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The need to adapt to decrease farm vulnerability to adverse contextual events has
been extensively discussed on a theoretical basis. We developed an integrated and
operational method to assess farm vulnerability to multiple and interacting contextual
changes and explain how this vulnerability can best be reduced according to farm
configurations and farmers’ technical adaptations over time. Our method considers
farm vulnerability as a function of the raw measurements of vulnerability variables
(e.g., economic efficiency of production), the slope of the linear regression of these
measurements over time, and the residuals of this linear regression. The last two
are extracted from linear mixed models considering a random regression coefficient
(an intercept common to all farms), a global trend (a slope common to all farms),
a random deviation from the general mean for each farm, and a random deviation
from the general trend for each farm. Among all possible combinations, the lowest
farm vulnerability is obtained through a combination of high values of measurements,
a stable or increasing trend and low variability for all vulnerability variables considered.
Our method enables relating the measurements, trends and residuals of vulnerability
variables to explanatory variables that illustrate farm exposure to climatic and economic
variability, initial farm configurations and farmers’ technical adaptations over time. We
applied our method to 19 cattle (beef, dairy, and mixed) farms over the period 2008–
2013. Selected vulnerability variables, i.e., farm productivity and economic efficiency,
varied greatly among cattle farms and across years, with means ranging from 43.0
to 270.0 kg protein/ha and 29.4–66.0% efficiency, respectively. No farm had a high
level, stable or increasing trend and low residuals for both farm productivity and
economic efficiency of production. Thus, the least vulnerable farms represented a
compromise among measurement value, trend, and variability of both performances. No
specific combination of farmers’ practices emerged for reducing cattle farm vulnerability
to climatic and economic variability. In the least vulnerable farms, the practices
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implemented (stocking rate, input use. . .) were more consistent with the objective of
developing the properties targeted (efficiency, robustness. . .). Our method can be used
to support farmers with sector-specific and local insights about most promising farm
adaptations.

Keywords: longitudinal analysis, resilience, adaptive capacity, farm management, livestock system, linear mixed
models

INTRODUCTION

The biophysical, economic and social context of agricultural
production is increasingly unpredictable and volatile (Thompson
and Scoones, 2009), driven by complex and interrelated
contextual changes, including scarcity of natural resources,
climate change, increasing food demand, and administrative
regulation. Along with changes in trends, climatic and economic
variability, i.e., variation around long-term means, is also
growing (Wright, 2011; IPCC, 2013). In a changing context,
the primary and immediate effects on nature and society result
from variability rather than from means (Katz and Brown, 1992).
Consequently, farmers must continuously adapt to reduce their
vulnerability to climatic and economic variability (Howden et al.,
2007; van Vuuren et al., 2011).

The vulnerability of any system (at any scale) is considered
a function of exposure and sensitivity of that system to a range
of hazards and the adaptive capacity of the system to cope
with, adapt to, or recover from the effects of these conditions
(Smit and Wandel, 2006). More precisely, exposure usually
refers to the duration, extent and frequency of climatic and
economic perturbations influencing the system (Adger, 2006).
Sensitivity is the degree to which the system responds to
such perturbations (Gallopín, 2006). Exposure and sensitivity
determine the potential impact that occurs given the climatic
and economic variability. Adaptive capacity is the degree to
which a system can adjust to, moderate, or offset the potential
impacts, or take advantage of opportunities created by a
given climatic or economic event (Schneider et al., 2001).
Actual impact is the impact that remains after accounting for
adaptive capacity, especially adaptations implemented by system
managers confronted with climatic and economic variability.

The need to adapt to decrease farm vulnerability to adverse
contextual events has been extensively discussed on a theoretical
basis (Meinke et al., 2009; Darnhofer et al., 2010b). Farmers
now need sector-specific and local insights about adaptations to
decrease farm vulnerability to climatic and economic variability.
Research has developed two types of approaches to address this
issue: model-based studies and field-based studies for ex ante and
ex post analysis, respectively.

