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Ongoing changes in Earth’s climate are shifting the elevation ranges of many plant
species with non-native species often experiencing greater expansion into higher
elevations than native species. These climate change-induced shifts in distributions
inevitably expose plants to novel biotic and abiotic environments, including altered solar
ultraviolet (UV)-B (280–315 nm) radiation regimes. Do the greater migration potentials
of non-native species into higher elevations imply that they have more effective UV-
protective mechanisms than native species? In this study, we surveyed leaf epidermal
UV-A transmittance (TUVA) in a diversity of plant species representing different growth
forms to test whether native and non-native species growing above 2800 m elevation on
Mauna Kea, Hawaii differed in their UV screening capabilities. We further compared the
degree to which TUVA varied along an elevation gradient in the native shrub Vaccinium
reticulatum and the introduced forb Verbascum thapsus to evaluate whether these
species differed in their abilities to adjust their levels of UV screening in response to
elevation changes in UV-B. For plants growing in the Mauna Kea alpine/upper subalpine,
we found that adaxial TUVA, measured with a UVA-PAM fluorometer, varied significantly
among species but did not differ between native (mean = 6.0%; n = 8) and non-native
(mean = 5.8%; n = 11) species. When data were pooled across native and non-
native taxa, we also found no significant effect of growth form on TUVA, though woody
plants (shrubs and trees) were represented solely by native species whereas herbaceous
growth forms (grasses and forbs) were dominated by non-native species. Along an
elevation gradient spanning 2600–3800 m, TUVA was variable (mean range = 6.0–
11.2%) and strongly correlated with elevation and relative biologically effective UV-B
in the exotic V. thapsus; however, TUVA was consistently low (3%) and did not vary
with elevation in the native V. reticulatum. Results indicate that high levels of UV
protection occur in both native and non-native species in this high UV-B tropical alpine
environment, and that flexibility in UV screening is a mechanism employed by some, but
not all species to cope with varying solar UV-B exposures along elevation gradients.

Keywords: alpine, elevation gradient, epidermal UV-A transmittance, flavonoids, Hawaii, native species,
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INTRODUCTION

Many plant species are migrating in response to ongoing changes
in climate and additional shifts in geographic ranges are expected
in the future, though the rates of movement will likely vary
substantially with growth form (e.g., herbaceous vs. woody
plants; IPCC, 2014). For species in montane environments,
recent climate change-induced shifts in species distributions
toward higher elevations have been documented in temperate
and tropical locations (Benavides et al., 2016; Dolezal et al., 2016).
Over the past 100–200 years, many non-native (i.e., introduced or
alien) species have colonized high altitude environments (Pyšek
et al., 2011) and in several temperate mountain ranges in North
America and Europe, non-native species appear to be migrating
to higher elevations to a greater degree than native species
(Wolf et al., 2016; Dainese et al., 2017). These findings suggest
that, at least along elevation gradients, non-native species have
higher migration potentials than native species, though this may
depend upon levels of disturbance and local habitat heterogeneity
(Suding et al., 2015; Averett et al., 2016). This upward migration
of species inevitably exposes plants to novel combinations of
biotic and abiotic environmental conditions, including ultraviolet
(UV) radiation (280–400 nm), with the potential for significant
negative impacts on native alpine biodiversity (Chapin and
Körner, 1994; Savage and Vellend, 2015; Cuyckens et al., 2016).

Because of differences in atmospheric conditions (primarily
optical depth of the atmosphere and the thickness of the
stratospheric ozone layer) and prevailing solar angles, the levels
of solar UV-B radiation (280–315 nm) generally increase with
decreasing latitude and increasing altitude (Caldwell et al., 1980;
Blumthaler et al., 1997; McKenzie et al., 2001). Consequentially,
tropical alpine environments experience some of the highest
UV-B irradiances on the Earth’s surface. UV-B radiation is known
to induce a number of potentially deleterious effects in plants,
including disruption of the integrity and function of important
macromolecules (DNA, proteins, and lipids), oxidative damage,
partial inhibition of photosynthesis and growth reduction (Albert
et al., 2011; Jansen and Bornman, 2012; Hideg et al., 2013).
However, plants have evolved photosensory mechanisms to
detect UV (Tilbrook et al., 2013; Jenkins, 2014) and then protect
and repair sensitive targets from direct and indirect UV-induced
injury (Jansen et al., 1998; Britt, 1999) such that the negative
effects of ambient UV-B on plant growth and productivity are
typically small or difficult to detect under field conditions (Ballaré
et al., 2011). Nonetheless, UV-B is generally considered to be
an important selective force in the evolution and adaptation of
the tropical alpine flora (Lee and Lowry, 1980; Robberecht et al.,
1980; Caldwell et al., 1982). To what extent UV-B limits the ability
of plant species to migrate into alpine environments or expand
their ranges within the alpine, however, is not known.

