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Black barley is caused by phytomelanin synthesized in lemma and/or pericarp and the
trait is controlled by one dominant gene Blp1. The gene is mapped on chromosome
1H by molecular markers, but it is yet to be isolated. Specific-locus amplified fragment
sequencing (SLAF-seq) is an effective method for large-scale de novo single nucleotide
polymorphism (SNP) discovery and genotyping. In the present study, SLAF-seq with
bulked segregant analysis (BSA) was employed to obtain sufficient markers to fine
mapping Blp1 gene in an F2 population derived from Hatiexi No.1 × Zhe5819. Based
on SNP screening criteria, a total of 77,542 polymorphic SNPs met the requirements
for association analysis. Combining two association analysis methods, the overlapped
region with a size of 32.41 Mb on chromosome 1H was obtained as the candidate
region of Blp1 gene. According to SLAF-seq data, markers were developed in the
target region and were used for mapping the Blp1 gene. Linkage analysis showed that
Blp1 co-segregated with HZSNP34 and HZSNP36, and was delimited by two markers
(HZSNP35 and HZSNP39) spanning 8.1 cM in 172 homozygous yellow grain F2 plants
of Hatiexi No.1 × Zhe5819. More polymorphic markers were screened in the reduced
target region and were used to genotype the population. As a result, Blp1 was delimited
within a 1.66 Mb on chromosome 1H by the upstream marker HZSNP63 and the
downstream marker HZSNP59. Our results demonstrated the utility of SLAF-seq-BSA
approach to identify the candidate region and discover polymorphic markers at the
specific targeted genomic region.

Keywords: barley, black grain color, SLAF-seq, SNP, fine-mapping

INTRODUCTION

Most barley (Hordeum vulgare. L) varieties that are now planted and consumed for malting,
brewing and feed purposes are yellow or white, but some showed purple (red), blue and black
grains are used as functional food. Purple barley is due to anthocyanins accumulated in the
pericarp and glumes; blue color results from anthocyanins synthesized in aleurone layer of the
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grain; black pigments is caused by phytomelanin synthesized in
lemma and/or pericarp (Harlan, 1914). Colored cereals/plants
begin receiving a growing interest due to their antioxidant
properties (Satué-Gracia et al., 1997; Nam et al., 2006; Philpott
et al., 2006) and protective functions under severe environments
(Carletti et al., 2014). It has been reported that colored barley
are rich in a large number of valuable nutrients, including
phenolic compounds, anthocyanins and antioxidants, and exhibit
a relatively strong oxygen radical scavenging capacity (Kim
et al., 2007; Bellido and Beta, 2009). Plants with highly pigments
such as phytomelanins and flavonoids are more resistant to
biotic and abiotic stresses (Pandey and Dhakal, 2001; Carletti
et al., 2014). In rice and sorghum, flavonoids contribute to
the resistance against Magnaporthe grisea and Colletotrichum
spp. (Ibraheem et al., 2010). The presence of phytomelanin
layer in the sunflower pericarp serves as a deterrent to insect
predation, affording mechanical protection against larval damage
(Carletti et al., 2014). Dihydroquercetin, one of the flavonoids
in barley is proved to be a strong inhibitor of Fusarium
growth and macrospore formation (Skadhauge et al., 1997).
In addition, black barley has a lower Fusarium head blight
(FHB) incidence and less deoxynivalenol (DON) concentration
than yellow barley after comparison of black and yellow
recombinant inbred lines (RILs) from two different crosses
(Choo et al., 2015).

