plants
can be linked to their differential capabilities for acclimation
to cold (Knight and Knight, 2012). In angiosperms, the C-
repeat binding factors (CBF), dehydration responsive element
(DRE) (Noman et al., 2016) or cold responsive genes (COR)
are key players in cold acclimation (Yamaguchi-Shinozaki and
Shinozaki, 1994). Plant growth inhibition during cold stress is a
commonly observed phenomenon. But the signals for this growth
retardation are mostly unknown and mechanisms involved are
largely unexplored (Zhou et al., 2014).

Other than generally used model plants such as Arabidopsis
and rice, the addition of further plants in stress biology research
would offer new systems of molecular investigations. This can
provide novel insights into the genomics and genetic engineering.
The genus Capsella is closely related to Arabidopsis and has three
species (Table 1). Capsella bursa-pastoris is well adapted to varied
environmental conditions particularly low temperatures (Ceplitis
et al., 2005). This plant can grow and set seeds normally at low
temperatures, suggesting that it has a strong cold-acclimation
pathway. Capsella possesses strongly ability of tolerating cold
by modulating its metabolism and accumulation of numerous
cold prompted transcripts (Wang et al., 2004; Lin et al., 2007).
The expressional characterization of different genes and their
subsequent products from Capsella has presented this plant as a
model to study plant resistance to low temperature (Zhou et al.,
2016). The mechanism for high cold resistance has yet not been
clearly understood and requires exhaustive study. Identification
and validation of C repeat binding factors (CBF), COR (cold
regulated) genes and other signaling components in C. bursa-
pastoris has a non-conventional and broad range perspective
in the fields of plant stress physiology and crop breeding for
improving tolerance to low temperature.

Because of close affiliation between Arabidopsis and Capsella
(Table 2), abundant experimental strategies are available
and additional are being developed. The resembling gene
orientation and sequences between these two plants will escalate

identification of genes and expose novel regulatory, dogmatic
and evolutionary modes through inter-species comparison.
However, we still need more information related to different
transcriptional regulators and networks involved in cold
acclimation. Keeping in view the immense significance of cold
tolerant Capsella plant, we tried to sum up topical research
in cold stress responsive elements and associated pathways.
This review highlights the prospective research and substantial
functioning of crucial components for low temperature tolerance
in C. bursa-pastoris. Moreover, we discussed the role of plant
growth regulators as key players in determining plant responses
to low or freezing temperature.

PGRS ARE FRONT LINE PLAYERS IN
COLD STRESS TOLERANCE

Temperate plants adopt a variety of mechanisms such as
germination or developmental modulations to avoid stress
damages (Ali et al., 2017; Noman et al., 2017b). In addition
to physio-biochemical adjustments (Cramer et al., 2011), cold
adaptation includes modified expression of various genes and
associated machinery of extensive biological significance (Xin
and Browse, 2000; Fowler and Thomashow, 2002; Noman
et al., 2017a). The frequently occurring events like altered
membranes composition or structure help in reducing the
cellular injuries triggered by freezing or very low temperatures
(Figure 1; Ruelland et al., 2009). Plant growth regulators (PGRs)
are front line players in controlling these molecular trails
during cold stress. Moreover, the hormonal signaling serves
to stimulate stress response pathways. This hormonal signaling
network integrates exterior information from environment into
endogenous developmental programs to activate plants stress
response pathways. It is not astonishing that PGRs are very
important features for cold stress responses (Eremina et al.,
2016). However, our comprehension about the molecular modes
responsible for stress needs extensive investigations.

The modes of hormonal activity are usually species dependent
that complicate the research in this field. Abscisic acid (ABA)
is regarded as chief contributor in tolerating freezing or low
temperature stress. Of note, increase in ABA level is directly
proportional to increased cold tolerance (Nakashima et al., 2014).
Similarly, OSTI (open stomata 1) protein is activated by ABA.
The activity of OSTI is induced after implication of cold stress.
Interaction of OST1 and ICE1 stabilize this protein and enhance
its transcriptional activity (Ding et al., 2015).

Investigations have highlighted that cold stress affects auxin
levels differentially depending on plant type, developmental
stage and physiology (Eremina et al., 2016). For example, low
temperature treatment for many days substantially augmented
IAA levels in spring wheat crown tissues only. Besides, IAA
concentration was significantly increased in winter wheat after
12 days of cold stress (Majlath et al., 2012). Some contradictions
have also been recorded in case of other plants such as rice facing
low temperature treatment (Maruyama et al., 2014).

In mutant Arabidopsis and rice plants, it has been established
that GA signaling components can modify the plant responses
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TABLE 1 | Comparison among three species of Capsella.

Characteristic Capsella rubella Capsella grandiflora Capsella bursa-pastoris References

Compatibility Self-fertile Self-incompatible Self-compatible Hurka et al., 1989

Hurka and Neuffer, 1997

Habit Annual Annual to biannual Several ecotypes are facultative

annuals.