Model-based studies are interesting in that they enable strict
application of the vulnerability framework by isolating farm
sensitivity from adaptive capacity: ex ante simulations can be
run without considering farmers’ adaptations. Still, model-based
studies have several drawbacks, including (i) limited ability to
reproduce farm management and production when applied to
new sites (Ewert et al., 1999; Palosuo et al., 2011) and (ii)
simulation of farm adaptations in a necessarily limited and

simplified context that ignores key issues to farmers (e.g., family
issues). These drawbacks compromise the relevance for farmers
of adaptation recommendations originating from model-based
studies.

Field-based studies have the potential to address farm
adaptation and consequences of farm vulnerability in the
multifactorial context farmers encounter (Nicholas and Durham,
2012). However, they do not allow breaking down vulnerability
into exposure, sensitivity, and adaptive capacity. Sensitivity is not
measurable in the field, since farmers often react to adverse events
by implementing adaptations. Since it is a potential, adaptive
capacity cannot be assessed exhaustively, unlike adaptations
implemented by farmers. Thus, it is the actual impact of climatic
and economic variability that is most easily assessed according to
farm configurations and farmers’ adaptations.

Field-based studies are seldom reported, and examples of them
have several drawbacks. Many studies are limited to a single
driver of contextual change, mainly climate (Reidsma et al.,
2009; Dong et al., 2015). Farm vulnerability is often reduced to
productivity or income issues by measuring changes in yield or
income over several years (Reidsma et al., 2010; Dong et al., 2015),
whereas technical efficiency issues (and related environmental
and economic impacts) are often neglected, yet are key to
sustainable agriculture (Keating et al., 2010). Many studies focus
on strategic changes and consequently use multi-year time steps
[from 5 years in Rueff et al. (2012) to 14 years in García-
Martínez et al. (2009)], whereas year-to-year tactical adaptations
can have significant impacts on farm performances and related
vulnerability. Nearly all studies (Nicholas and Durham, 2012)
fail to address interactions among adaptation options (i.e., co-
occurrence of changes in farmers’ practices) over time, possible
delayed impacts of their implementation, and resulting trade-
offs in farm performances that explain vulnerability (Reed et al.,
2013).

There is a need to develop an integrated method that enables
the assessment of farm vulnerability to multiple and interacting
contextual change drivers (both climatic and economic) and to
explain how this vulnerability can be reduced according to farm
configurations and farmers’ technical adaptations over time. This
is precisely the purpose of this study. To this end, we assume
that considering not only the mean level but also the trend and
variability of farm performances (e.g., farm productivity, farm
economic efficiency) is required to assess farm vulnerability. We
have developed such a generic (applicable to all farm types)
method and applied it to cattle farms. Cattle farms are interesting
to illustrate the merits of longitudinal analysis, since animal
health and production in a given year can be strongly influenced
by fodder and grain production of the previous year. Results of

Frontiers in Plant Science | www.frontiersin.org 2 August 2017 | Volume 8 | Article 1483

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-01483 August 25, 2017 Time: 18:38 # 3

Martin et al. A Method for Farm Vulnerability Analysis

this analysis are presented and discussed, along with the relevance
and applicability of the method.

MATERIALS AND METHODS

Overview of the Statistical Method
Our method (Figure 1) has two main objectives: (i) assessing
farm vulnerability to the drivers of multiple contextual changes
and (ii) explaining this vulnerability as a function of initial farm
configurations and farmers’ multiple technical adaptations. To
assess farm vulnerability to climatic and economic variability,
a naive approach would consist of calculating the empirical
variance of vulnerability variables for a farm over a period of time,
i.e., the mean of the deviations of these vulnerability variables
from their empirical mean. In doing so, however, the longitudinal
aspect and the common trend would be lost, whereas farm
vulnerability to climatic and economic variability can vary over
time according to farmers’ adaptations. A farm with stable or
increasing vulnerability variables over the study period maintains
or reduces its vulnerability over time. The idea is thus to consider
a trend for each vulnerability variable per farm and the deviations
from this trend.