Grain color genes have been reported in barley. Both Pre1
and Pre2, located on chromosome 1H and 2H, respectively,
control purple or red lemma and pericarp trait development
in barley (Franckowiak et al., 1997). Recently, Pre2 gene was
mapped between InDel marker PQJ1056 and HvOs04g47170
with genetic distance of 0.3 and 0.1 cM, respectively (Jia et al.,
2016). Moreover, barley flavonoid biosynthesis regulatory genes
also affect lemma colors, such as Ant2 encoding one of the
basic Helix-Loop-Helix (bHLH) proteins in the anthocyanin
pigmentation pathways (Cockram et al., 2010). Barley varieties
with Ant2 gene showed red auricle, awns and lemma because
of the accumulation of anthocyanin pigments in these tissues
(Cockram et al., 2010). Finch and Simpson (1978) reported that
five complementary dominant genes symbolized as Blx1, Blx2,
Blx3, Blx4, and Blx5, controlled barley blue aleurone color. They
assigned Blx1, Blx3, and Blx4 to chromosome 4HL, and Blx2 and
Blx5 to chromosome 7HL. It has been reported that black grain is
dominant over yellow grain and is controlled by Blp1 located on
chromosome 1HL (Franckowiak et al., 1997). Molecular markers
have been identified to associate with the black color gene Blp1,
which is mapped at the position 129.5 cM on chromosome
1H in the Oregon Wolfe Barley (OWB) double haploid (DH)
population (Costa et al., 2001). The OWB DH population was
derived from the F1 of a cross between OWB-D (black grain)
and OWB-R (yellow grain) using H. bulbosum technique (Wolfe,
1972). Genetic mapping with CAPS markers derived from high-
throughput single nucleotide polymorphisms (SNPs) reveals that
Blp1 is associated with CAPS markers CAPS026 to CAPS030 in
1HL and is closely linked with CAPS029 at the position 116.3 cM
in an F2 population of Cheri (yellow grain) × ICB181160
(black grain) (Bungartz et al., 2016). Presently, the Blp1 gene is
yet to be isolated.

Bulked segregant analysis (BSA) is a traditional method to
rapidly map a target gene or major QTL affecting a trait of
interest by genotyping only two bulked DNA samples with
distinct or opposing extreme phenotypes (Michelmore et al.,
1991). Specific-locus amplified fragment sequencing (SLAF-seq)
is a newly efficient strategy for large-scale de novo SNP discovery
and high-resolution genotyping (Sun et al., 2013). Combining
BSA and SLAF-seq technologies have been successfully proven
to be a powerful method for identifying major QTLs or candidate
gene isolation in maize (Xia et al., 2015), rice (Xu F. et al., 2015),
cucumber (Xu X. et al., 2015), barley (Qin et al., 2015), wheat
(Hu et al., 2016), tomato (Zhao et al., 2016), and pepper (Xu et al.,
2016).

Hatiexi No.1 with black lemma and pericarp, is one of the
landraces from Heilongjiang Province, China. Zhang (1997)
reported that the inheritance of black grain of Hatiexi No.1 was
governed by Blp1 gene due to their genetic studies involving
F1 and F2 generations from the cross Hatiexi No.1 (black
grain) × 93-597 (yellow grain). In this study, Hatiexi No.1 with
black grain was crossed to barley variety Zhe5819 with yellow
grain to construct F2 population, and we aimed to (1) find
black lemma and pericarp gene-containing regions by integrating
BSA with SLAF-seq technology, (2) develop SNP markers and
genotype segregating populations to map the Blp1 gene, (3)
narrow down the size of the candidate gene regions, laying
foundation for cloning the grain color gene.

MATERIALS AND METHODS

Plant Materials
The black grain barley Hatiexi No.1 was crossed with the yellow
grain variety Zhe5819. The resulting F1 plants were self-crossed
to obtain F2. Grain color of F1 and F2 were examined in the field
before harvested. The F2 population of Hatiexi No.1 × Zhe5819
consists of 551 black grain lines and 172 yellow grain lines.
For mapping the gene controlling grain color, homologous
yellow individuals were selected from F2 population of Hatiexi
No.1× Zhe5819.

DNA Isolation
Young leaves of the two parents (Hatiexi No.1 and Zhe5819)
and F2 individuals were collected for DNA extraction. Total
genomic DNA was prepared from leaf tissues using CTAB
method (Murray and Thompson, 1980). DNA concentration
and quality were estimated using a Nanodrop 2000 UV-vis
spectrophotometer machine and by electrophoresis through 0.8%
agrose gels.