One of the most important and widespread protective
responses of plants to UV radiation involves the induction
and synthesis of flavonoids, hydroxycinnamic acids (HCAs) and
related phenylpropanoids that function as “UV sunscreens” and
antioxidants (Searles et al., 2001; Agati et al., 2012; Schreiner
et al., 2012). Flavonoid biosynthesis is influenced by UV-B,
UV-A (315–400 nm), and visible radiation (400–700 nm) (Flint

et al., 2004; Siipola et al., 2015) and appears to be mediated,
at least in part, by the UV-B photoreceptor UV RESISTANCE
LOCUS 8 (UVR8) (Morales et al., 2013). The accumulation of
flavonoids and related UV-absorbing compounds in epidermal
tissue decreases epidermal UV transmittance (Mazza et al., 2000;
Bidel et al., 2007) and is a primary mechanism by which plants
acclimate to changing UV environments, including alterations
resulting from stratospheric ozone depletion and climate change
(Caldwell et al., 1983; Bornman et al., 2015).

This UV screening response entails measurable energetic and
growth costs (Snell et al., 2009; Hofmann and Jahufer, 2011)
and varies within and among plant species (e.g., Qi et al.,
2010; Randriamanana et al., 2015). Some of the interspecific
variation in UV screening can be attributable to growth form
differences in leaf structure and cellular distributions of UV-
absorbing compounds (i.e., vacuole vs. cell wall; Day et al., 1992,
1993). For example, in a study using micro-probes to measure
UV penetration into the foliage of a diverse group of plants in the
North American Rocky Mountains, Day et al. (1992) found that
the leaf epidermis of herbaceous dicots (forbs) was less effective
in attenuating UV-B than that of grasses and woody dicots.
The accumulation of UV-absorbing compounds and resultant
changes in leaf optical properties are also highly plastic traits in
many species (Wargent et al., 2015) and have been shown to
vary in relation to natural elevation/latitudinal UV-B gradients
(Robberecht et al., 1980; Rozema et al., 1997; Ruhland et al.,
2013). In many cases, these differences in UV protection can
account, at least in part, for the differential UV-B sensitivities of
high- vs. low-elevation taxa (Barnes et al., 1987; Sullivan et al.,
1992; Ziska et al., 1992; but see Nybakken et al., 2004).

At present, very little is known whether native and non-native
plant species differ in their tolerances to UV-B and levels of
UV protection. The apparent greater propensity for non-native
species to migrate to higher elevations than native species may
indicate that non-native species are capable of adjusting their UV
protection more effectively, either through greater phenotypic
plasticity or more rapid genetic adaptation, than native species.
Indeed, the success of non-native species in general is often
attributed, in part, to their high degree of phenotypic plasticity
to environmental change (Richards et al., 2006; Davidson et al.,
2011). If non-native species exhibit greater phenotypic plasticity
to UV-B change than native species, one would expect greater
variation in UV protective mechanisms along elevational/UV-B
gradients relative to native species, and non-native species would
display similar or perhaps even higher levels of UV protection
than native species in the high UV-B alpine environment.
Alternatively, many non-native species possess functional traits
(physiology, allocation, growth rate, etc.) that allow for high rates
of resource acquisition and performance (Van Kleunen et al.,
2010; Funk, 2013) and these traits can come at a cost in reduced
tolerance to abiotic stress in harsh conditions, such as occurs
in the alpine (Brock and Galen, 2005). Tolerance to UV-B is
often cross-linked with tolerance to other abiotic stresses such
as drought (Bandurska et al., 2013) and defense against pests
and pathogens (Mewis et al., 2012; Zavala et al., 2015). It is
thus conceivable that non-native species may invest less in UV
protection than native species and may be more rather than
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less sensitive to UV-B than native species. If this is the case,
the invasion of high elevation habitats by non-native species
may be governed less by UV-B tolerance than by other plant
attributes, such as life history traits and competitive abilities.
In support of this hypothesis, Wang H. et al. (2016) reported
that non-native populations of Triadica sebifera exhibited greater
sensitivity to elevated UV-B than native populations under
controlled conditions. Whether these differences in UV tolerance
were the result of differences in UV-absorbing compounds and
UV screening was not investigated. Taken together it is therefore
difficult to predict, a priori, whether non-native species that occur
in high elevation environments would exhibit similar, higher or
lower levels of UV protection than their native counterparts.

In the study described here, we characterize the leaf optical
properties of a suite of native and non-native plant species of
different growth forms growing in the tropical alpine and upper
subalpine of Mauna Kea, Hawaii to test whether differences
in epidermal UV transmittance (measured as the screening of
UV-A radiation) exist between native vs. non-native species.
Additionally, we examine UV screening of a native and a non-
native species along an elevation gradient spanning 2600–3800 m
to determine if these species differ in their abilities to adjust their
levels of UV protection in response to natural variation in UV-B
exposure. This study examines the ability of native and non-
native plant species to cope with extreme natural levels of UV-B,
and thus provides insights into the role that UV-B may play in
influencing climate change-induced upward range expansions in
mountains.