Following this idea, our method considers farm vulnerability
as a function of the raw measurements (or fitted values, or
mean level over the entire period) of vulnerability variables,
the slope of the linear regression of these measurements over
time, and the residuals of this linear regression (Figure 2).
These three mathematical parameters describe the mean level,
trend, and variability of each vulnerability variable, respectively.
Among all possible combinations, the lowest farm vulnerability
to climatic and economic variability is obtained through a
combination of high values of measurements (i.e., toward “good”
mean performances), a stable or increasing trend (i.e., toward
improvement), and low variability (i.e., toward stability and
robustness) for all vulnerability variables considered. In contrast,
the highest farm vulnerability results from a combination of low
measurements (i.e., poor mean performances), a decreasing trend
(i.e., toward decline) and high variability (i.e., toward instability)
for all vulnerability variables considered. Our method then relates
multiple farm vulnerability variables to explanatory variables that
illustrate farm exposure to climatic and economic variability and
initial farm configurations and farmers’ technical adaptations
over time.

Steps of the Statistical Method
Step 1: Choosing vulnerability and explanatory variables.

Variable choice involves selecting a set of vulnerability
variables (Table 1A) that characterize cattle farm vulnerability
and a set of explanatory variables (Table 1A) that characterize
cattle farm exposure to climatic and economic variability, initial
farm configurations, and farmers’ technical adaptations over time
to climatic and economic variability. If needed, variables can be
transformed.

Step 2: Calculating farm-specific vulnerability variables.
Regression is performed for each vulnerability variable as

a function of the year to extract the trend and the residuals.

This must be achieved for all farms, not only surveyed farms.
Surveyed farms can be viewed as a random sample of farms
from a much larger set. This sampling is accounted for in
the statistical analysis using linear mixed models. A random-
coefficient regression provides the overall mean (an intercept
common to all farms), overall trend (a slope common to all
farms), a random deviation from the overall mean for each farm,
and a random deviation from the overall trend for each farm.
Residuals of the random regression provide additional measures
of stability. Numerically, the effects of farms as deviations from
the overall mean and overall slope decrease to 0 when considered
as random effects rather than fixed effects. Therefore, extreme
values become less extreme in a random-regression model, which
avoids over-emphasizing outliers. Analysis is performed using
the statistical package lme4 (Bates et al., 2015) in R software
(R Development Core Team, 2015).

The random regression is written as:

yi,j,t = α+ βt + αj + βjt + ai + bit + ei,j,t (1)

where yi,j,t is the measure of the vulnerability variable for farm
i in year t for level j of a certain combination of cofactors (e.g.,
farm type: beef, dairy, or mixed),

α is the mean level of the vulnerability variable at time 0
(beginning of the study period),

β is the mean trend of the vulnerability variable over the
period,

αj is the mean level of the vulnerability variable at time 0
specific to a combination j of cofactors,

βj is the mean trend of the vulnerability variable over the
period specific to a combination j of cofactors,

ai is the random effect of farm i on the level of the vulnerability
variable at time 0; it is seen as a deviation from the overall mean
α+ αj for farm i. All ai are assumed to be independent and
identically distributed (iid) ai ∼ N(0, σ2

a),
bi is the random slope for farm i, the deviation from the overall

trend β+ βj. All bi are assumed to be iid bi ∼ N(0, σ2
b),

ei,t is the residual, assumed to be iid ei,t ∼ N(0, σ2
e) and

independent of all ai and bi.
A correlation ρab between the two random

effects relative to the farm is assumed:(
a
b

)
i
∼ N2

((
0
0

)
,

(
σ2

a
ρabσaσb

ρabσaσb
σ2

b

))
.

The information contained in yi,t for i = 1,. . .I and
t = 1,. . .T is partitioned into the prediction (fitted value)
ŷi,t= α+ βt+ αj + βjt + ai + bit and the residual ei,t.

As a direct consequence of model (1), each farm i is
characterized by three aspects corresponding to (i) its level ai
at the beginning of the period expressed, i.e., the intercept, as a
deviation from the overall performance level of all farms; (ii) its
trend bi over the period, as a deviation from the overall trend;
and (iii) the variability σ2

e,i =
1
T
∑T

t=1 e2
i,t around the expected

trajectory α+ βt + αj + βjt + ai + bit.
We used this model to study detailed measures for each farm at

each point in time. The level was estimated either by ai, the fitted
value at time 0 (intercept), the fitted value at a given time (e.g.,
middle of the period), or the mean level of vulnerability variable,
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FIGURE 1 | Step-by-step representation of the method. Knowledge and statistical tools used for each step are given in italics.