Construction of SLAF Library for
Sequencing and Analysis of SLAF-seq
Data
Fifty plants with black grain and fifty plants with yellow grain
were selected randomly from the F2 generation as two pools for
SLAF-seq-BSA. The black pool and yellow pool were constructed
by mixing an equal amount of DNA from 50 black individuals
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and 50 yellow individuals, respectively. The parents and two
pools were used for SLAF library construction and sequencing
as described previously (Sun et al., 2013; Hu et al., 2016).
A pre-design SLAF experiment was designed to determine
conditions and appropriate restriction enzymes for digestion
that optimize SLAF yield and maximize SLAF-seq efficiency.
The SLAF library was conducted in accordance using the
pre-designed scheme. Genomic DNA was digested with RsaI
(New England Biolabs, NEB). After that, a single-nucleotide A
overhang were added to the digested fragments with Klenow
Fragment (3′→ 5′ exo–) (NEB) and dATP at 37◦C, and then
the Duplex Tag-labeled Sequencing adapters (PAGE purified,
Life Technologies) were ligated to the A-tailed fragments with
T4 DNA ligase. PCR reaction was performed using diluted
restriction-ligation DNA samples, dNTP, Q5 High-Fidelity DNA
Polymerase and PCR primers: AATGATACGGCGACCACCGA
and CAAGCAGAAGACGGCATACG (PAGE purified, Life
Technologies). The PCR productions were purified using
Agencourt AMPure XP beads (Beckman Coulter, High
Wycombe, United Kingdom) and then pooled. The pooled
sample was separated by electrophoresis using 2% agarose
gel. Fragments with 364–394 bp (with indexes and adaptors)
in size were excised, and then purified using QIAquick Gel
Extraction Kit (QIAGEN). The gel-purified product was
sequenced on the Illumina HiSeq 2500 system (Illumina, Inc;
San Diego, CA, United States) according to the manufacturer’s
recommendations.

After sequencing, all reads were aligned to barley reference
genome released by The International Barley Sequencing
Consortium in 2012 (IBSC 20121) using BWA software
(Li and Durbin, 2009). Sequences with over 90% identity were
grouped in one SLAF locus. Specific fragments were considered
as SLAF tags and polymorphic SLAFs were selected due to their
polymorphism between two parents. Based on physical position
of SLAF tags, SNP calling was performed by local realignment
and mutation detection using GATK software2. We excluded
SNPs which supported less than four reads in the two pools and
showed no polymorphism between the parents because they may
be false positives due to genomic repeat sequence, sequencing
or alignment errors. Then SNPs showed multiple allele loci
and monomorphism between the black and yellow pools were
removed. Finally, SNPs with one genotype derived from Hatiexi
No.1 and the other from Zhe5819 were identified as polymorphic
markers, and were selected for association analysis.

Association Analysis
Association mapping was conducted to identify candidate regions
for black lemma and pericarp using both SNP_index (Abe et al.,
2012; Takagi et al., 2013) and Euclidean distance (ED) methods
(Hill et al., 2013).

SNP_index association analysis, a recently published method,
is used to calculate genotype frequency differences between two
bulks that were satisfied by 1(SNP_index). The closer marker
is associated with phenotype while the closer 1(SNP_index)

1http://ensembl.gramene.org/Hordeum_vulgare/Info/Index
2https://software.broadinstitute.org/gatk/documentation/

is associated with 1. M stands for Hatiexi No.1, P stands for
Zhe5819, aa denotes the genotype from Hatiexi No.1 in the black
pool, and ab denotes the genotype from the yellow pool. The
1(SNP_index) was calculated as follows:

SNP_index (ab)=Mab/(Pab+Mab);

SNP_index (aa)=Maa/(Paa+Maa);

1(SNP_index )= SNP_index (aa)−SNP_index (ab).

Mab and Pab were the depth of yellow pool from black and
yellow grain parents, respectively; and Maa and Paa indicated
the depth of black pool from black and yellow grain parents,
respectively.

The allelic frequency was calculated by Euclidean distance
followed by Loess regression analysis which identifies regions in
which QTL lies and generates a list of putative regions in the
linked genomic segment.

Euclidean distance association analysis is a type of method that
calculates Euclidean distance and is satisfied by ED according
to Hill et al. (2013) and Geng et al. (2016). In principle, the
higher the ED value is, the closer the object site. The raw ED was
calculated at each SNP location using the equation:

ED =
√

(Aaa − Aab)2 + (Taa − Tab)2 +√
(Gaa − Gab)2 + (Caa − Cab)2

Aaa, Caa, Taa, and Gaa represent the depth of bases A, C, T, and G
on a site in the black grain bulk, respectively. Aab, Cab, Tab, and
Gab represent the depth of bases A, C, T, and G on a site in the
yellow grain bulk, respectively.

In order to increase the effect of large ED measurements and
decrease the effects of background noise, the allele frequency
of raw ED raised to the fifth power. Then the fitting result of
ED5 calculated using local linear regression of the EDs with a
span automatically chosen by minimizing the corrected Aikaike
Information Criterion (AICc) (Hill et al., 2013), was used to
associate analysis.