MATERIALS AND METHODS

Survey of Native and Non-native Alpine
Species
Studies were conducted on 19 common native (8) and non-native
(11) wild species growing on native volcanic soil in un-shaded
habitats on the south slope of Mauna Kea, Hawaii, United States
(19◦45′N, 155◦27′W) ca. 2800–3900 masl from early to mid-June
(Table 1). This elevation range includes the upper subalpine and
alpine vegetation zones of Mauna Kea (Gerrish, 2013). For all
species, we sampled plants that were growing at, or near, their
approximate peak elevations as determined from floristic surveys
(Table 1; Wagner et al., 1999). We were limited in the amount
of the Mauna Kea alpine/upper subalpine vegetation we could
sample in due to logistical constraints (i.e., there are very few
roads on the mountain) and out of deference to the indigenous
Hawaiian culture that considers the mountain to be sacred. The
majority of our sampling was therefore conducted within the
south-facing slope of the 212 km2 Mauna Kea Forest Reserve,
including sites along the Mauna Kea access road leading from
the Mauna Kea Information Visitor’s Center (2800 masl) to the
summit (ca. 4200 masl). Within this area, we selected species for
study that were easily accessible (they occurred within ca. 1 km
of the Mauna Kea Access Road), relatively abundant (at least
10 individuals present per sampling location), and which were
suitable for measurement (large enough leaves to fit the sampling
chamber and green in color; see below).

The primary goal of this study was to compare UV screening
in native and non-native species growing in this tropical alpine
environment. We recognized, however, that there was a diversity
of plant growth forms in the Mauna Kea alpine, and results
from previous studies (e.g., Day et al., 1992) have shown
that UV screening can vary significantly among plant growth
forms. Thus, we also wished to compare UV screening among
plant growth forms to determine if any potential differences
in UV screening between native and non-native species could
be attributable to growth form differences. We attempted to
survey species representing all of the major growth forms
present on Mauna Kea [i.e., woody dicots (trees and shrubs),
herbaceous dicots (forbs), and grasses]. We did not examine
any conifers (none occurred at our study site) and we also did
not sample any cushion plants, rosettes or succulent growth
forms that are often found in alpine life zones (Körner, 2003)
but which are rare or absent in the Mauna Kea alpine (Gerrish,
2013). As a consequence of the sampling limitations described
above, the native species tested were mostly woody species
(i.e., five of the eight species were shrubs or trees) whereas
all of the non-native species were herbs (forbs or grasses;
Table 1). There are no non-native woody species in the Mauna
Kea alpine (Gerrish, 2013). Thus, plant growth form in this
study is, to a certain degree, inherently confounded with
native vs. non-native status. Also, the native species sampled
were all perennials, whereas the non-natives included both
annuals and perennials. One species of native fern was sampled.
Nomenclature follows Wagner et al. (1999) for the angiosperms
and Palmer (2003) for the fern as per recent updates by Wagner
et al. (2012).

Measurements of UV screening [epidermal UV-A
transmittance (TUVA); see below] were taken on 10 plants/species
selected haphazardly at each sampling location with two to three
leaves measured per plant. There was no systematic pattern
of leaf sampling within each plant (i.e., we made no attempt
to isolate the effect of leaf position or age on TUVA). Rather,
we haphazardly selected several leaves among the healthy,
mature leaves on an individual plant shoot. Preliminary analyses
(ANOVA) showed no significant effect of leaf sample number on
TUVA. Thus, data were averaged within a plant and subjected to
an arcsine transformation (Zar, 1999) to normalize data prior to
statistical analysis. We used individual one-way ANOVAs (SAS
JMP, Cary, NC, United States) to test for species, growth form,
and native vs. non-native effects. In the ANOVA testing for the
effect of species on TUVA, the individual plant was the unit of
replication. For the other ANOVAs (growth form and native vs.
non-native comparisons) we averaged values within a species
such that the individual species was the unit of replication.
Significant differences were determined at P < 0.05.

Elevation Gradient Study
One native and non-native species were selected for additional
study to explore whether UV screening varied with elevation and
prevailing levels of solar radiation. For this study, we sampled
the native shrub, Vaccinium reticulatum, and the non-native forb,
Verbascum thapsus, across the entire elevational range of both
species (762–3352 masl for V. reticulatum; 100–3962 masl for

Frontiers in Plant Science | www.frontiersin.org 3 August 2017 | Volume 8 | Article 1451

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-01451 August 18, 2017 Time: 13:8 # 4

Barnes et al. UV Screening in Tropical Alpine Plants

TABLE 1 | Characteristics of the native and non-native (introduced) species sampled for epidermal UV-A transmittance in the Mauna Kea, Hawaii alpine/subalpine.

