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Withania somnifera, commonly known as Ashwagandha an important medicinal plant

largely used in Ayurvedic and indigenous medicine for over 3,000 years. Being a

medicinal plant, dried powder, crude extract as well as purified metabolies of the

plant has shown promising therapeutic properties. Withanolides are the principal

metabolites, responsible for the medicinal properties of the plant. Availability and amount

of particular withanolides differ with tissue type and chemotype and its importance

leads to identification characterization of several genes/ enzymes related to withanolide

biosynthetic pathway. The modulation in withanolides can be achieved by controlling

the environmental conditions like, different tissue culture techniques, altered media

compositions, use of elicitors, etc. Among all the in vitro techniques, hairy root

culture proved its importance at industrial scale, which also gets benefits due to more

accumulation (amount and number) of withanolides in roots tissues of W. somnifera.

Use of media compostion and elicitors further enhances the amount of withanolides in

hairy roots. Another important modern day technique used for accumulation of desired

secondary metabolites is modulating the gene expression by altering environmental

conditions (use of different media composition, elicitors, etc.) or through genetic

enginnering. Knowing the significance of the gene and the key enzymatic step of the

pathway, modulation in withanolide contents can be achieved upto required amount in

therapeutic industry. To accomplish maximum productivity through genetic enginnering

different means of Withania transformation methods have been developed to obtain

maximum transformation efficiency. These standardized transformation procedues have

been used to overexpress/silence desired gene in W. somnifera to understand the

outcome and succeed with enhanced metabolic production for the ultimate benefit of

human race.

Keywords: Withania somnifera, Ashwagandha, metabolites, withanolides, tissue culture, differentiation, and

transformation
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INTRODUCTION

Withania somnifera (Ashwagandha; Solanaceae family) is one
of the most recognized and studied medicinal plants due
to its wide distribution all around the world. W. somnifera
has been used for over 3,000 years in indigenous medicine
(Ayurvedic) system (Scartezzini and Speroni, 2000; Kumar and
Kalonia, 2007; Tuli and Sangwan, 2009; Singh et al., 2015b).
Several studies collectively provide metabolic insight of more
than 200 primary and secondary metabolic components of W.
somnifera. Significance of Withania in therapeutic world has
been recognized due to maximum accumulation and diversified
form of withanolide. All the identified variants of withanolides
became interesting for researchers due to their beneficial effects
for human body (Figure 1A; Kumar et al., 2007; Kulkarni and
Dhir, 2008; Sharada et al., 2008; Mirjalili et al., 2009; Singh et al.,
2010; Dar et al., 2015).

Biosynthesis of metabolites could be improved effectively
through genetic engineering, which requires full information of
all the genes/enzymes involve in biosynthetic pathway. Using
the limited reports available on genes as well as enzymes of
W. somnifera, researchers have prosposed possible metabolic
pathway for the synthesis of different withanolides (Figure 1B;
Senthil et al., 2010; Dhar et al., 2013; Sabir et al., 2013). Genes,
enzymes as well as metabolites of respective metabolic pathway
show differential pattern of expression according to the plant
part, age, season, and other environmental factors. Optimization
of various tissue culture techniques become very important to
exploreW. somnifera at different aspects, as plants obtained from
fileds are not enough for all in vitro studies. Therefore, efficient
tissue culture techniques like, micropropogation, regeneration,
organogenesis, hairy root production, etc. have been established.
Also, development of transgenic plants has been considered as
the most economical way to improve the yield of therapeutic
metabolites on large scale.

Present review recognizes the importance ofW. somnifera and
disscuss in detail genes/enzymes involved in the biosynthesis of
secondary metabolites. The review also includes the significance
of in vitro techniques in order to modulate the productivity of
W. somnifera according to the desired final product. Suitable
combinations of these findings create a very cooperative
setting to modulate expression profile of various genes using
different circumstances, results in synthesis of various secondary
metabolites ofW. somnifera.