Markers Development by SLAF-seq
Strategy and Hatiexi No.1 × Zhe5819 F2
Population Genotyping
To minimize the genetic interval for fine-mapping and to
verify the accuracy of SLAF-seq, We chose at about 1 Mb
one to three potential SNPs located in the candidate region
(Chr 1H 427,749,941 to 460,155,270 bp, IBSC 2012) to design
their flanking primers using Oligo Primer Analysis Software
v.7 which ranged from 100 to 300 bp in length. PCR reaction
conditions were as follows: denaturation at 94◦C for 5 min, 35
amplification cycles of 94◦C for 30 s, annealing at 55◦C for
30 s, and extension at 72◦C for 30 s, with a final extension
at 72◦C for 5 min. PCR products were separated on 6%
polyacrylamide gel (acrylamide/bisacrylamide ratio of 37.5:1)
in 0.5× Tris-Borate-EDTA (TBE) buffer and ran at room
temperature for 2–4 h, stained with silver nitrate, and observed
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on white illumination. Size differences in polymorphisms were
identified between Hatiexi No.1 and Zhe5819. PCR products
showed no size polymorphisms on the polyacrylamide gel were
sequenced in one direction using the specific PCR primers
distal to the potential SNP position by biosune (Shanghai)
Biotechnology Co., Ltd. The Megalign program (DNAStars) was
used for sequence alignment and to confirm SNP sites.

The confirmed SNP markers were genotyped in 172
homozygous yellow individuals from F2 of Hatiexi
No.1 × Zhe5819 following SNP marker detection with
direct DNA sequencing or KASPar platform. Kompetitive
Allele-Specific PCR (KASP) is a SNP genotyping system from
LGC Genomics (United Kingdom) that tags different fluorescent
dye to each SNP allele during the PCR reaction. Twenty two
SNP markers were detected employing KASPar platform in
segregating population by Beijing Vegetable Research Center
(China). The KASP genotyping procedures were followed
according Wen et al. (2015). The size differences markers
were identified by polyacrylamide gel electrophoresis (PAGE).
Other polymorphic markers were analyzed by Sanger DNA
sequencing.

Genetic Mapping
Linkage analysis of the molecular markers and black grain trait
was performed using MAPMAKER version 3.0 software (Lander
et al., 1987). Map distances were estimated using the Kosambi
equation (Kosambi, 1944). For fine mapping, closer markers
linked to the candidate gene were further developed and tested
for their polymorphisms between the parents using Sanger DNA
sequencing. Polymorphic markers were used for analysis of
yellow grain plants from F2 generation. The alleles with the same
genotype as that of black grain landrace Hatiexi No.1 was marked
as ‘1,’ and alleles with the same genotype as that of yellow grain
variety Zhe5819 was labeled as ‘0.’ For F2 plants with yellow grain,
there are three possible genotypes for these markers, namely
non-recombinants with ‘0/0,’ single recombinants with ‘0/1,’ and
double recombinants with ‘1/1.’

RESULTS

Analysis of Slaf-seq-Bsa Data and Slaf
Tags
After SLAF library construction and high-throughput
sequencing, a total of 180,828,494 valid single-end reads
were obtained, with each read length of ∼100 bp (Table 1).
The GC content was 43.10% and the Q30 ratio was 92.92%.
The SLAF numbers were 160,977 for Hatiexi No.1 and 181,313
for Zhe5819. The average sequence depths of SLAFs were
∼16.44- and∼27.12-fold in black parent (Hatiexi No.1) and
yellow parent (Zhe5819), respectively; and ∼45.41- and ∼41.27-
fold in the black pool and yellow pool, respectively, (Table 1).
SLAF tags were mapped on barley assembly (IBSC 2012) and
233,701 SLAFs markers distributed throughout the genomes.
The SLAF numbers and chromosome positions are shown in
Table 2.

Polymorphic SNP Markers Screening
From the 233,701 SLAF tags, 215,721 SNPs were obtained
after aligning the sequence data to the barley reference. At
the stage of SNP calling, SNPs with multiple allele loci and
a depth less than 5× were filtered out. Polymorphic SNPs
refer to SNPs that show polymorphic not only between the
parents but also between the two bulked DNA samples.
Finally, 77,542 polymorphic SNPs were ultimately selected for
further analysis and the statistics of marker numbers on each
chromosome according to the positioning result are shown in
Table 2.