FIGURE 2 | Overview of the three types of vulnerability variables to assess farm vulnerability (restricted to self-sufficiency for animal feeding in this figure) to climatic
and economic variability: raw measurements (fitted or mean values can be used), slope of the linear regression over time (general trend over the period), and
residuals of the regression (as a measure of stability and robustness).

raw values, or fitted values over the entire period (the last one
representing de-noised data).

Step 3: Characterizing the diversity of farm vulnerability
patterns.

Descriptive analysis of farm vulnerability consists of principal
component analysis (PCA) of all vulnerability variables (raw
measurements, slope and residuals of their linear regression
each time). It identifies relationships among vulnerability
variables and highlights their similarities and differences through
correlations. It also distinguishes patterns of farms’ vulnerability
trajectories. This makes it possible to verify whether some
individuals display high (high average level, stable or increasing

trend and low variability of vulnerability variables) or low
vulnerability according to our hypotheses (see Overview of
the Statistical Method). PCA is performed using the statistical
package mixOmics (Lê Cao et al., 2009; González et al., 2011) in
R software.

Step 4: Understanding farm vulnerability from explanatory
variables.

Tools commonly used to select linear models sometimes
have difficulties choosing a subset of explanatory variables.
In the context of prediction, or when explanatory variables
are numerous and highly correlated, it is often useful to use
statistical tools to reduce the number of dimensions. Regression
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on principal components (after a PCA of all explanatory
variables) can drastically reduce the number of explanatory
variables in the model. However, principal components are not
necessarily related to the response variable. This was the aim of
developing the partial least squares (PLS) regression: to reduce
dimensionality, use orthogonal explanatory variables, and search
for the maximum covariance between response and explanatory
variables.

Partial least squares is a multivariate projection-based
method offering a compromise between PCA and linear
modeling (Tenenhaus, 1998; Wold et al., 2001). Unlike linear
modeling, it is not limited to a single response variable and
unlike PCA, it can distinguish among sets of response and
explanatory variables. The regression mode of PLS analysis
consists of modeling explanatory relationships between variables
of two datasets, i.e., PLS predicts multiple vulnerability
variables from two types of explanatory variables (climatic and
economic exposure variables) and variables describing initial
farm configurations and farmers’ technical adaptations over
time. PLS regression is performed using the statistical package
mixOmics (Lê Cao et al., 2009; González et al., 2011) in R
software.

Case Study Application
Case Study Farms
Our study was performed in the French department of Aveyron
(Figure 3). At this regional scale, exposure to economic hazards is
considered equal among cattle farm types (dairy, beef, mixed) but
variable over time (Figure 4). In contrast, exposure to climatic
hazards varies both among farms and over time (Figure 4).
Aveyron contains a range of climatic conditions, from dry
lowland plains to cold and snowy mountains. As a result, it
has a wide diversity of cattle farms, from highly productive
maize-based systems in lowland plains to less-productive grass-
based systems in the mountains. We hypothesized that farm
diversity was related to the diversity of initial farm configurations
and farmers’ technical adaptations to climatic and economic
variability.

The Chamber of Agriculture in Aveyron created a network of
24 beef and dairy cattle farms that are surveyed every year. Data
are collected on the key aspects of livestock systems: geographic

location, land use, crop and grassland yields, herd structure,
animal production, animal feeding, labor requirements, and
economic returns and costs. Surveys covered the period 2008–
2013 and lasted 3–6 years, depending on the farm. We restricted
analysis to 19 farms involved in at least 4 years of the survey
(Figure 3). In the following text, farms are denoted by a
letter (B: beef, D: dairy, M: mixed) followed by a number
corresponding to the farm. We supplemented these surveys with
downscaled weather data (8 km × 8 km grid), which were
needed to calculate climatic indicators and two price indices
(Table 1B).