PROPOSED PATHWAYS FOR
BIOSYNTHESIS OF WITHANOLIDES:
MEDICINAL COMPONENT OF
W. SOMNIFERA

Withanolide biosynthesis involves the key upstream
metabolic step of isoprenogenesis using isoprenoid as
precursor. Isoprenogenesis is known to proceeds through

Abbreviations: SA, salicylic acid; MeJA, methyl jasmonate; MI, mechanical injury;

ABA, abscisic acid; JA, jasmonic acid; Ws, Withania somnifera; GA3, gibberellic

acid; YE, yeast extract.

two different independent pathways; mevalonic acid (MVA) and
methylerythritol phosphate (MEP; also called deoxyxylulose
pathway, DOXP) pathway (Chaurasiya et al., 2007; Sangwan
et al., 2007). These pathways occur in cytosol and plastid,
respectively and ultimately synthesizes the 30 carbon compound
(triterpenoids), 24-methylene cholesterol (Figure 1B). Till
date, complete information of whole withanolide biosynthesis
pathway is not available. However, combination of several studies
provide an overview of pathway illustrating several enzymatic
steps (Mirjalili et al., 2009; Senthil et al., 2010; Chaurasiya
et al., 2012; Gupta et al., 2013a,b, 2015; Dhar et al., 2015).
Enzymatic steps of MVA and MEP pathways has been prescribed
through the first transcriptome analysis of the plant (Senthil
et al., 2010), which keeps improving with advancement in
techniques (Gupta et al., 2013b, 2015; Senthil et al., 2015). These
analyses reveal numbers of tissue specific unique sequences,
differentially expressed genes related to biosynthesis of secondary
metabolites.

Genes Involved in Biosynthesis of
Withanolides
Genes involved in biosynthesis of withanolides are 114-sterol
reductase (EC 1.3.1.70), 1-deoxy-D-xylulose-5-phosphate
reducto-isomerase/reductase (DXR; EC 1.1.1.267), 1-
deoxy-D-xylulose-5-phosphate synthase (DXS; EC 2.2.1.7),
2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase
(MEcPP synthase, IspF, EC 4.6.1.12), 2-C-methyl-D-erythritol
4-phosphate cytidylyl transferase (EC 2.7.7.60), 3-hydroxy-3-
methylglutaryl-coenzymeA reductase (HMGR; EC 1.1.1.34),
4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (EC
2.7.1.148), 4-hydroxy-3-methylbut-2-enyldiphosphate reductase
(EC 1.17.1.2), 4-hydroxy-3-methylbut-2-enyldiphosphate
synthase (HMB-PPS, IspG, EC 1.17.7.1), acetyl-CoA
acetyltransferase (ACT, EC 2.3.1.9), C-5-sterol desaturase
(C5SD, EC 1.14.19.20), cycloartenol C-24 methyltransferase
(EC 2.1.1.142), cycloartenol synthase (CAS; EC 5.4.99.8),
cycloeucalenol cycloisomerase (EC 5.5.1.9), cytochrome-
P450s reductase (CPR, EC 1.6.2.4), farnesyl diphosphate
synthase (FPPS, EC 2.5.1.10), geranyl diphosphate synthase
(GPPS, EC 2.5.1.1), geranyl-geranyl diphosphate synthase
(GGPPS, EC 2.5.1.29), glycosyltransferases (GT, EC 2.4.-),
hydroxymethyl glutaryl-CoA synthase (HMGS, EC 2.3.3.10),
isopentenyl diphosphate isomerase (IPPI, EC 5.3.3.2),
methyltransferase (MT, EC 2.1.1.), mevalonate diphosphosphate
decarboxylase (EC 4.1.1.33), mevalonate kinase (MVAK,
EC 2.7.1.36), obtusifoliol 14-demethylase (EC 1.14.13.70),
phosphomevalonate kinase (EC 2.7.4.2), squalene synthase
(SQS, EC 2.5.1.21), squalene monooxygenase/epoxidase
(SQE, 1.14.14.17), sterol 17 reductase (DWF, EC 1.3.1.21),
etc. (Senthil et al., 2010, 2015; Gupta et al., 2013b,
2015).

To understand the interactions of various molecular network
in entirety, Dhar et al. (2015) and Singh et al. (2015b)
summarized the available information of some in vitro studies
with respect to regulation of pathway genes required for
withanolide accumulation.
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FIGURE 1 | (A) Some important therapeutic uses of Withania somnifera with few proposed mode of actions (Dar et al., 2015); (B) Possible metabolic pathway for

withanolides and glycowithanolides (withanosides) production (Senthil et al., 2010; Dhar et al., 2013; Sabir et al., 2013; Singh et al., 2015b) [GA-3P,

glyceraldehyde-3-phosphate; MEP, 2-methyl- D-erythritol 4-phosphate; DMAPP, dimethylalyl pyrophosphate; IPP, isopentenyl pyrophosphate; IPPI, isopentenyl

diphosphate isomerise; HMG-CoA, 3-hydroxy-3-methylglutaryl-coenzyme A; DXP, 1-deoxy-D-xylulose 5-phosphate; MVAPK, mevalonate phosphate kinase; MVAPP,

diphosphomevalonate decarboxylase; CDP-ME, 4-diphospho-cytidyl-2-methyl-D-erythritol; CMS, 4-(cytidine-5-diphospho)-2-C-tmethyl-Derythritol synthase; CMK,