Association Analysis with SNP_index and
Euclidean Distance
Both SNP_index and Euclidean distance association analysis were
used to identify the candidate regions for barley black lemma
and pericarp trait. For the SNP_index method, SNP_index was
calculated for each identified SNP according to Abe et al.
(2012) and Takagi et al. (2013). An average SNP_index of
SNPs was calculated with 200 SNP_indexes located in a given
genomic interval. SNP_index graphs were generated for the
yellow (Figure 1A) and black (Figure 1B) pools by plotting the
average SNP_index against the position of each sliding window
in the barley genome assembly (IBSC 2012). After combining
the SNP_index information into the yellow and black pools, the
1(SNP_index) was calculated and plotted against the genome
positions (Figure 1C). Peak regions above the threshold value
were defined as those where Loess fitted values were greater
than standard deviations above the genome-wide median in
the 1(SNP_index) plot. One candidate region associated with
barley black grain spanned 49.28 Mb on chromosome 1H
(from 414,847,463 to 464,122,721 bp, barley genome assembly,
IBSC 2012), was identified with 1(SNP_index) value above the
threshold value of 0.26 (Figure 1C).

Euclidean distance (ED) was calculated for each SNP
according Hill et al. (2013). To increase the effect of
large ED measurements and decrease the effects of low ED
measurements/noise, the 5th power of ED was calculated as the
correlation value. The association threshold was 0.15 and one
region on chromosome 1H was significantly correlated with the
black lemma and pericarp trait. The result of the Euclidean
distance association analysis was shown in Figure 1D. According
to barley physical map (IBSC 2012), the candidate region was
physically located on chromosome 1H between 427,749,941 and
460,155,270 bp, with a size of 32.41 Mb.

Combining the results of SNP_index and Euclidean distance
association analysis suggested that the overlapped region
(427,749,941–460,155,270 bp on chromosome 1H, IBSC 2012)
was the candidate region of the barley black lemma and pericarp
gene.

Validation of the SNP Markers and
Mapping the Candidate Gene
A total of 524 potential polymorphic SNPs were obtained in
the 32.41 Mb candidate regions (Supplementary Table S1).
To evaluate the accuracy of SLAF genotyping data, one to
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TABLE 1 | Summary of the sequencing data for each sample.

Sample Total reads GC % Q30% SLAF number Total depth Average depth

Hatiexi No.1 17,631,146 42.81 92.2 160,977 2,646,465 16.44

Zhe5819 38,025,068 43.41 93.3 181,313 4,916,562 27.12

Black pool 63,431,978 43.20 93.4 216,958 9,852,375 45.41

Yellow pool 61,740,302 42.98 92.8 205,768 8,492,938 41.27

Total 180,828,494 – – 765,016 – –

three SNPs per Mb were selected across the entire candidate
region. Fifty four pairs of primers were designed due to
their potential polymorphisms and physical position on barley
genome assembly (IBSC 2012). Markers polymorphisms between
Hatiexi No.1 and Zhe5819 were verified by electrophoresis and
independent traditional Sanger sequencing. Thirteen of fifty
four primer pairs showed no PCR products in one parent
or both parents and were removed from analysis. HZSNP34
makers showed InDel polymorphism on polyacrylamide gels.
The rest of the PCR products of the two parents showed
no size polymorphisms on the polyacrylamide gels were
sequenced directly. Sequences alignment between the parents
identified twenty nine polymorphic markers (Supplementary
Table S2). Among the twenty nine polymorphic markers, 24
markers showed SNP and five of them showed multi-nucleotide
polymorphisms (Supplementary Table S2).

KASPar platform was used to conduct SNP genotyping
in the F2 population consisting of 172 homozygous yellow
grain individuals. Twenty two KASPar type SNP markers,
including 19 SNP markers and 3 multi-nucleotide polymorphism
markers (HZSNP15, HZSNP28, and HZSNP36), were designed
(Supplementary Table S3). For three multi-nucleotide
polymorphism markers, KASPar assays just screened one
SNP, which is more than 50 bp away from the other variant
sites. Except HZSNP28, all the KASPar type SNP markers
genotyped the population successfully. InDel marker HZSNP34
was distinguished easily on 6% polyacrylamide gel in the
population.

Linkage analysis showed that all markers were assigned
to the target regions and the gene controlling black lemma
and pericarp was delimited by markers HZSNP35 (1.9 cM)

TABLE 2 | Number distribution of specific-locus amplified fragment (SLAF) tags,
single nucleotide polymorphism (SNP) markers, polymorphic SLAF and SNP on
each chromosome.