Hurka and Neuffer, 1997

Ploidy Diploid Diploid Tetraploid

Evolution Considered ancestral species Considered ancestral species Thought to be a hybrid of other

two Capsella species

Hurka and Neuffer, 1997

Chromosome number 2n = 16 2n = 16 2n = 4x = 32 Hurka and Neuffer, 1997

Breeding system Completely selfing plant Obligately outbreeding due to a

sporophytic self-incompatibility (SI)

system

Predominantly selfing Hurka et al., 2005

Distribution Originally grew around the

Mediterranean Sea, but it colonized

nearly all Mediterranean climatic

regions worldwide

It grows only in a limited habitat in

Albania, western Greece, and

northern Italy

Grows all over the world except

in the hot and humid tropics

Hurka and Neuffer, 1997

to chilling conditions (Richter et al., 2013). PIF4 may have
involvement in mediating CBF control by GAs. PIF4 and
other likely factors may appear as central nodes for integrating
different environmental stimuli for growth. Quite opposite to
GAs, brassinosteroid (BR) enhance cold tolerance in several
plants including chilling-sensitive plants like Zea mays, Cucumis
sativus etc. (Jiang et al., 2013). BR receptor BRI1mutant, bri1-116
exhibited increased ion leakage due to cold stress, thereby attested
the role of BR signaling in promoting cold stress acclimation
(Qu et al., 2011). But some studies have also presented opposite
results. Therefore, extensive experimentation and verification of
results is needed. It is generally agreed that cytokinins (CK)
application can improve chilling tolerance in plants. In CK-
deficient mutant of Arbidopsis, application of cytokinins also
enhanced tolerance to low temperature in CBF1-independent
manner (Jeon et al., 2010). Low CK levels in response to chilling
have been reported in model plant like rice (Maruyama et al.,
2014).

There are still some questions regarding the positive or
negative regulatory role of ethylene in plant tolerance to cold.
Some reports mentioned boost in ethylene levels against cold
in various plant species e.g., Medicago sp. (Guo et al., 2014).
Increased ethylene concentration during cold stress was linked
to amplified expression of enzymes in Arabidopsis. On the other
hand, decreased ethylene level in response to low temperature
would fit well to its suggested function as negative regulator of
chilling tolerance in some plants (Shi et al., 2012; Zhao et al.,
2014).

IS CONCEPT OF PLANT COLD
ACCLIMATION INCOMPLETE WITHOUT
CBFs?

To respond against cold stress, the signaling pathway of C-repeat
binding factor (CBF) is essential in angiosperms (Chinnusamy
et al., 2007; Welling and Palva, 2008). In robust system Capsella,
CbCBF expression is apparently feasible strategy for studying

chilling stress tolerance (Zhou et al., 2011a). In model plant
tobacco, over expression of CbCBF improved delayed flowering,
dwarfism as well as tolerance to freezing and chilling (Zhou
et al., 2012b). Consistently, in tobacco the reduced bioactive
GA content coupled with impaired GA metabolism was due
to CbCBF over-expression (Kasuga et al., 2004). So, we can
build an opinion that by interacting with cell cycle pathways,
CbCBF confers ultimate resistance to cold seemingly through
downstream target genes stimulation in tobacco cells.

Thomashow (1999) has described CBF as master switches to
increase cold tolerance. Interestingly, the COR genes expression
is activated by CBF genes in Arabidopsis (Figures 1, 2).
Comparative account of CBF from model plant Arabidopsis and
Capsella presents interesting facts. In spite of the dissimilarities,
the resembling genome sequences for many genes and TFs reveal
high level functional similarity among both relatives. AtCBF1
and AtCBF4 play a more substantial role than the CBF3 under
chilling stress (Wang and Hua, 2009) while AtCBF2 exhibits
dissimilar expression pattern from AtCBF1and AtCBF3 (Novillo
et al., 2007). In comparison with Arabidopsis, CbCBF have a
great impact in both chilling and freezing tolerance in cold
sensitive N. tabacum plants. This indicates that both severe
and moderate cold responses are regulated by the participation
of CbCBF. Stimulation, activation and transcription of CbCBF
promoters have been recognized in shoot as well as root system
(Zhou et al., 2014). On the whole, in Capsella a stronger
cold responsive signaling cascade may be induced by CbCBF
during cold exposure as compared to species sensitive to low
temperature.

Besides, slow growth rate, inhibited growth, stunted
appearance and delayed flowering was also exhibited by
35S::CbCBF in tobacco plants. Already in Arabidopsis, over-
expression of CYCD genes has been considered responsible
for the shortening of G1 in cells (Menges et al., 2006). In
Capsella CBF-ox plants, both the reduction in mRNA levels for
CYCD genes and increased number of G1 phase cells supports
the involvement of CYCDs as rate-limiting factors for the
G1-S transition. The hypothesis that CbCBF inhibits the G1-S
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FIGURE 1 | Schematic illustration of sub-cellular events in plant cell after exposure to low temperature. Plasma membrane lipids in cold sensitive plants possess high

degree of saturated fatty acids that contribute in higher freezing tolerance. Later on, combination of physio-biochemical and molecular changes leads to cold stress

tolerance.