Choice of Vulnerability and Explanatory Variables for
the Cattle-Farm Case Study
The choice of vulnerability and explanatory variables relied
on conceptual and indicator frameworks on adaptiveness of
agricultural and socio-ecological systems (Darnhofer et al.,
2010a; Biggs et al., 2012; Cabell and Oelofse, 2012). Following
these frameworks, we measured two vulnerability variables
that characterize vulnerability of cattle farms confronted with
climatic and economic variability: the ability to remain (i)
productive (based on internal feed resources) and (ii) technically
and economically efficient (Darnhofer et al., 2010a; Cabell
and Oelofse, 2012) (Table 1A). The two vulnerability variables
measured were:

1. Farm productivity based on feed internal resources, i.e., the
amount of protein in milk and meat produced per year
and per hectare on the farm allowed by the amount of
animal feed produced on the farm over the entire animal
feed consumption (on a dry matter basis) to consider farm
self-sufficient productivity:

Farm productivity = production of protein in milk and
meat (kg protein per year) × self-sufficiency for animal
feeding/usable agricultural area (ha) and self-sufficiency for
animal feeding = concentrate and forage produced on-farm
(kg DM per year)/total concentrate and forage consumed by
the herd (kg DM per year).

2. Economic efficiency of production, i.e., net economic output
produced per unit of gross output:

TABLE 1A | Vulnerability variables describing individual farms.

Category Sub-category Variable Abbreviation Unit

Vulnerability Productivity Farm productivity Y.Prod kg
protein/ha/year

Slope of the linear
regression of Prod

Sl.Prod kg
protein/ha/year

Residuals of the linear
regression of Prod

R.Prod kg
protein/ha/year

Economic efficiency Economic efficiency of
production

Y.EconEff %/year

Slope of the linear
regression of EconEff

Sl.EconEff %/year

Residuals of the linear
regression of EconEff

R.EconEff %/year
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Economic efficiency of production = (gross product −
operational costs)/gross product

The two vulnerability variables were broken down into
three aspects: raw measurements, slope of the linear regression
of these measurements over time, and residuals of the
regression.

We chose eight explanatory variables to illustrate cattle-
farm exposure to climatic and economic variability (Table 1B).
Exposure to climatic variability was assessed with the following
six variables:

1. Earliness of the growing season, i.e., sum of degree days from
1 February to 1 of April of each year;

2. Heat stress on crop and forage plants, i.e., the number of days
with a mean temperature above 25◦C per year;

3. Water deficit or excess in spring, summer, autumn, and
winter, respectively, i.e., the difference between rainfall and
evapotranspiration during each season of each year.

Exposure to economic variability was assessed with the
following two variables:

1. Integrated input price index for each year (IDELE, 2015)
integrating the variability of prices of seeds, fertilizers,
pesticides, feedstuffs, drugs, energy, machinery and the cost of
its maintenance;

TABLE 1B | Explanatory variables describing individual farms.

Category Sub-category Variable Abbreviation Unit

Exposure Climate Number of days with heat
stress

HeatStress day

Earliness of the growing season Earliness ◦C-day

Water deficit or excess in
autumn

WaterAutumn mm

Water deficit or excess in
summer

WaterSummer mm

Water deficit or excess in winter WaterWinter mm

Water deficit or excess in spring WaterSpring mm

Economics Input price index InputPrice

Output price index OutputPrice

Adaptive capacity:
farmers’ management
practices

Land use Stocking rate StockingRate LU/ha

Percentage of semi-natural
pastures on the farm

%NatPast %

Percentage of grass-based ley
pastures on the farm

%GrassPast %

Percentage of legume-based
ley pastures on the farm

%LegPast %

Percentage of cropland on the
farm

%Crop %

Percentage of cover crops on
the farm

%CoverCrop %

Shannon index of diversity of
the farmland

ShannonLand /

Amount of irrigation water used IrrigWater L/ha

Mineral fertilization rate NMinFert kg N/ha

Herd management Spread of calving within the
herd

CalvingSpread month−1

Replacement rate within the
herd

ReplaceRate %

Shannon index of diversity of
the herd

ShannonHerd /

Number of animal diets fed
outside the farm

OffFarmDiets diet

Percentage of silage in animal
diets

%SilageFeed %

Amount of fodder distributed
per animal

FodderDistrib t DM/LU

Amount of concentrate
distributed per animal

ConcDistrib t DM/LU
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FIGURE 3 | Map of the Aveyron department and location of the case study cattle farms: 9 (D)airy (blue), 2 (M)ixed (green) and 8 (B)eef (red). (Map data © 2015
Google; no further permissions are required for the use and reproduction of this image).