Chromosome SLAF
number

All
SNP

Polymorphic
SLAF

Polymorphic
SNP

Chr 1H 22,762 20,349 6,768 7,708

Chr 2H 35,479 25,365 7,495 8,660

Chr 3H 32,596 37,540 12,767 14,690

Chr 4H 31,198 19,263 5,703 6,404

Chr 5H 31,635 23,457 6,740 7,750

Chr 6H 28,518 31,182 10,605 11,648

Chr 7H 32,883 38,521 12,755 14,594

Chr unknown 18,630 20,045 5,144 6,088

Total 233,701 215,721 67,977 77,542

and HZSNP39 (6.2 cM) (Figure 2A). Moreover, the gene was
co-segregated with HZSNP34 and HZSNP36. These results
suggested that the markers mined from SLAF-seq-BSA data
are reliable. According to the barley genome assembly (IBSC
2012), the markers order in the genetic map was not consistent
with its physical map (Figure 2A and Supplementary Table S2).
Thus, all marker sequences were blast against the current
barley assembly released by the International Barley Sequencing
Consortium in 2017 (IBSC 20173). Blast alignment analysis
showed that the genetic map was incompliance with the
current physical map (IBSC 2017) and the physical distance
between markers HZSNP35 (536444825–536445008 bp) and
HZSNP39 (542121828–542122039 bp) to be approximately
5.68 Mb on IBSC 2017 assembly (Supplementary Table S2). The
chromosomal location of this locus corresponded with black
lemma and pericarp1 (Blp1) described by Costa et al. (2001) and
Bungartz et al. (2016). Hence, we also named the gene as Blp1
following previously.

Fine Mapping the Blp1 Gene
Markers developed by SLAF-seq in the 5.68 Mb
(HZSNP35–HZSNP39) intervals were further screened to
obtain polymorphic markers between the parents with direct
DNA sequencing. Four polymorphic markers, including three
co-dominant markers (HZSNP59, HZSNP61 and HZSNP63)
and one dominant marker (HZSNP62) were identified
(Supplementary Table S2). Then the co-dominant markers
and HZSNP32 located in the reduced target region, were used to
analyze the genotypes of yellow pericarp F2 plants. Among the
172 homozygous yellow F2 plants of Hatiexi No.1 × Zhe5819,
six plants (Y225, Y314, Y333, Y372, Y401, and Y406) were
recombinants on the HZSNP63 locus and nine plants (Y316,
Y415, Y328, Y330, Y331, Y332, Y379, Y422, and Y444) on the
HZSNP61 locus (Table 3). Two plants (Y316 and Y415) appeared
to be recombinants on locus HZSNP59 in the downstream
(Table 3). Because of the limited markers, no recombinant loci
were found to be closer than HZSNP63. Eventually, the Blp1 gene
was delimited within a 1.66 Mb (IBSC 2017 assembly, Chr 1H:
536,999,583-538,661,822) by the upstream marker HZSNP63
and the downstream marker HZSNP59 (Figure 2B and Table 3).

DISCUSSION

Bulked segregant analysis coupled with SLAF-seq has facilitated
the rapid identification genomic regions associated with genes

3https://www.ncbi.nlm.nih.gov/assembly/GCA_900002345.1
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FIGURE 1 | Identification of the candidate region for black lemma and pericarp through two types of association methods. (A) SNP_index graph of yellow pool.
(B) SNP_index graph of black pool. (C) SNP_index graph of 1(SNP_index). The red dot line is the threshold value (0.26). (D) The results of Euclidean distance
association analysis. The black lines show all fitting results of ED5, red dot lines show the threshold of ED. X-axis represents the position of seven chromosomes and
Y-axis represents the SNP_index or Loess fit of ED5.

or QTLs in plants. Genes controlling qualitative traits, such as
barley Stage Green-Revertibel Albino (Qin et al., 2015), cucumber
fruit flesh thickness (Xu X. et al., 2015), maize inflorescence
meristem size (Xia et al., 2015) and tomato Cladosporium
fulvum-resistant (Zhao et al., 2016), were finely mapped in

association analysis by SLAF-seq-BSA method. Using the same
approach, major QTLs for grain weight were detected in rice
and wheat, respectively (Xu F. et al., 2015; Hu et al., 2016). In
the present study, polymorphic SNPs were obtained between
two barley parents based on BSA combined with SLAF-seq.
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FIGURE 2 | Mapping of the Blp1 gene. (A) The Blp1 gene was restricted to the region between markers HZSNP35 and HZSNP39; (B) the Blp1 gene was further
narrowed down to the region between markers HZSNP63 and HZSNP59.