FIGURE 2 | Cold stress perception and ultimate plant response is determined by regulation of CBFs and CORs. As a premier regulator of cold acclimation, CBF

controls COR gene expression. Products of CORs i.e., regulatory and functional proteins result in physiological adjustments for appropriate plant response to low

temperature.

transition is also checked by the contrasting properties of CbCBF
over-expression to that of 35S::AtCYCD3;1 (Menges et al., 2006).
However, Guo and Wang (2008) reported that cold stress causes
reduction in NtCYCD genes expression. Consequently, CbCBF
may possibly hinder the G1-S transition by suppressing the
manifestation of CYCD genes in response to cold stress. These
findings are in agreement with the previous study on rice that
over-expression of OsCYCB1;1 enhanced cold stress tolerance

(Ma et al., 2009). From all above findings, we agree that CbCBF
contributes in regulation of cell cycle progression.

Yamaguchi (2008) reported considerably lower GA1 and GA3
level in plants harboring 35S::CbCBF. The most GA deprived site
was young leaves and few leaves from the apical nodes. Having
said all this, CbCBF is responsible for the reduction in bioactive
GA levels (Achard et al., 2006) in new growing leaves and have
slight influence in old leaves. Contrarily, the dwarfism of CbCBF
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transgenic plants may be reversed by exogenous application of
GA. Therefore, the growth retardation is likely to be due to
suppression of bioactive GA. It has been reported in studies
on rice as well as Capsella that CDK and some cyclin genes
expression can be stimulated by exposure to GA. This stimulation
can occur at both G1-S and G2-M transitions (Lorbiecke and
Sauter, 1998; Zhou et al., 2014). The decreased GA levels may also
be partially responsible for the delayed G1-S transition conferred
by CbCBF. The specific suppression of the G1-S transition might
be based upon altered transcription of CYCD.

In view of these findings and the CbCBF suppression by GA
exposure under cold stress, we speculate that CbCBF-dependent
regulatory pathway interacts with the GA signaling pathway. This
interaction regulates plant growth especially in growing tissues
and ultimately modulates cold tolerance. Meanwhile, there seems
to be other pathway(s) downstream ofCbCBF but independent of
GA in cold response. In summary, CbCBF is strongly induced by
cold and participates in a regulatory network of cold acclimation.

The inverse relationship between PGRs i.e., GA and CBF can
be a crucial output of cold induced gene regulation in Capsella.
In addition, CbCBF is also involved in cell cycle control by
interfering CYCD genes expression. Based on the above analysis,
CbCBF is an excellent candidate for application in breeding of
plants with dwarf forms and lawn grasses. Further investigation
on the exact target nodes of CbCBF on growth reduction will
contribute to the production of CbCBF transgenic plants with
stronger cold tolerance but without growth retardation.

EXPRESSION OF COR GENE ALONG WITH
IDENTIFICATION OF CIS- ELEMENTS IS
IMPERATIVE FOR LOW TEMPERATURE
(LT) TOLERANCE

The cryoprotective proteins are special product of cold-
regulated (COR) genes. These proteins function by increasing
membrane expandability duringmelting and reduce permeability
of membranes upon exposure to freezing. Transcription factors
(TFs) coupled with definite nuclear events directly regulate COR
gene expression. Success is evident in exploiting TFs among
transgenic plants. Different genes and transcription factors
appeared helpful for cold tolerance in different plant species
(Table 3). But, the up-stream regulatory modes that control these
activities are still indefinable. Various COR genes have been
defined from different spermatophytes comprising of COR15a
from C. bursa-pastoris, BN19, BN115, and BN26 from B. napus,
CbCOR15 from C. bungeana and COR14b gene from H. vulgare
(Table 4; Figure 2). Array of expression patterns of these genes
have been exposed after low temperature treatment (Si et al.,
2009; Chen et al., 2011). In A. thaliana and Capsella the arbitrate
expression of COR genes have been validated by cis-acting
elements of putative COR15 promoter (Stockinger et al., 1997;
Lin et al., 2016).

In Arabidopsis thaliana COR15a/b (Lin et al., 2016), COR78
(Thomashow et al., 2001), RAB18 (Lang and Palva, 1992),
and KIN1/2 (Kurkela and Borg-Franck, 1992) are different
promoters of COR genes. These encompass extremely conserved

cis-elements such as CRT, DRE, or LTRE. ICEs are the upstream
regulators and inducers of CBF expression as well. They work
as positive regulator of CBFs, though COR genes are regulated
by CBFs by attaching to the CRT/DRE element (Lissarre et al.,
2010). Promoter fusion revealed that COR gene expression can
be initiated by two cis-acting CRT/DRE elements of CbCOR15a
gene and one cis-acting CRT/DRE element of CbCOR15b. It
had already been illustrated that under non-acclimated situation
the expression of AtRD29a-GUS (Yamaguchi-Shinozaki and
Shinozaki, 1993) and AtCOR78-GUS (Horvath et al., 1993) gene
was either imperceptible or very low in almost all plants tissues.