4-(cytidine-5-diphospho)-2-C-methyl-D-erythritol kinase, CDP-MEP, 2-C-methyl- D-erythritol-2-phosphate; MCS, 2-C-methyl-D-erythritol-2,4-cyclodiphosphate

synthase; HDS, Hydroxy methyl butenyl 4- diphosphate synthase; HMBPP, Hydroxy methyl butenyl 4-diphosphate; HDR, Hydroxy methyl butenyl 4-diphosphate

reductase].

Few Important Catalytic Conversions of
Proposed Pathways
Among a number of enzymes, SQS and SQE are considered
as an important enzymes in the biosynthesis of triterpenoids.
Considering this, Gupta et al. (2012) characterize isoforms of
SQS gene, while, Razdan et al. (2013) perform characterization
and promoter analysis of SQE gene from W. somnifera. To
confirm the functional activity, both studies also involved the
cloning, expression and purification of gens/enzymes in E. coli.
Genes encoding DXS, DXR and HMGR enzymes expressed
their importance by catalyzing the key regulatory step of the
isoprenoid biosynthesis. These genes revealed tissue specific,
chemotype specific and modulated expression while exposed to
SA, MeJA, as well as MI (Akhtar et al., 2013; Gupta et al.,
2013c).

Fewmembers of sterol-GT (SGT) gene family ofW. somnifera,
have been recognized and characterized (Sharma et al., 2007;
Madina et al., 2007a,b; Chaturvedi et al., 2012). SGTs are
responsible for diversified glycosylation of sterols (including
withanolides). The identified SGTs expressed different level
of expression in different tissues as well as under different
stress conditions, to proove their physiological importance
(Sharma et al., 2007; Chaturvedi et al., 2011, 2012). Purified
SGTs showed broad substrate specificity for sugar acceptor
but not for the sugar donor (Madina et al., 2007a,b). Similar
pattern of glycosylation was observed by Singh et al. (2013)

during functional characterization of flavonoid-GT gene fromW.
somnifera.

Variation in Gene Expression Pattern
According to Tissue and Stress Conditions
Relation among few pathway genes, withanolides accumulation
with morphogenic transition has been studied by Sabir
et al. (2013). In vitro tissues belongs to different stages of
organogenesis (rhizogenesis and shoot organogenesis) were
used for the experiment. Accumulation of major withanolides
and expression of HMGR, FPP synthase (FPPS), SQS, SQE,
cycloaretenol synthase (CAS), GTs were analyzed at different
morphogenic transition states.

Detailed study on four-CYP450 has been performed by
Srivastava et al. (2015) to illustrate involvement of these enzyme
in some specialized secondary metabolite (withanolides). The
expression profiles of these CYPs showed chemotype-specific
and tissue-specific variation, as well as variation in response
to physiological and developmental factors. To expand the
understanding of expression of genes in relation to withanolide
biosynthetic pathway, Pal et al. (2016) perform experiments
with different concentrations of fertilizers on fresh twigs of
W. somnifera. Treated twigs related to highest accumulation of
withaferin-A has been selected to analyse expression pattern
of CYPs, allene oxide cyclases (AOCs) and few other pathway
related genes.

Frontiers in Plant Science | www.frontiersin.org 3 August 2017 | Volume 8 | Article 1390

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Pandey et al. Withania somnifera: Molecular and Tissue Culture Techniques

TISSUE CULTURE STUDIES ON WITHANIA

SOMNIFERA

Seed Germination in W. somnifera
Numerous, campylotropous, whitish, disk shaped seeds are found
inside red or orange colored fruit (berry) of W. somnifera.
Earlier reports mentioned high dormancy with poor seed
viability (Khanna et al., 2013; Viji et al., 2013), also seeds
of W. somnifera showed low and erratic germination with
heterogeneous seedlings (Vashistha et al., 2010) having higher
mortality rate of seedlings under field conditions (Khanna et al.,
2013). The problems with seed germination of W. somnifera (in
vitro and in field) guided the researchers toward finding of simple
techniques with optimized conditions, in order to get faster
and more germination rate. These conditions include nutrient
medium, light conditions and condition of seeds, etc. These
findings will help nursery workers and poor farmers interested
in developing mass planting stock.