Both SNP_index and Euclidean distance association analysis
identified Blp1 candidate region with a size of 32.41 Mb on
chromosome 1H, which correspond to the locus identified
by Costa et al. (2001) and Bungartz et al. (2016). This
result confirms that SLAF-seq combined with BSA is a high-
efficient strategy for mapping the candidate gene using an F2
population.

With the development of next-generation sequencing
(NGS) technologies, NGS-derived SNPs have been reported
in Arabidopsis (Jander et al., 2002), rice (Feltus et al., 2004),
barley (Close et al., 2009), maize (Jones et al., 2009), soybean
(Hyten et al., 2010), wheat (Trebbi et al., 2011), eggplant (Barchi
et al., 2011), sorghum (Nelson et al., 2011), Aegilops tauschii
(You et al., 2011), oat (Oliver et al., 2011), and cotton (Byers
et al., 2012) to name a few. Besides the ongoing revolution in
sequencing techniques, high-throughput genotyping platforms
of SNPs, including GoldenGate, high-resolution melting (HRM),
SNaPshot multiplex SNP genotyping, TaqMan SNP genotyping,

KASPar assay and MassARRAY, were developed rapidly in
recent years. As a result, in most species, SNPs have become the
first choice for marker development, genome-wide association
studies, gene/QTL mapping, phylogenetic analyses, marker-
assisted selection, BSA, and genomic selection (Xu X. et al.,
2015). In the present study, we used SLAF-seq-BSA to discover
SNPs by comparing SLAF-seq reads derived from two barley
parents. Potential polymorphic SNPs covered the target regions
were selected and their polymorphisms between the parents
were tested by electrophoresis and Sanger DNA sequencing.
Twenty two SNPs and one InDel markers were genotyped
in the population by KASPar platform and electrophoresis,
respectively. All genotyped markers were associated with Blp1,
which verified the accuracy of the candidate region detected by
associated analysis. Linkage analysis showed that the candidate
region was defined into 5.68 Mb in barley physical map (IBSC
2017). Moreover, SNPs in the narrowed down regions were
further screened and four additional polymorphic SNPs were
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TABLE 3 | The InDel and SNP genotype of yellow F2 plants of Hatiexi No.1 × Zhe5819 used for fine mapping of the Blp1 gene.

Marker Y225 Y314 Y333 Y372 Y401 Y406 Y316 Y415 Y328 Y330 Y331 Y332 Y379 Y422 Y444

HZSNP63 0/1 0/1 0/1 0/1 0/1 0/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

HZSNP34 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

HZSNP36 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

HZSNP32 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

HZSNP59 0/0 0/0 0/0 0/0 0/0 0/0 0/1 0/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0

HZSNP61 0/0 0/0 0/0 0/0 0/0 0/0 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

‘0’, the banding pattern was the same as that of yellow barley parent Zhe5819; ‘1’, the banding patter was the same as that of black balrey parent Hatiexi No.1.

used to analyze the F2 population. Markers HZSNP63 and
HZSNP59 were delimited the candidate region which was
declined to an interval of 1.66 Mb. This result demonstrates
that markers discovered within the mapping interval by
SLAF-seq-BSA strategy, are available for fine mapping in
barley.