Different patterns of gene expression indicate completely
different role of COR genes in different plant species (Bajji
et al., 2002; Kang et al., 2009). The data presented by Wu et al.
(2012) affirmed thatCbCOR15b expressed primarily in leaves and
stems. However, in response to cold, it may additionally play a
function in roots. We are convinced that the CbCOR15b protein
localization within the plastid and cold inductive activity of
CbCOR15b in leaves (Wilhelm and Thomashow, 1993) confirms
the presence of preserved chloroplast-targeting signal peptide
in its N-terminal as a member of late embryogenesis abundant
(LEA) proteins. Cleavage of this protein might occurr and
also the residual peptide could be targeted into the stroma
of chloroplast (Liu et al., 2004). CbCOR15b localization in
epidermal cells, stele, and endodermis revealed its alternative
functions in roots as compared to the leaves. Its function may
be the protection of chloroplast from freezing and thawing
damage in leaves. This functional disparity between CbCOR15b
and CbCOR15a indicates a different function of CbCOR15b in
plants with respect to temperature variation and organ type.
From the former researches it has been revealed that cold
regulated genes contained 3 gene pairs which had been isolated
from A. thaliana, such as KIN1/KIN2, COR15a/COR15b, and
RD29a/RD29b. In every case, totally different regulation was
observed by the members of the sequence pairs of genes.
However, expression patterns of these genes were differed
spatially as well as temporally in response to chilling stress
and ABA treatment. However, accumulation of COR15b was
in high levels under drought stress conditions (Wilhelm and
Thomashow, 1993). Whereas, in C. bursa-pastoris, gene pairs
like CbCOR15a/CbCOR15b expressed diverse characteristics
with treatments of different phytohormones such as SA, GA3,
IAA, and MeJA. Treatment with ABA exhibited the similar
expression trends in same plant. So, CbCOR15b expression was
only distinguished under ABA application (Zhou et al., 2010,
2011b).

Enhanced chilling tolerance in transgenic plants could be
due to the constitutive expression of the COR genes (Artus
et al., 1996; Grossi et al., 1998; Zhou et al., 2012b). The three
physiological indices i.e., electrolyte leakage, glucose contents
and the relative water content are significant indicators of plant
freezing resistance (Campos et al., 2003; Nakashima et al.,
2006). These physiological modulations positively correlate with
improved cold tolerance in plant cells. Transgenic tobacco
lines revealed amplified freezing resistance with the anticipated
CbCOR15b functions after crystallization of cellular components
and chloroplast preventing water loss (Si et al., 2009). On the
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TABLE 3 | Success of transgenic plants and different transgenes in enhancing plant tolerance to varied temperature ranges.

Functional Significance Plant Stress type Targeted Transgene References

LT F CS

Accumulator of antioxidant Hordeum vulgare HVA1 Checker et al., 2012

Nicotiana tobaccum Nt OSM CBF1, P5CS, APX Patade et al., 2013

Solanum lycopersicum SLICE 1 Miura et al., 2012a,b

Binding factor Arabidopsis thaliana (AtCBF3, AtCOR15A Faxiang et al., 2014

Glycine betaine metabolism Spinacia oleracea SoBADH Betaine Aldehyde Dehydrogenase Fan et al., 2012

Hydrolysed purine nucleotide Arabidopsis thaliana PeAPY2 Apyrase Shurong et al., 2015

Inhibition of lipid peroxidation Nicotiana tobaccum CuCOR19 citrus dehydrin Hara et al., 2003

Arabidopsis thaliana ACBP6 Acyl-CoA-binding protein Chen et al., 2008

RNA chaperon Arabidopsis thaliana AtCSP3 Cold shock protein Kim et al., 2009

Stress-inducible promoter Nicotiana tobaccum DREB1A (rd29A) DRE-binding protein Kasuga et al., 2004

CBF3 DRE-binding protein Gilmour et al., 2000

ABI3 Abscisic acid induced protein Tamminen et al., 2001

OsMYB4 Vannini et al., 2004

Arabidopsis thaliana ZAT12 C2H2 zinc finger Vogel et al., 2005

OsMYB3R-2 DNA-binding domain Dai et al., 2007

mybc1 Regulate osmotic stress tolerance Zhai et al., 2010

ThpI Thermal hysteresis proteins (Anti-freeze protein) Zhu et al., 2010

Transcription factor Glycine max SCOF1 cold-inducible Zinc finger protein Kim et al., 2001

Nicotiana tobaccum OSISAP1 Zinc-finger protein Mukhopadhyay et al., 2004

Oryza sativa CBF1/ DREB1b DRE binding protein Lee et al., 2004

HOS10 Encodes an R2R3-type protein Zhu et al., 2005

OsMYB3R-2 DNA-binding domain Ma et al., 2009

MYBS3 DNA-binding repeat MYB Su et al., 2010

Solanum lycopersicum CBF1 CRT/DRE binding factor 1 Zhang et al., 2010

Zea mays DREB1 Hu et al., 2011

Transporter protein Arabidopsis thaliana ala1 Amino-phospholipid ATPase 1 Gomes et al., 2000

LT, Low Temperature; F, Freezing; CS, Cold Stress.

basis of presented information, we attribute cytoplasm and
chloroplast-targeted CbCOR15b for maintaining the cytoplasmic
homeostasis by triggering the reactions. It also protects the
membrane-targeted and cellular active proteins under freezing
stress.