Soaking of seeds in water, diluted sodium hypochlorite, nitrate
solutions (of potassium, ammonium, cobalt, sodium, calcium
and zinc), has been suggested to soften the hard seed coat of W.
somnifera (Kattimani and Reddy, 2001; Vashistha et al., 2010).
Improved germination has been observed at 25 ± 2◦C and 16-
h-light/8-h-dark photoperiod with the light intensity of 3,000 lux
(Kambizi et al., 2006; Khanna et al., 2013; Viji et al., 2013). In
addition to these conditions, incision on seed coat and few pre-
incubation conditions (dark or 15◦C) increases the germination
percentage (Pandey et al., 2013; Viji et al., 2013; Kumar et al.,
2016).

Regeneration and Multiplication of
W. somnifera
Seedlings, embryos, cotyledon, epicotyl, hypocotyl, petiole,
leaves, nodes, internodes, stem, shoot tips and roots have been
used in different experiments for callus induction, adventitious
root induction, regeneration, differentiation, flower induction,
and fruit setting (Sharada et al., 2008; Supe et al., 2011; Singh
et al., 2017). Composition of gelling matrix was standardized
for encapsulation of shoot tips of W. somnifera along with
optimization of media composition (or soilrite) for conversion
of encapsulated shoot tips into plantlets (Singh et al., 2006).
Most studies with optimized in vitro tissue culture conditions
of W. somnifera have been briefly summarized recently by Singh
et al. (2017).

ACCUMULATION OF WITHANOLIDES IN
DIFFERENT TYPES OF IN VITRO CULTURE

The ultimate goal of different studies on W. somnifera is to
provide maximum and better plant material for therapeutic
purpose. These involes standardization of phytochemical analysis
of different types of tissues obtained from different region and
accession of W. somnifera, for accumulation of therapeutic
metabolites (Table 1). On the basis of difference in available
withanolides, W. somnifera has been divided into various
chemotypes (accessions). Differences in chemo-profile of some

selected chemotypes have been documented in several studies
(Dhar et al., 2006; Kumar et al., 2007; Scartezzini et al., 2007;
Bhatia et al., 2013).

Variation persist in accumulation of withanolides due to plant
parts, developmental stages (Praveen and Murthy, 2010; Dhar
et al., 2013), plant part obtained from different types of cultures
(Sharada et al., 2007; Singh et al., 2017) of W. somnifera. These
studies establish relationship between morphology/condition
of plant tissue and withanolide contents. Sivanandhan et al.,
2012a,b, 2013b,c, 2014a,b, 2015a; Singh et al., 2017) used in
vitro grown plants in different studies to develop adventitious
roots, multiple shoots, shoot suspension culture, cell suspension
culture, flowers, and fruits using different growth conditions.
These developed tissues were harvested to extract different
combinations of withanolides.

Based on different studies, Singh et al. (2017) summarized
effects of in vitro conditions on accumulation of withanolides.
These studies involving organ and callus culture, cell suspension
culture and Agrobacterium tumefaciens as well as A. rhizogene
mediated transformation. Different conditions of these
techniques resulted in modulated accumulation of different
withanolides, some of which related to modulated gene
expression pattern.

Hairy Root Culture of W. somnifera and
Withanolide Accumulation
Hairy root cultures are a promising approach of bioprocess
engineering for large scale production of valuable plant
secondary metabolites. There are several reports available in
order to modulate quantity of withanolides in hairy roots
culture using A. rhizogenes mediated transformation (Pawar
and Maheshwari, 2004; Bandyopadhyay et al., 2007; Murthy
et al., 2008; Saravanakumar et al., 2012; Sivanandhan et al.,
2013a, 2015b). It has been reported that different factors
like carbohydrates (Doma et al., 2012), inorganic supplements
(Praveen and Murthy, 2013), seaweed extracts (Gracilaria edulis
and Sargassum wightii; Sivanandhan et al., 2015b), hormones,
elicitation ( like, chitosan, JA, SA; Chaudhuri et al., 2009;
Doma et al., 2012; Sivanandhan et al., 2013a), etc. modulate
biogeneration of withanolides in hairy root cultures.