FIGURE 4 | Dynamics of (left) seasonal water balances (red: autumn, green: spring, blue: summer, purple: winter) and (right) prices (red: inputs, blue: outputs)
during the survey period. Gray areas represent smoothed areas (equal to one standard deviation) computed by loess around each line.
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2. Integrated output price index for each year (INSEE, 2015)
integrating the variability of prices of milk and meat.

We selected explanatory variables to illustrate farm
configurations and farmers’ technical adaptations over time
(Table 1B). All of the conceptual and indicator frameworks
cited above suggest that greater diversity [i.e., variety, balance,
and disparity, as defined by Biggs et al. (2012)] promotes
redundancy within such systems and increases their adaptive
capacity. These frameworks also suggest that adaptive capacity is
promoted by greater internal recycling of waste (e.g., manure),
which is promoted by connectivity among system components.
Accordingly, we selected the following 16 variables to illustrate
land use and herd-management practices employed by farmers
on cattle farms:

a. Land use:

a. stocking rate, i.e., number of animals per unit of farm area
b. percentages of semi-natural pastures, grass-based ley

pastures, legume-based ley pastures and cropland in the
farmland area

c. percentage of cover crops in the farmland area
d. shannon index of diversity of the farmland area, i.e., the

more diverse the land-use types on the farm, the higher the
index

e. amount of irrigation water used per unit of farm area
f. mineral fertilization rate per unit of farm area.

b. Herd management:

a. spread of calving within the herd, calculated as the inverse
of the calving duration in months, i.e., the more grouped
the calving, the higher the index

b. replacement rate within the herd
c. shannon index of diversity of the herd, i.e., the diversity of

the age and sex classes of cattle on the farm;
d. number of animal-days of off-farm grazing/feeding
e. percentage of maize and fodder silage in animal diets on a

dry matter basis
f. amount of fodder distributed per animal
g. amount of concentrate distributed per animal.

RESULTS

Characterization of Cattle Farm
Vulnerability to Climatic and Economic
Variability
Overview of Variables of Cattle Farm Vulnerability
Farm productivity varied greatly among cattle farms, with means
ranging from 43 kg protein/ha/year in B2, the least productive
system, to 270 kg protein/ha/year in D8, the most productive
system (Figure 5). ANOVAs showed that overall levels and
trends of farm productivity differed significantly among farm
types (P < 0.001 and P < 0.001, respectively; Figures 5, 6).
Dairy systems tended to have mean farm productivity levels
(167.7 kg protein/ha/year) similar to those of mixed systems
(169.3 kg protein/ha/year) and higher than those of beef systems

(83.3 kg protein/ha/year). An improvement was observed in
farm productivity in dairy (0.9 kg protein/ha/year) and mixed
systems (3.4 kg protein/ha/year), whereas the trend declined in
beef systems (−2.1 kg protein/ha/year) over the study period.
However, trends differed significantly among farms, independent
of farm type (P < 0.001). For instance, while D8 displayed a major
improvement over the study period (6.8 kg protein/ha/year),
D6 experienced a strong decline (−6.1 kg protein/ha/year).
Regarding variability in farm productivity, among farm types,
mixed systems (7.6 kg protein/ha/year) and beef systems (7.5 kg
protein/ha/year) had lower mean absolute residuals than dairy
systems (12.2 kg protein/ha/year), but these differences were not
significant (P = 0.917). Independent of farm type, mean absolute
residuals varied threefold, ranging from 5.2 kg protein/ha/year
for D3 to 16 kg protein/ha/year for D7, but differences were also
not significant (P = 1).

Economic efficiency of production varied greatly and differed
significantly among farms independent of farm type (P < 0.001),
with means ranging from 29.4%/year in B1, the least efficient
system, to 66.0%/year in D6, the most efficient system
(Figures 5, 6). Differences were also significant among farm
types (P = 0.002): dairy systems were the most efficient
systems overall (56.8%), followed by mixed systems (51.5%/year)
and beef systems (46.6%/year). Trends in economic efficiency
also differed significantly among farm types (P < 0.012).
A slight improvement was observed in beef systems (0.7%/year),
compared to decreases in mixed systems (−0.6%/year) and dairy
systems (−0.4%/year) over the study period. Likewise, significant
differences were observed among farms, with trends (P < 0.001)
ranging from −2.4%/year in D7 to 1.4%/year in D10 for dairy
systems and from −2.3%/year in B3 to 6.6%/year in B7 for beef
systems. When focusing on the variability in economic efficiency,
differences among farm types were not significant (P = 0.901).
Nonetheless, mean absolute residuals were nearly twice as high
in beef systems (6.1%/year) as in dairy systems (3.3%/year) and
were limited to 2.0%/year in mixed systems. Independent of farm
type, between-farm differences were not significant (P= 1). Mean
absolute residuals ranged from 0.9%/year in M3 to 14.7%/year
in B6.