In some plant tissues the molecular reason for absence of
expression of the COR promoter is not well defined at normal
growth temperature (Lin et al., 2016). Besides, cold stress
dependent COR gene up-regulation is tissue specific in various

plants. Experiments have affirmed the least promoter activity
of AtCOR15a in roots but significantly enhanced in flowers,
leaves and siliques after exposure to 4◦C (Baker et al., 1994).
Whereas, in cold treated leaves, flower sepals, stems and roots,
the activity of AtCOR78 promoter was significantly enhanced.
However, no activity was observed in other plant parts such as
anthers, styles, stigmas, or ovaries of the flowers (Horvath et al.,
1993). It is evident that in all plant tissues including cauline
leaves, rosette leaves, inflorescence, seedlings and siliques the

Frontiers in Plant Science | www.frontiersin.org 8 August 2017 | Volume 8 | Article 1388

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Noman et al. Cold tolerance in Capsella

TABLE 4 | COR genes with their transcript localization in different plant parts.

Gene (s) Source Transcript sub-cellular

location

Function References

AtCOR15 Arabidopsis thaliana Stroma of Chloroplast Protect chloroplast from freezing injuries Wilhelm and Thomashow, 1993; Steponkus

et al., 1998; Nakayama et al., 2007

AtCOR15a Chloroplast Prevent from injuries due to freezing Steponkus et al., 1998; Nakayama et al.,

2007

CbCOR15 Chorispora bungeana Mesophyll cells Improved low temperature tolerance Si et al., 2009

CbCOR15b Capsella bursa-pastoris Mesophyll cells, cytoplasm

& cholorplast

Cold tolerance Wu et al., 2012; Zhou et al., 2012a

CsCOR1 Camellia sinensis Leaf cells Enhance salinity and water stress tolerance Li et al., 2010

CuCOR19 Citrus Mitochondria Cold tolerance Hara et al., 2003

HvCOR14b Hordeum vulgare Chloroplast Controlled by light and cold Crosatti et al., 1999

TaCOR15 Triticum aestivum Stroma Cold tolerance Shimamura et al., 2006

action of CbCOR15 promoter was encouraged significantly. The
presented data clearly elucidate that various expression patterns
are controlled by different cis-acting elements under low or
normal temperature conditions.

Furthermore, the control of constitutive CAMV35S by the
over expression of CbCOR15b resulted in no dwarf phenotype.
The use of endogenous environment-inducible promoter of
plant is better to circumvent hazardous effects on growth
and development by driving the expression of those genes
causing dwarf phenotype than the 35S promoter. The non-
dwarfism of transformant plants and cold inductive activity of
CbCOR15b (Shimamura et al., 2006; Wu et al., 2012) provide
a potential evidence and it can be used in transgenic crops for
the improvement of cold resistance. Studying the interaction
between different COR genes would endow us a much better
understanding of the freezing or chilling stress responsive
pathway and also offer a pragmatic tool for increasing or inducing
plant resistance to low temperature.

ROS HOMEOSTASIS AND COLD STRESS

Low temperature obstructs plant development by affecting the
cellular metabolism and gene regulating networks. In response
to various abiotic stresses, antioxidant enzymes e.g., superoxide
dismutase, peroxidase, catalase play a great role in controlling
and regulating the ROS production and accumulation (Noman
and Aqeel, 2017; Noman et al., 2017b). In Capsella, belonging
to type III peroxidase family the CbRCI35 (Rare Cold-Inducible
35) gene has been reported as cold responsive gene. Heterologous
expression tests unravel the fact that cold responsive endogenous
signaling and low temperature resistance in tobacco is conferred
by CbRCI35 (Zhou et al., 2016). Conversely, a moderate increase
in ROS accumulation was noticed under normal conditions and
CbRCI53 linked superoxide dismutase activity was enhanced in
transgenic plants after exposure to chilling stress. A consequent
alteration was reported in the gene expression related to ROS
metabolism.

Different scientists used Arabidopsis cDNA library screening
for identifying the cold responsive RCI genes e.g., AtRCI1A/B
or AtRCI2A/B (Kim et al., 2010; Sivankalyani et al., 2015).