Difference in hairy root emergence was observed illustrating
resistance or susceptibility of W. somnifera toward different
strains of A. rhizogenes (Pawar and Maheshwari, 2004;
Bandyopadhyay et al., 2007; Saravanakumar et al., 2012) as
well as transformation efficiency of different explants used for
the experiment (Murthy et al., 2008; Saravanakumar et al., 2012).
Leaves proved to be more appropriate for infection by different
strains of A. rhizogene, since used as explant in various studies
(Ray et al., 1996; Bandyopadhyay et al., 2007; Chaudhuri et al.,
2009; Doma et al., 2012; Saravanakumar et al., 2012; Praveen
and Murthy, 2013; Sil et al., 2015; Thilip et al., 2015). Recenlty,
Pandey et al. (2015) induced hairy root from leaf explants of
W. somnifera expressing sterol glucosyltransferase gene (clone-4)
using A. rhizogenes. The transgenic hairy roots were observed to
accumulate higher amount of withanolide-A when subjected to
elicitation (salicylic acid and methyl jasmonate).
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TABLE 1 | Different conditions/situation in order to accumulate therapeutically important metabolites of W. somnifera.

Condition Plant Part Special

treatment/condition/method/

identification

Metabolite extracted References

S
ta
n
d
a
rd
iz
a
tio

n
/
Id
e
n
tifi
c
a
tio

n
o
f
m
e
ta
b
o
lic
-a
n
a
ly
tic
a
lt
e
c
h
n
iq
u
e
/
m
e
ta
b
o
lit
e

In situ Root; stem; leaf HPLC for determination of

withanolides

WS-1; WS-5 Ganzera et al., 2003

Whole plant cholinesterase inhibiting withanolides 2-new; 4- known

withanolides

Choudhary et al., 2004

Leaves Sulfated and oxygenated withanolides 4-new; 6-known

withanolides

Misra et al., 2005

Dried roots/ leaves HPLC and AFLP findings to relate

different (15) accessions

WS-1; WS-2; WS-3;

WS-7; WS-9; WSs; PG

Dhar et al., 2006

Roots Rare dimeric withanolide

(ashwagandhanolide)

WS-1; WS-3; WS-7;

WS-8; WS-14

Subbaraju et al., 2006

Two new withanolides (TLC; NMR) 2-new and 7-known

withanolides

Misra et al., 2008

Leaves, roots More reliable HPLC to determine

broad range of withanolides

9- withanolides Chaurasiya et al., 2008

Various genotypes HPTLC for determination of

withanolides

WS-1; WS-3; WS-10 Srivastava et al., 2008

Leaves, roots NMR and HPLC and GC–MS for

metabolic fingerprinting

48 to 62 primary/

secondary metabolite

Chatterjee et al., 2010

Whole plant/ plant

parts

Distribution in various organs WS-3 Praveen et al., 2010

Roots, fruits, leaves Phenolic acids 5-phenolics;

3-flavonoids; few

unknown

Alam et al., 2011

Leaves, roots HR-MAS-NMR to establish metabolic

mapping (4 chemotypes)

41 metabolites Bharti et al., 2011

M
e
ta
b
o
lic
/
p
h
yt
o
c
h
e
m
ic
a
lp

ro
fil
in
g

Leaves, stems, roots Metabolomic characterization (NMR)

from different (6) regions

Primary and secondary

metabolites

Namdeo et al., 2011

Roots Different species 21 bioactive

compounds

Kumar et al., 2011

Fruits Developmental stages of fruit (NMR;

COSYDQF; TOCSY; HSQC)

17 metabolites Sidhu et al., 2011

Fruits (LC-HRMS and LC-MS/MS) 62 metabolites Bolleddula et al., 2012

Chemotype (4) variations (GC–MS

and NMR)

82 metabolites Bhatia et al., 2013

Leaves, roots Clustering of accessions (25) based

on phenotypic and chemotypic

analysis

WS-1; WS-2; WS-3 Kumar et al., 2007

Relation between transcript and

metabolic profile in two

morpho-chemovariant accessions

WS-1; WS-2; WS-3 Dhar et al., 2013

Different plant parts Growth dependent variation in few

metabolites (2 cultivars)

WS-1; WS-2; WS-3;

squalene

Dhar et al., 2016

M
e
d
ia
/s
o
il/
e
lic
ito

r
tr
e
a
tm

e
n
t/

va
ria

tio
n

In vitro; In situ Leaves Nitsch and Nitsch-(NN) media + BAP

+ IBA

WS-1 Furmanowa et al., 2001

Parts of seedlings MS/ B5 basal media + (different

combinations of plant hormones)

WS-1; WS-2; WS-3;