Relationships among Variables of Cattle-Farm
Vulnerability
A random regression coefficient was fitted to each vulnerability
variable, with an average effect of farm type (dairy, beef, mixed),
a per-farm average random effect, an overall time effect of
farm type, and a per-farm random effect of time. A variety of
hypotheses were tested within the model. For farm productivity,
farm type had a significant effect on the intercept (P = 0.002)
but not on the slope. Year had a significant effect overall
(P = 0.04). For economic efficiency, neither farm type nor year
was significant. Therefore, the final models were as follows:

Prodi,j,t = α+ βt+αj + ai + bit + ei,j,t

EconEffi,j,t = α+ ai + bit + ei,j,t
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FIGURE 5 | Dynamics of the two vulnerability variables, (left) farm productivity and (right) economic efficiency of production for (B)eef, (D)airy, and (M)ixed cattle
farms during the survey period.

According to the Kaiser criterion, projecting the set of
vulnerability variables into the PCA required analyzing three
components, which explained 66% of the observed variance
(Figure 7). The PCA showed that no cattle farm displayed
low vulnerability to climatic and economic variability, i.e., a
high level, a stable or increasing trend, and low variability for
both farm productivity and economic efficiency. On the first
component of the PCA (explaining 26% of the variance), the
measure of farm productivity was positively correlated with the
measure of economic efficiency (Figure 7). Among farms, this
indicated that the most productive farms (i.e., producing the
most protein per hectare using the least input of external feed)
could also be the most economically efficient (i.e., producing
the most per unit of input invested). It was also observed
that the higher the level of farm productivity, the higher
its slope over the study period. All the variables mentioned
above were negatively correlated with the slope of economic
efficiency. Farms with the highest levels of farm productivity
and economic efficiency tended to have decreasing trends of
economic efficiency. The farms that experienced improvement in
farm productivity (positive slopes) tended to decline in economic
efficiency. The second and third components (explaining 40%
of the variance) were driven mostly by residuals of the
linear regression of economic efficiency and farm productivity,
respectively. Hence, the second PCA axis represented a gradient
of interannual variability in economic efficiency, while the third
axis described a gradient of interannual variability in farm
productivity.

The distribution of individual data points (combinations of
farm × year) in the PCA revealed contrasting patterns among

farms. For instance, farms B2, B1, and B6 had low levels of
farm productivity and economic efficiency, decreasing trends
in farm productivity, improvement in economic efficiency, and
high interannual variability. These farms were considered the
most vulnerable in the sample. Conversely, farms D8, D7, and
M2 were considered the least vulnerable in the sample. Analysis
of all six vulnerability variables for individual farms indicated
that, contrary to our hypothesis, no farm displayed a high level,
a stable or increasing trend, and low residuals for both farm
productivity and economic efficiency. For this reason, the least
vulnerable farms represented a compromise between level, trend
and variability of both performances.

Cattle Farm Vulnerability According to
Climatic and Economic Variability and
Farmer Management
The Q2 criterion indicated that only the first component of the
PLS could be considered. Based on graphical outputs of the
analysis, we also included the second component. Explanatory
variables were able to explain only one vulnerability variable in
the first component, the level of farm productivity, and one in the
second component, the slope of farm productivity. Vulnerability
variables based on economic efficiency of production were not
related to any explanatory variable.