CbRCI35 gene displayed comparatively high transcription level
and obvious cold-inducible expressions in roots as well as
great resemblance to Arabidopsis RCI3. Another interesting
fact about these genes is their differential responses to various
conditions. During cold, AtRCI3 respond by gradually elevating
its transcription and then reach its maximal level after 24 h
of 4◦C exposure (Llorente et al., 2002). CbRCI35 expressed
gradually at different temperature levels. High expression level
was noted after 8 h of treatment and then returned to a
low level at the 24 h exposure to similar temperature. This
behavior indicates its potential role and quick activation to low
temperature at the earlier stage of response. As far as organs
specified expressions are concerned, in roots CbRCI35 displayed
high expression level. However, it can also encourage expression
in stems and leaves. Quite opposite to earlier described RCIs,
AtRCI3 exhibits a root specific transcription. Moreover, AtRCI3
expressed itself in the cortex and stele. Contrarily, transcription
expression of CbRCI35 was restricted to the root cortex only
(Llorente et al., 2002). The data collected from different plant
species reveal that type III peroxidase genes exhibit a variety
of expressional regulation. Subsequently, the AtRCI3 protein is
localized in the endoplasmic reticulum (ER) and can be secreted
to the cell wall while the CbRCI35 protein is restricted in the
cytoplasm (Kim et al., 2010). The protein localization and distinct
transcription level entails that CbRCI35 from C. bursa-pastoris
might have more distinct function as compared to Arabidopsis
RCI3. This opinion provides innovative insight to understand
the cold tolerance regulation in plants by AtRCI3-like type III
peroxidases.

The production and scavenging mechanism of ROS exhibit a
key role in plant stress acclimation (Noman et al., 2015; Ali et al.,
2016; Zafar et al., 2016). The signal transduction and ROS level
are jointly controlled by adequate amount of ROS homeostasis
regulators (Mangano et al., 2016; Noman et al., 2017b). In plants
during stress responses a wide range of ROS scavengers along
with cold resistance positive modulators have been reported
(Table 5; Kim et al., 2010). Our analysis of the available
information recommends resemblance in over-expression of
CbRCI35 and AtRCI3 which contribute in managing ROS under
normal circumstances.

Frontiers in Plant Science | www.frontiersin.org 9 August 2017 | Volume 8 | Article 1388

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Noman et al. Cold tolerance in Capsella

T
A
B
L
E
5
|
In
vo

lv
e
m
e
n
t
o
f
d
iff
e
re
n
t
a
n
tio

xi
d
a
n
ts

in
c
o
ld

st
re
ss

to
le
ra
n
c
e
.

P
la
n
t

S
tr
e
s
s
ty
p
e

A
n
ti
o
x
id
a
n
ts

in
v
o
lv
e
d

P
h
y
s
io
lo
g
ic
a
l
e
ff
e
c
t

R
e
fe
re
n
c
e
s

LT
C

C
S

S
O
D

P
O
D

C
A
T

A
P
X

G
R

P
O
X

D
O
D

L
O
X

A
s
A

α
-t
o
c
o
p
h
e
ro
l
G
S
H

A
ve
n
a
n
u
d
a

3
3

3
In
c
re
a
se

d
c
o
ld

to
le
ra
n
c
e

L
iu

e
t
a
l.,

2
0
1
3

C
ic
e
r
a
ri
e
ti
n
u
m

3
3

3
3

R
O
S
sc

a
ve
n
g
in
g
&
d
e
to
xi
fic
a
tio

n
Tu

ra
n
a
n
d
E
km

e
kç

i,
2
0
1
1

3
3

3
L
o
w

L
O
X
a
c
tiv
ity

u
n
d
e
r
C
S
c
o
u
ld

b
e
a
re
a
so

n
fo
r

p
la
n
t
c
o
ld

to
le
ra
n
c
e

K
a
ze
m
i-
S
h
a
h
a
n
d
a
sh

ti
e
t
a
l.,

2
0
1
3

C
o
ff
e
a
sp

.
3

3
R
e
d
u
c
tio

n
in

R
O
S
p
ro
d
u
c
tio

n
F
o
rt
u
n
a
to

e
t
a
l.,

2
0
1
0

C
ro
c
u
s
s
a
ti
vu
s

3
3

3
Im

p
ro
ve
d
to
le
ra
n
c
e
to

c
h
ill
in
g
st
re
ss
.