WS-4; WS-6

Sharada et al., 2007

Leaves, stem, roots MS + BAP, IAA WS-1; WS-3; WS-10 Dewir et al., 2010

Leaves, roots, seedling Sandy loam soil; MS WS-1 Johny et al., 2015

In vitro Multiple shoots,

teratoma

MS + BAP + Kinetin WS-1; WS-3 Sangwan et al., 2007

Multiple shoots MS + BAP+/ IAA+/ IBA+/ NAA+/

2,4-D

Glycowithanolides;

withanolides

Ahuja et al., 2009

(Continued)
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TABLE 1 | Continued

Condition Plant Part Special

treatment/condition/method/

identification

Metabolite extracted References

Adventitious roots MS + IBA + IAA WS-3 Wasnik et al., 2009

MS + 2,4-D/ IAA/ IBA/ NAA; B5 NN;

N6

WS-3 Praveen and Murthy,

2010

Adventitious roots from

semi-friable callus of

leaves

MS + 2,4-D + kinetin, MS + IBA +

IAA

WS-1; WS-2; WS-3;

WS-4; WS-10; WS-12;

WS-13

Sivanandhan et al.,

2012a

MS + 2,4-D + kinetin, MS + IBA +

NAA, Elicitors

WS-1; WS-3; WS-4;

WS-12; WS-13

Sivanandhan et al.,

2012b

Plantlet Hoagland + MeJA; SA WS-1; WS-3 Rana et al., 2013

Callus culture MS + 2,4 D + kinetin WS-1; WS-3 Chakraborty et al.,

2013

Adventitious root

culture

MS + sucrose + IBA; different

concentrations/ types of sugars;

different pH

WS-3 Murthy and Praveen,

2013

Cell suspension culture MS + 40% Gracilaria edulis extract

for 24 h

WS-1; WS-2; WS-3;

WS-4

Sivanandhan et al.,

2013b

Multiple shoot cultures MS + BAP + spermidine WS-1; WS-2; WS-3;

WS-4

Sivanandhan et al.,

2013c

Cell suspension culture MS + kinetin + L-glutamine +

sucrose + CaCl2/ NH4Cl/ chitosan/

cholesterol/ MA/ squalene

WS-1; WS-2; WS-3;

WS-4; WS-11; WS-12;

WS-13

Sivanandhan et al.,

2014a

Shoot suspension

culture

MS + Gracilaria edulis/ Sargassum

wightii

WS-1; WS-2; WS-3;

WS-4

Sivanandhan et al.,

2014b

Flowers, fruits MS + BAP + IAA, sucrose,

L-glutamine, adenine sulfate, nitrates

of NH+

4 , K+, Na+

WS-1; WS-2; WS-3;

WS-4

Sivanandhan et al.,

2015c

In situ Whole plant/ plant

parts

Different vermicomposts WS-1; WS-5 Raja and Veerakumari,

2013

Leaves, roots Organic composion of soil

(bioaugmented organic + gypsum)

WS-1; WS-2; WS-3 Gupta et al., 2016

SA; MeJA; MI (4 chemotypes) WS-3 Gupta et al., 2011

In vitro in vitro culture MeJA; GA3; YE WS-1; WS-2; WS-3 Dhar et al., 2014

Plantlet MeJA; SA; GA3 WS-1; WS-2; WS-3 Rana et al., 2014

MeJA; SA; 2,4-D; YE WS-1; WS-3 Razdan et al., 2016

S
tr
a
in
-p
la
sm

id
±

g
e
n
e
;
tis
su

e
u
se

d
fo
r
in
fe
c
tio

n
o
f

A
.
rh
iz
o
g
e
n
e

In vitro Hairy roots LBA 9402 -pRi 1855; stem, leaves WS-5 Ray et al., 1996

MTCC 2364, MTCC532; stem,

hypocotyle, leaves

Not mentioned Pawar and

Maheshwari, 2004

LBA 9402; A4-pRiA4; leaves WS-1; WS-5 Bandyopadhyay et al.,

2007

R1601- pRiA4b; different parts of

seedling

WS-3 Murthy et al., 2008

LBA9402/ A4 ± synthetic crypt gene;

leaves

WS-1 Chaudhuri et al., 2009

15834; leaves WS-1; WS-3 Doma et al., 2012

ATCC 15834, R1000, K599; leaves,

petiole, internodes

WS-1 Saravanakumar et al.,

2012

R1601; cotyledonary leaves WS-3 Praveen and Murthy,

2013

R1000; leaves WS-1; WS-2; WS-3 Sivanandhan et al.,

2013a

A4 ± SGT; leaves WS-3 Pandey et al., 2015

LBA9402 ± β-cryptogein gene;

leaves

WS-1; WS-3 Sil et al., 2015

(Continued)
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TABLE 1 | Continued