Species Family Growth form Elevation
sampled (m)

Elevation
range (m)

Native species

Leptecophylla tameiameiae Epacridaceae Shrub 3429 60–3230

Chenopodium oahuense Amaranthaceae Shrub 2774 0–2520

Geranium cuneatum Geraniaceae Shrub 3444 1480–3250

Sophora chrysophylla Fabaceae Shrub/tree 2914 450–3240

Vaccinium reticulatum Ericaceae Shrub 3353 640–3700

Stenogyne microphylla Lamiaceae Vine/forb 2774 1200–2700

Cystopteris douglasii Woodsiaceae Fern 3962 1500–3000+

Trisetum glomeratum Poaceae Grass 3962 750–4090

Non-native species

Malva parviflora Malvaceae Forb 2774 0–2270

Verbascum thapsus Scrophulariaceae Forb 3962 1550–2350

Taraxacum officinale Asteraceae Forb 3962 NA

Oenothera stricta Onagraceae Forb 2774 1200–2740

Heterotheca grandiflora Asteraceae Forb 2774 10–2270

Verbascum virgatum Scrophulariaceae Forb 2774 NA

Rumex acetosella Polygonaceae Forb 3962 1115–2840

Hypochaeris radicata Asteraceae Forb 3429 1100–2800

Senecio madagascariensis Asteraceae Forb 2914 NA

Poa pratensis Poaceae Grass 3962 1220–4025

Anthoxanthum odoratum Poaceae Grass 2914 840–2140

Nomenclature, native vs. non-native classifications, growth form and elevation ranges are from Wagner et al. (1999) and Palmer (2003), according to recent updates. NA,
not available.

V. thapsus) during June. We chose these species because they
could often be found growing in close proximity throughout
much of this elevation gradient, which was essential for sampling
purposes (measurements were conducted in the dark as indicated
below). Sampling locations were located on the south slope
of Mauna Kea along a transect that generally corresponded to
that used by Nullet and Juvik (1997) in a study characterizing
elevation changes in UV-B, photosynthetically active radiation
(PAR; 400–700 nm), and total shortwave (SW) radiation (300–
3000 nm). In their study, Nullet and Juvik (1997) measured
UV-B using a broadband sensor (Robertson-Berger Model 501A
Biometer) that provided a measure of biologically effective UV-B
(UV-BERY) weighted according to the human erythemal action
spectrum. PAR was measured with a LiCor Model LI190SB
quantum sensor and SW radiation was measured with an Eppley
PSP pyranometer. Nullet and Juvik (1997) collected radiation
data at 10 elevations ranging from sea level (0 m) to 4230 masl
on Mauna Kea near midday under clear skies in June and then
they adjusted their data to correspond to a solar zenith angle
of 10◦. At each of their sampling elevations, these investigators
reported values of UV-BERY, PAR, and SW relative to those
at the Mauna Kea summit. We used polynomial regression
models [second-order for UV-B and fourth-order for PAR and
SW (R2

= 0.98–0.99); SAS JMP] to establish relationships
between elevation and these three measures of relative solar
irradiance. We then used these regression models to calculate
relative clear sky UV-BERY, PAR, and SW for the sampling
elevations used in our study. Least square regression and
correlation (multivariate) analyses in JMP were used to examine

relationships between TUVA, elevation, and solar radiation. For
these regression models we tested linear and polynomial models
(second, third, and fourth order) and selected the model that
explained the largest amount of variation in the data (i.e., the
highest value of R2).

Measurements of Leaf Optical Properties
Non-invasive measurements of epidermal TUVA were made on
adaxial (upper) surfaces of healthy, fully expanded leaves with
a field-portable pulse amplitude modulation (PAM) chlorophyll
fluorometer (UVA-PAM; Gademann Instruments, Würzburg,
Germany). This instrument provides estimates of epidermal
TUVA by measuring the fluorescence yield of chlorophyll (Fo;
λ > 650 nm) induced by UV-A (375 nm) and blue (BL;
470 nm) radiation, as outlined by Kolb et al. (2005) and
following the precautions and procedures of Barnes et al. (2008).
This technique is based on the premise that both UV-A and
BL can induce chlorophyll fluorescence and that reductions
in the penetration of UV to the mesophyll (e.g., from UV-
absorbing compounds in the epidermis) will reduce UV-A-
induced chlorophyll fluorescence (FUVA). Fluorescence induced
by BL (FBL), which is not absorbed by UV pigments, serves as
a reference to account for variation in chlorophyll content and
distribution in the mesophyll. Ideally, calculations of epidermal
UV transmittance using this technique are based on the FUVA/FBL
of epidermis-free leaf samples. As it is usually not possible
to readily remove the epidermis for most species, FUVA/FBL
values are normally expressed relative to a blue plastic standard
(Heinz Walz GmbH, Effeltrich, Germany), which has emission
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properties similar to an epidermis-free green leaf. Such was
the case in this study. The epidermal TUVA reported here
should therefore be considered as approximations of the true
transmittances for these species.