Y
a
n
g
e
t
a
l.,

2
0
1
1

C
u
c
u
m
is
s
a
ti
vu
s

3
3

3
3

E
n
h
a
n
c
e
d
c
h
ill
in
g
st
re
ss

to
le
ra
n
c
e

L
iu

e
t
a
l.,

2
0
1
1

J
a
tr
o
p
h
a
c
u
rc
a
s

3
3

3
3

3
C
h
ill
h
a
rd
e
n
in
g
a
t
1
2
◦
C
fo
r
2
d
a
ys

o
b
vi
o
u
sl
y

e
n
h
a
n
c
e
th
e
a
c
tiv
iti
e
s
o
f
th
e
a
n
tio

xi
d
a
n
t
e
n
zy
m
e
s

a
n
d
A
sA

a
n
d
G
S
H
c
o
n
te
n
ts

in
th
e
h
a
rd
e
n
e
d

se
e
d
lin
g
s

A
o
e
t
a
l.,

2
0
1
3

L
yc
o
p
e
rs
ic
u
m

3
3

3
3

E
n
h
a
n
c
e
d
to
le
ra
n
c
e
to

c
h
ill
in
g
te
m
p
e
ra
tu
re

Z
h
a
o
e
t
a
l.,

2
0
0
9

M
a
n
ih
o
t
e
s
c
u
le
n
ta

C
ra
n
tz

3
3

C
yc
lic

R
O
S
sc

a
ve
n
g
in
g

X
u
e
t
a
l.,

2
0
1
4

O
ry
za

s
a
ti
va

3
D
is
m
u
ta
tio

n
o
f
H
2
O
2
in
to

H
2
O
,
in
c
re
a
se

d
g
ro
w
th

u
n
d
e
r
c
o
ld

Z
h
a
n
g
e
t
a
l.,

2
0
1
3

Tr
it
ic
u
m
a
e
s
ti
vu
m

3
3

In
c
re
a
se

d
a
n
th
o
c
ya
n
in
s,

fla
vo

n
o
id
s,

a
n
d
p
h
e
n
o
lic

c
o
m
p
o
u
n
d
s
d
u
e
to

th
e
a
b
ili
ty

to
sc

a
ve
n
g
e
R
O
S

C
h
u
e
t
a
l.,

2
0
1
0

R
O
S
sc

a
ve
n
g
in
g
c
a
p
a
c
ity

a
n
d
h
ig
h
a
b
u
n
d
a
n
c
e
o
f

p
h
o
to
sy
n
th
e
si
s-
re
la
te
d
p
ro
te
in
s

X
u
e
t
a
l.,

2
0
1
3

V
it
is
sp

.
3

3
M
a
in
ta
in

re
d
o
x
ra
tio

in
th
e
A
sA

–G
S
H
p
o
o
lb

o
th

u
n
d
e
r
n
o
rm

a
lt
e
m
p
e
ra
tu
re

a
n
d
h
e
a
t
o
r
c
o
ld

st
re
ss

W
a
n
g
a
n
d
L
i,
2
0
0
6

LT
,
L
o
w
Te
m
p
e
ra
tu
re
;
C
,
C
h
ill
in
g
;
C
S
,
C
o
ld
S
tr
e
s
s
.

Frontiers in Plant Science | www.frontiersin.org 10 August 2017 | Volume 8 | Article 1388

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Noman et al. Cold tolerance in Capsella

According to Zhou et al. (2016), in CbRCI35-ox seedlings,
enhanced NtSOD expression is positively correlated with
CbRCI35 gene function against ROS accumulation. Due to
feedback mechanism the NtSOD transcripts can increase.
Most of the genes were negatively controlled in transgenic
tobacco as compared to control during chilling treatment.
As a result, the level of ROS was identical to the control
describing the transcriptional control of ROS metabolic genes
transformed by the CbRCI35 for ROS homeostatic mechanism
(Zhou et al., 2016). Evidence supports the SOD activity was
complex in transgenic plants under both the chilling and warm
environments (Table 3). This attribute reflect that CbRCI35
gene might contribute in the protection of bioactive enzymes
during chilling stress. Although, the total level of ROS was
not dropped, electrolyte leakage and malondialdehyde (MDA)
content indicated the alleviated membrane injury in CbRCI35-
ox tobacco plants during chilling temperatures (Zhou et al.,
2016). Therefore, we can infer that CbRCI35 significantly
contribute in enhancing freezing resistance as well as in
plant cold acclimation by activating the COR genes and
regulating ROS homeostasis. Moreover, application of CbRCI35
has comprehensive prospects for crop improvements in plant
breeding.

TAKE A PAUSE, SOME LINKS ARE
MISSING

As a model plant, Capsella bursa-pastoris is a viable system
for inquiring plant stress responses and adaptation. But with
reference to angiosperms generally and Capsella particularly,
several important links in cold acclimation are missing. So many
questions arise that are crucially linked with low temperature
tolerance and acclimation process. For example, still there are
question marks upon the molecular identity of the cold-regulated
Ca2+ channel(s) in plants. Over the years, Ca2+ channel activities
have been intensively studied for their electro-physiological aid
in tolerating low temperature stress (Carpaneto et al., 2007). But
contrary to animals (Karashima et al., 2009), point to ponder is
ignorance to clone plant genes encoding the proteins accountable
for cold tolerance activities. With particular reference to Capsella
sp., we do not have answers about identification of Ca2+

channel. Similarly, different mutant screens for expression of
cold-induced gene and cold tolerance have yet not been able
to recognize any plant Ca2+ channels. On the other hand,
functional cloning by using a heterologous system can be very
good approach for identifying Ca2+-sensing receptor like in
Arabidopsis (Han et al., 2003) and could be employed in case of
Capsella.