Condition Plant Part Special

treatment/condition/method/

identification

Metabolite extracted References

leaves WS-1; WS-2; WS-3;

WS-4

Sivanandhan et al.,

2015b

R1000, MTCC 2364, MTCC 532;

leaves

WS-1; WS-3 Thilip et al., 2015

A
.
tu
m
e
fa
c
ie
n
s

In vitro Teratoma Nopaline:C58; octopine:Ach5,

disarmed:LBA 4404; leaves

WS-1; WS-5 Ray and Jha, 1999

Plantlet GV3102 - pIG121Hm ±CAS gene/

pGSA1131 ±RNAi; leaves

Total withanolide Mishra et al., 2016

In situ Leaves GV3102- pBI121 ± WsSQS; leaves WS-3 Grover et al., 2013

Agroinfiltration (GV2260- pCAMBIA

±WsSQS) ± Microprojectile; leaves

WS-1; WS-2; WS-3;

WS-4

Patel et al., 2014, 2015

LBA4404/GV3102 -

pFGC1008/pBI121/TRV2/ ±SGT

gene/s; leaves

WS-1; WS-2; WS-3;

WS-13

Saema et al., 2015,

2016; Singh et al.,

2016

LBA4404-pCAMBIA; leaves WS-1; WS-2; WS-3;

WS-4

Sivanandhan et al.,

2015a

HPLC, high performance liquid chromatography; HPTLC, High performance thin layer chromatography; TLC, Thin layer chromatography; LC-MS, Liquid chromatography-mass

spectrometry; NMR, Nuclear magnetic resonance; GC-MS, Gas chromatography mass spectrometry; FAB, Fast atom bombardment; HRMS, high resolution mass spectroscopy;

COSYDQF, Two-dimensional (2D) phase-sensitive double quantum filtered correlation spectroscopy; TOCSY, Total correlation spectroscopy; HSQC, 1H–13C hetero nuclear single

quantum correlation; HR-MAS-NMR, High Resolution Magic Angle Spinning-NMR; PCA, principal component analysis; HCA, hierarchical clustering analysis; MA, mevalonic acid; WS-

1, withaferin A; WS-2, withanone; WS-3, Withanolide-A; WS-4, Withanolide-B; WS-5, Withanolide-D; Ws-6, withanolide-E; WS-7, 27-hydroxywithanone; WS-8, 20-deoxywithanolide

A; WS-9, withastramonolide; WS-10, 12-deoxywithastramonolide; WS-11, 12 deoxy withanstramonolide; WS-12, withanoside-IV; WS-13, withanoside-V; WS-14, ashwagandhanolide;

WSs, withanosides; PG, physagulin.

A. tumefaciens Mediated Transformation
and Its Application to Modulated
Withanolide Biosynthesis
Numerous studies have helped in developing efficient methods
for regeneration of W. somnifera, while only few reports are
available for genetic transformation for this medicinal plant
(Singh et al., 2017). Altered expressions of genes related to
biosynthetic pathway, ultimately modulate quantity of plant
secondary metabolites, which are of therapeutic importance.
Ray and Jha (1999) infected leaves of in vitro grown plants
(two genotypes) with wild type nopaline and octopine strains
of A. tumefaciens. Different types of galls obtained due to
different levels of virulence on the two genotypes. Two principle
withanolides, withanolide D and withaferin A extracted from
shooty teratoma cultures in higher amount, while, withanolide
D alone was detected in rooty teratomas.

Pandey et al. (2010) performed successful A. tumefaciens
mediated transformation with 1.67 efficiency using non-virulent
strain. Leaves excised from 1-5-nodes of both in situ and in
vitro grown 30 to 90-day-old seedlings of different accessions
of W. somnifera were used for the study. LBA4404 containing
the binary vector pIG121Hm showed more gus expression
in second and third leaves of 75 day old seedlings. Leaf
explants ultrasonicated at 47 KHz ± 6% for 10 s showed
higher gus expression as compared to directly infected explants.
The protocol was used to analyse in vivo enzymatic action
of one SGT (WsSGTL1) of W. somnifera by Saema et al.
(2015, 2016). RNAi silencing (Saema et al., 2015) as well as

overexpression (Saema et al., 2016) of WsSGTL1 gene has been
achieved in transgenic W. somnifera. As expected, reduction
in the level of glycosylated products observed in transgenic
with silenced WsSGTL1 transcript. However, transgenics with
overexpressing WsSGTL1 showed early and enhanced growth,
increased production of glycosterols, and glycowithanolides.
These transgenics displayed biotic (Spodoptera litura) and abiotic
(cold) stress tolerance as well as recovery after cold stress along
with improved photosynthetic performance.