Measurements of TUVA by the UVA-PAM generally exhibit
strong, positive correlations with direct measurements of
epidermal UV transmittance (in both the UV-B and UV-A)
made from epidermal peels (Markstadter et al., 2001), and this
technique has been widely used to investigate UV sunscreen
protection in a diversity of plant species and conditions (see
reviews of Barnes et al., 2015; Julkunen-Tiitto et al., 2015; and
references therein). However, while measurements of TUVA made
by the UVA-PAM are generally correlated with epidermal UV-B
transmittances (TUVB), the specific relationships between TUVB
and TUVA can vary with species, depending on the type of
UV-absorbing compounds employed (e.g., flavonoids vs. HCAs;
Bilger et al., 2001). Thus, while epidermal TUVA measurements
made with the UVA-PAM can serve as reasonable estimates of
the overall UV screening of leaves (including TUVB, which is
technically much more difficult to measure in the field than
TUVA), we are unable to precisely relate levels of UV-A screening
to that for UV-B in the species surveyed in this study. Also,
the presence of anthocyanins in the epidermis can introduce
errors in determining TUVA with the UVA-PAM by affecting the
penetration of the reference (FBL) beam (Barnes et al., 2000;
Pfündel et al., 2007). To avoid these errors, we restricted our
sampling to include only plants with green leaves (i.e., leaves that
had no visible reddish coloration which would be indicative of
anthocyanin accumulation).

Previously, we reported that several of our study species
(V. thapsus and Oenothera stricta) exhibited diurnal changes
in epidermal TUVA at this study location, with absolute values
of TUVA decreasing 1–3% from predawn to midday and then
increasing to predawn levels at sunset (Barnes et al., 2008).
Although diurnal changes in TUVA are now known to occur
in many species (Barnes et al., 2016a), it is unknown if all
the species studied here undergo these diurnal changes. To
allow for comparisons among species in the alpine survey we
therefore measured TUVA of all species under clear skies during
midday (10:00 to 14:00 h local time). These values thus represent
maximum levels of UV screening (minimum TUVA) for all
species regardless of whether or not they adjust TUVA throughout
the day. For the elevation study, we did not want diurnal
changes in TUVA, which could potentially vary in magnitude
with temperature and sky conditions (Barnes et al., 2016a,b), to
confound elevation/UV-B effects on UV screening. For this study,
we therefore measured TUVA ca. 1 h prior to sunrise (predawn).
These values thus represent the “baseline” level of UV screening
within each species.

RESULTS

Survey of Native and Non-native Alpine
Species
Significant variation in daily minimum epidermal TUVA existed
among the plant species measured in the alpine/upper subalpine

FIGURE 1 | Midday adaxial epidermal UV-A transmittance in native and
non-native plant species in the alpine and upper subalpine zones of Mauna
Kea, Hawaii. Data are means + SE (n = 10). The order of species reflects that
in Table 1 and is based, generally, on similarity in growth form.

on Mauna Kea (Figure 1; ANOVA, F18,79 = 14.8; P < 0.0001).
Mean values of TUVA at midday ranged from a low of 2.6% in
Senecio madagascariensis to a high of 11.5% in Poa pratensis
(Figure 1). However, when averaged at the species level we
detected no significant difference (ANOVA; F1,17 = 0.05;
P = 0.83) between native and non-native taxa (Figure 2A).
Similarly, we found no significant effect (ANOVA; F2,15 = 0.82;
P = 0.46) of growth form on TUVA, when averaged at the
level of species (Figure 2B). However, data were variable and
forbs represented a disproportionate fraction of the species
tested (n = 10) as compared to grasses (n = 3) and woody
plants (trees and shrubs; n = 5). The single fern species
was excluded from the growth form analysis. We found
no consistent patterns in TUVA in growth forms between
native and non-native species but replication was insufficient
to test for statistical differences (Figure 2C). Even though
measurements were taken over a range of elevations (2774–
3962 masl), we found no significant relationship between TUVA
and elevation for the species sampled (r = 0.20; P = 0.42;
not shown). The average sampling elevation of native species
(3326 masl) was also not significantly different (ANOVA;
F1,17 = 0.02; P = 0.89) than that for the non-native species
(3291 masl).

Elevation Gradient Study
Along an elevation gradient spanning 2600–3800 m we found
a strong negative relationship (R2

= 0.96; P < 0.001 for linear
regression model) between elevation and predawn adaxial TUVA
in the non-native V. thapsus but predawn TUVA did not vary
(R2
= 0.02; P = 0.87 for linear regression model) with elevation

in the native shrub V. reticulatum (Figure 3A). However,
V. reticulatum maintained 2-4 times higher predawn levels of
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FIGURE 2 | Mean midday adaxial epidermal UV-A transmittance of plant
species in the alpine and upper subalpine zones of Mauna Kea, Hawaii
grouped according to native vs. non-native status (A), growth form (B), and
growth forms within native and non-native categories (C). Data are
means + SE with n = 8 and 11 for native and non-native species in panel (A);
n = 3, 1, 10, and 5 for grass, fern, forb, and tree/shrub growth forms,
respectively in panel (B); and n = 1–5 in panel (C) (see Table 1 for additional
information). P values for the effect of native vs. non-native status (A) and
growth form (B) are from individual one-way ANOVAs; the one fern species
was not included in the growth form ANOVA.