Colored grains are ubiquitous in cereals and are determined
by the pigmentation of certain phytochemicals, such as
anthocyanin. In plants, the anthocyanin biosynthesis pathway
has been elucidated (Shih et al., 2008) and transcriptional
regulation related to anthocyanin biosynthesis has also been
extensively studies in Arabidopsis, maize, petunia, and other
species (Yuan et al., 2009). Such regulatory proteins including
basic helix-loop-helix (bHLH) transcription factors, R2R3 Myb
transcription factors and WD40 proteins act in a ternary
complex, as MBW (MYB-bHLH-WD40) complex transcription
factors (Hichri et al., 2011; Petroni and Tonelli, 2011). In
cereals, some of the genes controlling grain colors were isolated
successfully. Red rice is controlled by two loci Rc and Rd, which
encodes a bHLH transcription factor and dihydroflavonol-4-
reductase (DFR), respectively (Sweeney et al., 2006; Furukawa
et al., 2007). One of the complementary genes controlling purple
rice is Ra, which is a member of Myc family genes and known to
be involved in the biosynthesis of anthocyanin in rice (Hu et al.,
1996). Black rice is the results of three complementary genes,
symbolized as Kala1, Kala3, and Kala4. It has been speculated
that the Kala1 and Kala3 genes encode a DFR and an R2R3-Myb
transcriptional factor, respectively, and play subsidiary roles in
the black rice trait (Maeda et al., 2014). Kala4 acted as a main
contributor, encodes a bHLH transcription factor and regulates
anthocyanin biosynthesis (Oikawa et al., 2015). The genetic basis
of wheat purple grain pigmentation resides in the action of Pp-1
homoealleles and Pp3 (Dobrovolskaya et al., 2006). The former
was deduced as a MYB-like transcription factors responsible
for the activation of structural genes encoding various enzymes
participating in anthocyanin synthesis based on comparative
mapping (Khlestkina, 2013). The latter was orthologous to maize
Lc (Ludwig et al., 1989) and rice Ra (Hu et al., 1996), and TaMyc1
was identified as a candidate gene for Pp3 (Shoeva et al., 2014),
which encoded MYC-like transcriptional factor underlying the
regulations of anthocyanin synthesis.

It has been reported that purple (red) and blue barley
are rich in anthocyanins, while black barley is caused by
phytomelanin (Harlan, 1914). Barley Ant2 gene affects red color
in auricle, awns and lemma, and encodes for a transcription

factor with a bHLH domain (Cockram et al., 2010). Shoeva et al.
(2016) reported that Ant2 was up-regulated with coordinately
co-expressed flavonoid biosynthesis structural genes (Chs, Chi,
F3h, Dfr, and Ans), which led to total anthocyanin content
increase in the purple-grained ‘Bowman’ near-isogenic lines
(NILs) with Ant2. However, in the black-grained ‘Bowman’
NILs, no differentially expressed flavonoid biosynthesis structural
genes (with the exception of Chi) in comparison with Bowman
were detected (Shoeva et al., 2016). As a result, anthocyanin
content shows similar low amounts between Bowman and
black-grained ‘Bowman’ NILs (Shoeva et al., 2016). To sum
up, it seems that the grain color genes isolated so far were
involved in anthocyanin synthesis or acted as transcriptional
regulators. Shoeva et al. (2016) suggested that anthocyanins and
the other flavonoids unlikely participated in black pigmentation
of barley lemma and pericarp. Moreover, chemical nature
of the black pigments and its biosynthesis pathway is still
not clear (Pandey and Dhakal, 2001; Jana and Mukherjee,
2014). Therefore, the isolation of the Blp1 gene will help to
understand the mechanism of black pigmentation accumulation
in barley as well as to extend it further to other plants. In
this study, we mapped the Blp1 gene into a 1.66 Mb intervals
(Figure 2 and Table 3). There are 40 genes and some of
them are annotated in this interval based on the assembly
of IBSC 2017 (Supplementary Table S4). Plant cytochrome
P450 monooxygenases play critical roles in the metabolism
of secondary metabolites, such as pigment. For example, the
color of flowers can be modified through hydroxylation pattern
determined by two P450 enzymes (CYP75B and CYP75A)
(Tanaka and Brugliera, 2013). Rasika et al. (2016) reported
that Cytochrome P450 (CYP450) enzymes performed the initial
step in yellow and red-violet betalains pigment biosynthesis
in beets. As transcription regulators participate in anthocyanin
biosynthesis (Hichri et al., 2011; Petroni and Tonelli, 2011), both
sequence-specific DNA binding transcription factor and TATA
element modulatory factor may be involved in transcription
regulation during phytomelanin accumulation. Therefore, the
genes encoding Cytochrome P450 superfamily protein, sequence-
specific DNA binding transcription factors and TATA element
modulatory factor may be reasonable candidates for the Blp1.
Further research is required to identify the functional gene
for the Blp1. We are expanding the F2 population of Hatiexi
No.1 × Zhe 5819 and more homologous yellow individuals will
be selected to identify recombinants. Furthermore, additional
markers based on the candidate gene sequences are in the
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process of generating new polymorphic molecular markers to
refine the region for the positional cloning of underlying gene.

CONCLUSION

We demonstrated the utility of SLAF-seq-BSA approach to
identify the candidate region associated with barley black grain
trait and discover polymorphic markers at the specific targeted
genomic region. The Blp1 gene controlling black lemma and/or
pericarp was fine mapped in a size of 1.66 Mb with 40 candidate
genes.
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