Patel et al. (2014) established A. tumefaciens mediated

transformation, microprojectile bombardment and

microprojectile bombardment assisted agroinfection. Apical

and nodal explants obtained from multiplied culture after

in vitro seed germination were used as explants. Modified

vector pCAMBIA1301 used to confirm transgene expression.
Pre-cultured explants were bombarded and immediately
infected with A. tumefaciens for microprojectile bombardment
assisted agroinfection. The transformation efficiencies achieved
were 3.86, 3.62, and 8.71%, through A. tumefaciens mediated,
microprojectile bombardment and with the combination of
both, respectively.

The protocol (Patel et al., 2014) used to overexpress ofWsSQS

in W. somnifera (Patel et al., 2015). Grover et al. (2013) also

transformed leaves and shoots of 4-6-weeks old seedlings with

A. tumefaciens (GV3101 harboring pBI121H) containing SQS

from W. somnifera. Transgenics were confirmed with enhance

expression ofWsSQS transcript and its enzymatic activity. Higher

amount of different withanolides observed in transgenics to
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proove the involvement of SQS with enhanced withanolide
biosynthesis.

Nodal explants of 3-month old filed grown plants were
used to develop transformation protocol of W. somnifera
by Sivanandhan et al. (2015a) with 10% efficiency. These
explant were found as an ideal tissue for the production of
higher number of multiple shoots, hence adopted for the
production transgenics. Explants were precultured (6-days) to
obtain maximum transformation efficiency using Agrobacterium
suspension (strain LBA4404 harboring pCAMIBA2301) at 0.2
OD600. The transformation frequency increased significantly
with wounded nodal explants subjected to a sonication (10 s,
longer treatment affected the viability of regenerating cells).
Maximum transformation efficiency of 10.6% was observed by
Mishra et al. (2015) using nodal explants infected with A.
tumefaciens strain GV3101 harboring pIG121Hm. Explants were
pre-cultured on MS supplemented with TDZ for 2 days and
infected with Agrobacterium (0.2 OD600) for 20 min and co-
cultivated for 48 h at 22◦C.

Virus induced gene silencing methods was adopted by several
researchers to achive fast and efficient characterization of genes
related to withanolide biosynthesis. Using this technology,
successful silencing of SQS (Singh et al., 2015a), WsDWF-5
(Gupta et al., 2015) and three-WsSGTLs genes (Singh et al.,
2016) were achived in W. somnifera. Ws-SQS silenced plants
revealed positive and negative affects on expression of upstream
asnd downstream pathway genes, which ultimately reduces the
accumulation of phytosterols. Silencincing of WsDWF-5 was
observed with reduced accumulation of withanolide while, 3-
WsSGTLs gene silencing found associated with enhanced level
of different withanolides and reduced level of glycowithanolides.
Increased expression of other upstream genes of withanolide
biosynthesis pathway also relates with the supressed activity of
WsSGTLs, which leads to reduced tolerance toward biotic stress.

CONCLUSION

W. somnifera is of great importance in lots of medical conditions
due to abundance of diversified therapeutic secondary

metabolites (withanolides). Significance of the plant leads
researchers to identify the best suitable way to enhace plant
productivity according to increasing demands. In order to
complete the requirement, complete information related
to metabolites, their biosynthesis (pathway genes/enzymes)
and effect of different factors (composition of soil/media,
elicitors etc.) is essential. Under the influence of significance
of biosynthetic pathway, related genes/enzymes and external
factors, this review describes all analyzed combinations
of molecular and/or in vitro techniques that modifies the
accumulation of desired metabolites. Several environmental
factors like, soil/media composition, different types of
elicitors/stresses etc. affect the withanolide biosynthesis by
regulation of gene expression pattern. A lot of investigations
included in this review that analyse withanolide accumulation
through different types of in vitro culture techniques, like,
micropropagation, organogenesis, hairy root production etc.

Combination of optimized in vitro techniques and information
of pathway gene/enzyme are of great interest these days. Such
combination of genetic transformation and optimized in vitro
conditions provides much better productivity in terms of
metabolite accumulation. The present review describes that there
are a lot more combinations available and need to utilize in order
to achieve best productivity, to make it easily accessible for the
progress of medical industry.
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