UV screening (mean TUVA = 2.8-3.1%) than V. thapsus (mean
TUVA = 6.0-11.2%) at similar elevations, based on estimates from
regression models. For V. thapsus, predawn TUVA exhibited a
non-linear, negative relationship (R2

= 0.986; P= 0.003 for third-
order polynomial regression model) with relative peak daily clear
sky UV-BERY along this elevation gradient (Figure 3B). Similar
relationships were found with daily maximum clear sky total
SW irradiance (R2

= 0.982; P < 0.001 for a linear model; not
shown) and PAR (R2

= 0.948; P = 0.003 for a second-order
polynomial model; not shown) though the relative irradiance
changes in these two wavebands over this sampling gradient were
less (5% for PAR and 12% for SW) than that for UV-BERY (ca.
20%). There were no significant relationships between predawn
TUVA and these relative measures of solar radiation (UV-BERY,
PAR and SW) for V. reticulatum (R2 < 0.02; P > 0.8; not
shown).

FIGURE 3 | Relationships between elevation and predawn adaxial epidermal
UV-A transmittances in Vaccinium reticulatum (native species) and Verbascum
thapsus (non-native species) (A), and the relationship between midday
summer clear sky erythemal UV-B irradiance (UV-BERY) and predawn adaxial
epidermal UV-A transmittance in V. thapsus (B). Data are means ± SE
(n = 10). Linear regression models in panel (A) were significant
for V. thapsus (P < 0.001; y = 11.13–0.0014x) but not for V. reticulatum
(P = 0.87). The best-fit line relating epidermal UV-A transmittance to
%UV-BERY for V. thapsus in panel (B) is a third-order polynomial model
[y = 32.2 – 0.28x + 0.022(x – 90.2)2 – 0.0007(x – 90.2)3], which is significant
at P = 0.003. UV-BERY data are expressed relative to the value at the highest
sampling elevation on Mauna Kea as per data from Nullet and Juvik (1997).

DISCUSSION

Results from our survey of 19 species representing 13 different
plant families indicate that significant interspecific variation
exists in maximum (midday) levels of UV screening for plants
growing in the Mauna Kea alpine/upper subalpine. Overall,
however, epidermal TUVA was low for all taxa (means ranged
from 2.6 to 11.5%). Further, we found no significant differences
in UV screening between native and non-native species. Most
of the native species in our study were woody dicots (five of
the eight species sampled) whereas the majority of the non-
native species were herbaceous dicots (9 of 11 species sampled).
Therefore, our comparison of native vs. non-native species was,
to some degree, confounded with growth form effects. Day
et al. (1992) reported significantly greater leaf epidermal UV
transmittance in herbaceous dicots (n = 7 species) than woody
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dicots (n= 3 species) for plants growing in a temperate subalpine
meadow in Wyoming, United States (3310 m elevation). By
comparison, we detected no significant effect of growth form
on leaf optical properties in this tropical alpine environment.
Our study was similar in size and scope to the study of Day
et al. (1992) in that the majority (74%) of the species we tested
were also herbaceous and most of these (71%) were forbs.
Thus, even though differences in growth form composition
existed between native and non-native species in our study,
these differences appeared to have little effect on overall levels of
UV screening between these two categories of species. It seems
that growth form effects on TUVA are less pronounced in the
extreme UV-B conditions in the tropical alpine than in lower
UV-B environments, which occur at lower elevations and higher
latitudes.

Eldredge and Evenhuis (2003) reported that of the 2311
species of vascular plants known to occur in the Hawaiian
Islands ca. 50% (1160) of these species are non-native (non-
indigenous) in origin. Only a small fraction (73 species or ca.
3%) of these species occurs in the alpine/upper-subalpine of
Mauna Kea though the relative floristic composition of non-
native species in this life zone (54%) is comparable to that of
the Hawaiian Islands in general (Gerrish, 2013). In our study, we
examined about one-third of the native and non-native species
of the Mauna Kea alpine/upper subalpine (8 native and 11 non-
native species). Our results are therefore derived from sizable and
comparable fractions of the native and non-native flora present
in this habitat and there is no reason to believe that our findings
would have differed had we sampled a greater number of species
in the Mauna Kea alpine.