Another missing link is deciphering of the cold Ca2+ response
and role of different Ca2+-binding signaling proteins. As a
response to different degrees of temperature reductions, even
before the temperature needed for triggering cold acclimation,
Ca2+ levels increases (Larkindale and Knight, 2002). At the
moment, we need to investigate the Capsella’s capacity to
make a distinction between changes in modulated Ca2+ levels
especially when the temperature falls below 5◦C (Knight and

Knight, 2000). For presenting C. bursa-pastoris as a model
plant to unravel molecular basis of cold acclimation, it will be
beneficial to quantify the in vitro activity of Ca2+-responsive
proteins like CaM in response to various Ca2+ signatures.
It is speculated that Ca2+ alterations update the cell only
about temperature reduction while other signaling mechanisms
independent of Ca2+ cover information regarding absolute
temperature to inform the plant for type of response needed.
Future identification of Ca2+ channels would make possible a
genetic advance to be made and applied to the questions relating
to Ca2+ encoded information.

In plants presence of Ca2+-dependent and MAPK dependent
pathways for mediating the gene expression regulation propose
different messages conveyed during temperature variations
(Knight and Knight, 2012). It is motivating to find out
whether mutation in regulatory authority of each pathway
awards differential sensitivity or augment the response
to particular temperature range because different gene
groups are regulated by each sensing system. Winfield et al.
(2009, 2010) have presented the wheat CBF gene selective
response against cold shock and slow cooling. It will be
very enticing to verify which gene group is regulated by
different mechanisms. This analysis would differentiate between
the genes taking part in chilling, freezing temperature or
vernalization.

It is very clear that response to chilling and freezing
temperature requires different gene operations. The question
is how we can differentiate between the cold-regulated genes
involved in chilling and freezing. In plants with capacity to
acclimatize in cold, genes expression against low temperatures
i.e., 5◦C or below is seemingly a pre-requisite for the acquisition
of freezing tolerance or gain/maintenance of chilling tolerance.
So far with the help of transcriptomic profiling in model
species like Arabidopsis and non-model plants such as Solanum
tuberosum, we are unable to differentiate between chilling and
freezing tolerance. Therefore, this situation has necessitated
additional studies for gene identification specifically involved in
chilling tolerance. We speculate that transcriptomic comparison
among chilling-sensitive and freezing-tolerant plants may grant
support here. Investigations by using A. thaliana have not only
substantiated the effectiveness of this approach for identification
of genes linked with one exact form of cold tolerance. From the
data, it can easily be inferred that components of chilling and
freezing tolerance pathways display high level of conservation
with modifications in the target genes expression only (Narsai
et al., 2010).

In continuation of above quoted discussion, the question
arises if plants are responsive to temperature fluctuations, how
do they discriminate between those that are worthy and those
that should be overlooked? It looks very important that a plant
does not employ a full cold acclimation response whenever
it experience temperature fluctuations. Hence, a competent
system of checks is expected to discriminate between injurious
and harmless fluctuations with the help of warning signals.
This may engage sensing the duration of low temperature and
incite acclimation response after independent confirmation of
low temperature. Knocking out of individual cold signaling
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pathways can assist us to solve such issues. Unequivocally
the circadian clock as well as light quality signals makes
available significant contextual data regarding relevance of low-
temperature alterations to the plant. It is agreed that any
abrupt drop in temperature to 5◦C at noon entails a very
different explanation to the same degree of temperature drop
experienced by plant at dusk or night. The recognition of
manifold temperature parameters by means of parallel signal
transduction systems may appear as an aegis against wasteful or
inapt responses.

CONCLUSION

Knowledge about low temperature responses in plants has been
enriched by genetic as well as molecular techniques. However, the
existing information can be augmented by exploring involvement
of numerous transcriptional regulators and interaction between
the signaling pathways operating in the process of low
temperature acclimation. Scientific advances in the fields like
metabolite profiling have highlighted the contribution of cellular
metabolic signals in freezing or chilling stress tolerance. Many
genes taking part in RNA splicing, export or remodeling of
chromatin proteins have been recognized for their significant
functions during plant acclimation to low temperature. But
accurate details and the exact mechanism of the whole complex
network remain to be elucidated. Today, we need mandatory

studies such as mutation analysis and identification of regulation
cascades for ambiguous metabolic signals. On the other hand for
the studied genes, obviously intensive effects in entire network
and homologous analysis in novel and candidate model plant
species are required. Forward and reverse genetic research in
concert with physio-biochemical and bioinformatics analyses will
offer more inspiring discoveries for LT acclimation in plants.
Moreover, for highly efficient utilization of the elements in the
CBF or COR-dependent signaling pathways, novel approach and
techniques need to be established. In near future, it will become
essential to have these systems more enthusiastically adopted
and optimized to study plant responses to low temperature.
This would accelerate the progress made in this field during
recent years.
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