While it is seldom possible to determine the exact origin
of non-native species, the non-native species included in our
study clearly originated from lower elevation, higher latitude
sites where UV-B exposure would be considerably less than our
sampling locations. The majority of species (8 of 11) are listed
in floras as originating from Europe or Eurasia. More detailed
distributions of several species indicate they typically originate
north of 30◦ latitude (Weber, 2017). The remaining species
also originate outside the low-latitude tropics: Heterotheca
grandiflora from coastal California (Munz, 1968), O. stricta
from southern South America (Robberecht and Caldwell, 1983),
and S. madagascariensis from South Africa (as determined by
phylogenetic analysis; Le Roux et al., 2006). Whereas, it is
possible that these species were pre-adapted to the extreme UV-B
conditions in the tropical alpine, it seems more likely that they
either (1) evolved higher UV screening over the course of their
invasion and colonization of montane environments in Hawaii,
or (2) that they possess high degrees of phenotypic plasticity in
UV tolerance that then enabled them to acclimate to a wide range
of UV-B conditions. Some of the non-native species in our study
have arrived in Hawaii relatively recently and are highly invasive
pests (e.g., S. madagascariensis) whereas others have been on the
island sufficiently long enough to be considered “naturalized”
(e.g., P. pratensis and Rumex acetosella) (Wagner et al., 1999;
USDA, 2017). Thus, the non-native species in our study have
experienced various periods of time since their introductions and
these historical differences may have influenced the degree to

which their adjustments in UV protection reflect genetic changes
in populations vs. phenotypic plasticity.

In general, the success of non-native, invasive species is
often attributed to their high levels of phenotypic plasticity,
which then enables them to cope with a wide array of
environmental conditions (Davidson et al., 2011). Many of the
non-native species in our study, regardless of the timing of their
introductions, may have achieved levels of UV protection that
are similar to those of the native alpine species via phenotypic
adjustment (i.e., acclimation) to the high UV-B irradiances
in this alpine environment. In the case of V. thapsus, this
is an herbaceous weed at many elevations in the temperate
zone and this species has been found to exhibit a high degree
of phenotypic plasticity rather than rapid evolution over the
course of its invasions (Parker et al., 2003). Findings from
the current study revealed that predawn TUVA varied in a
linear fashion (1.3% change in relative TUVA per 100 m) with
elevation in V. thapsus whereas this was not the case for the
native V. reticulatum (Figure 3A). Using a similar approach,
but conducting measurements at midday over a narrower
elevation range (ca. 800 m), Ruhland et al. (2013) reported
linear decreases in TUVA with increasing elevation (9.7% per
100 m) for the native shrub Artemisia tridentata in Wyoming,
United States. Because of the short distances between their
sampling sites, these authors attributed the elevation variation in
UV screening in A. tridentata to phenotypic plasticity rather than
ecotypic differentiation. In a growth chamber study, Beckmann
et al. (2012) found similar levels of phenotypic plasticity in
native (German) and non-native (New Zealand) populations of
Hieracium pilosella in morphological and growth responses to
UV-B, though some genetic differentiation also occurred between
these two populations. Thus, at present it is not clear whether
non-native species (or populations) exhibit greater phenotypic
plasticity in UV protection than native plants and further study
on a greater number and diversity of species is needed to
adequately test this hypothesis. It is conceivable, however, that
phenotypic plasticity in UV protection in V. thapsus is one factor
that has aided the invasion of this particular species in Hawaii.

In this study, we focused on the attenuation of incoming
UV by the epidermis (i.e., UV screening) as this mechanism
provides the first line of defense against the potentially deleterious
effects of UV-B. However, UV protection in plants involves not
only UV screening but other factors as well, such as levels of
antioxidant compounds, DNA repair and leaf thickness, that
all serve to protect and repair sensitive targets from direct and
indirect UV-induced injury (Britt, 1999; Jacques et al., 2009;
Majer et al., 2014; Robson et al., 2015). In some cases, these
other mechanisms of UV protection have been shown to vary
with elevation. For example, Wang Q. W. et al. (2016) found
that differential sensitivity to UV radiation between high vs.
low elevation populations and species of Arabidopsis growing
in the Hakkado Mountains, Japan, was attributable, in part,
to population differences in DNA damage and repair. Wildi
and Lütz (1996) reported that total antioxidant levels increased
with elevation in several species in the Austrian Alps, but
whether these differences were due to elevation changes in
UV, temperature, or other factors was not assessed. Moreover,
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while the attenuation of UV within the leaf is predominantly
influenced by UV-absorbing compounds, the surface features of
leaves (e.g., trichomes and waxes) can also influence leaf optical
properties (Karabourniotis et al., 1992; Holmes and Keiller, 2002)
and in some cases these traits have been shown to vary with
elevation (e.g., Pilon et al., 1999). One of the species in our study
(V. thapsus) possesses pubescent leaves and it is conceivable that
the trichomes of this species are also involved in UV screening.
We did not test whether these hairs absorb or reflect UV nor
did we evaluate whether there were elevation changes in the
levels of pubescence in this species. Increases in pubescence
would add to the UV-filtering effect of the epidermis and thus
further decrease TUVA but only if the leaf hairs possessed UV-
absorbing compounds. Pubescence would likely have no effect
on TUVA, as measured with the UVA-PAM, if the hairs primarily
reflect UV, as they would also reflect visible (including blue light)
radiation (Holmes and Keiller, 2002). In this situation, the ratio
of FUVA/FBL and thus TUVA would be unaffected by variation in
trichome density.

Because of their known function in UV protection and
potential value in plant systematics, a large number of studies
have examined elevation changes in the levels of flavonoids
(and related phenolic compounds) and/or UV screening in a
variety of plant species (e.g., Caldwell et al., 1982; McDougal
and Parks, 1984; Barnes et al., 1987; Rau and Hofmann, 1996;
Alonso-Amelot et al., 2007; González et al., 2007; Rieger et al.,
2008; Bernal et al., 2013; Ruhland et al., 2013; Cirak et al.,
2017; and others). Some of these studies have further tested the
linkage between elevation variation in flavonoids/UV screening
and UV tolerance. In one of the most extensive studies to
date, Sullivan et al. (1992) examined 33 species collected along
a 3000 m elevation gradient in Maui, Hawaii, and found a
significant, inverse relationship between elevation and negative
effects of UV-B on growth for plants growing in a greenhouse.
A companion study by Ziska et al. (1992) showed that greater
sensitivity to UV-induced partial inhibition of photosynthesis
in a subset of greenhouse-grown low elevation species (n = 4)
was associated with lower constitutive levels of UV-absorbing
compounds relative to high elevation taxa. Thus, even though
our study only examined UV screening, our findings imply that
non-native species would not be more or less prone to UV-
induced injury than native species under the extreme UV-B
conditions in this tropical alpine environment. Furthermore, our
findings that non-native species possess levels of UV screening
that are comparable to those of native species do not support the
general expectation that non-native species invest more heavily
into resource acquisition and growth at the expense of stress
tolerance mechanisms than native species (Van Kleunen et al.,
2010). Rather, it appears that the low resource, highly stressful
environment of the alpine serves as a strong filter of plant species
(Alexander et al., 2011; Gerrish, 2013) and functional traits (Funk
et al., 2016) such that native and non-native species in this
environment exhibit little difference in UV defense.

Elevation gradients, such as the one in our study, are complex
gradients where a number of environmental factors (e.g., solar
radiation, temperature, precipitation) change in concert (Körner,
2007). Studies such as ours linking elevation changes in UV

screening to changes in UV-B are therefore, correlative at best,
and other environmental factors may contribute to this variation.
Indeed, it is well known that low temperatures can increase UV-
absorbing compounds and UV screening in leaves (e.g., Bilger
et al., 2007) and some have found elevation changes in flavonoids
to be more strongly influenced by changes in temperature than
UV (Albert et al., 2009). Nonetheless, studies along elevation
gradients can provide insights into how plants might respond
to the changes in UV-B that occurs with migration to higher
elevations as a consequence of climate change. In our study, we
found a strong negative relationship between clear sky erythemal
UV-B and TUVA in V. thapsus, but we also detected strong
relationships with PAR and total SW radiation. In general, radiant
fluxes of biologically effective UV-B increase proportionally more
with elevation than those of UV-A, PAR or SW in temperate
and tropical mountains (Caldwell et al., 1980; Piazena, 1996;
Blumthaler et al., 1997; McKenzie et al., 2001). Such appears
to be the case for this elevation gradient in Hawaii (Nullet
and Juvik, 1997). Thus, while migration to higher elevations
exposes plants to increases in solar radiation in all wavebands,
the relative changes are greatest for biologically effective UV-B.
These elevation gradients in UV-B can be further accentuated
by the presence of clouds. For example, because of a persistent,
dense cloud layer at ca. 2000 masl that results from trade-
wind inversions, the differences in UV-B between the alpine and
sea level differ considerably from the eastern, wind-ward side
of Mauna Kea to the western, lee-ward side of the mountain.
From continuous UV measurements, Nullet and Juvik (1997)
reported that monthly erythemal UV-B, when averaged over all
sky conditions, was actually 55–103% greater at 3400 masl than
at a windward sea level location, depending on time of year
(summer vs. winter), in comparison to the ca. 20% difference in
clear sky UV-B between these elevations. Plant species that occur
below the cloud layer on the moist, eastern side of Mauna Kea,
and which migrate to elevations above this cloud layer would
therefore likely require greater acclimation to UV-B than would
those migrating comparable elevations on the drier, eastern side
of this mountain.

CONCLUSION

Our findings indicate that high levels of UV screening are not
restricted to plant species native to the high UV-B conditions
of the tropical alpine and that plasticity in epidermal UV
transmittance is a mechanism employed by some, but not all,
species to cope with varying solar UV exposures. Whether this
plasticity in UV screening is a general feature of non-native
species is unknown, but our findings do suggest that many
terrestrial plants will be able to tolerate the increased levels of UV-
B radiation as they migrate to higher elevations as a consequence
of climate change.
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