In the first component of the PLS regression (Figure 8), the
level of farm productivity was positively correlated with seven
management-practice variables: percentage of cropland in the
farmland, percentage of silage in animal diets, Shannon index
of the farmland, amount of fodder and concentrate distributed
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FIGURE 6 | Distribution of the six vulnerability variables: raw measurements, slope, and residuals for both farm productivity and economic efficiency of production for
(B)eef, (D)airy, and (M)ixed cattle farms over the survey period. Boxes represent the interquartile range containing 50% of values; the line across the boxes
corresponds to the median value; whiskers are the highest and lowest values excluding outliers, i.e., cases with values up to 1.5 box lengths from the upper and
lower edge of the box.

per animal, stocking rate, and mineral nitrogen fertilization
rate. It was negatively correlated with two management-practice
variables, namely percentage of semi-natural grasslands in the
farmland and spread of calving, and two exposure variables,
namely excess water in autumn and winter. Thus, it appears that
farms relying solely on semi-natural grasslands with grouped
calving had lower farm productivity levels than diversified
systems having higher stocking and mineral fertilization rates,
higher amounts of feed distributed per animal (and consequently
less grazing), and calving distributed throughout the year.

In the second component of the PLS regression, the slope
of the linear regression of farm productivity was negatively
correlated with the percentage of grass-based ley pastures in the
farmland, the amount of irrigation water used, and the percentage
of cover crops in the farmland. Thus, the farms displaying
improvements in farm productivity over the study period had low
percentages of grass-based ley pastures and cover crops and did
not depend on irrigation water.

Analysis of the distribution of individual data points
(combinations farm × year) in the PLS identified the most
and least vulnerable farms and their position with respect to
climatic and economic conditions, initial farm configurations,
and farmers’ technical adaptations. Distribution of farms within
the factorial design of the X block of the PLS (Figure 8) was
mainly determined by farms’ initial positions. This indicates

that adaptations implemented during the survey period did not
compensate for initial differences in farm configuration and that
no farm operated a substantial technical transition.

The most vulnerable farms (B2, B1, and B6) displayed poorly
diversified farmlands compared to the least vulnerable farms (D7,
D8, and M2) (mean Shannon index in the range 0.81–1.24 vs.
1.92–2.28, respectively, Appendix 1) that had a higher percentage
of their area as cropland (31.9–42.4% vs. 3.4–18.7%). Farmland
diversity distributes biomass production periods of fields over the
year and reduces farm exposition to climatic hazards. The most
vulnerable farms also tended to harvest less fodder in the form of
silage (mean percentage in the range 13.4–53.8% vs. 76.9–80.1%,
respectively) resulting in lower amounts of fodder distribution
(1.66–2.58 t DM/LU vs. 3.22–3.95 t DM/LU, respectively). As
compared to hay-making, silage harvesting provides flexibility
against adverse weather conditions and therefore enables to adapt
to the conditions of each year.

In both groups of farms, i.e., the least and most vulnerable,
respectively, farms displayed contrasting individual patterns on
the X block of the PLS beyond similarities on Shannon index
of the farmland, percentage of cropland, amount of fodder
distributed per animal and percentage of silage in animal
diets (Figure 8). Different combinations of farm initial farm
configurations and technical adaptations led to similar levels of
vulnerability. Among the most vulnerable farms (B2, B1, and B6),
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FIGURE 7 | Principal component analysis (PCA) loading of the six vulnerability variables (raw measurement, trend, and variability of farm productivity and economic
efficiency of production along components 1–3 (explaining 66% of the variance), showing (top) relationships of the variables along these dimensions and (bottom)
individual data points denoted with farm numbers (B: beef, D: dairy, or M: mixed followed by a number corresponding to the farm) followed by numbers
corresponding to each year. Full names of variables are provided in Tables 1A,B.

B1 had the most diversified land use. B1 had 13% (mean = ±5%
among years, Appendix 1) of its area in permanent pastures vs.
67% (±12%) in grass-based ley pastures and 19% (±5%) in crops.
Stocking rate was low (1.01 LU/ha) yet mineral fertilizers were
applied by the farmer (29 kg N/ha). More than half (54%) of
animal feed was distributed, but this percentage varied (±14%)
with climatic variability. Silage represented 31% of distributed
feed ±8% according to climatic conditions of each year.
Concentrate distribution was stable and limited to 0.61 t DM/LU
but this amount was high when considering farm productivity.
Farmer B1 developed self-adaptability of his farm configuration
through farmland diversity but suffered from limited technical
efficiency as illustrated by the inconsistency between stocking
rate, mineral fertilization, concentrate distribution per animal
and farm productivity.

B2 had one of the least diversified land uses, with 83%
(±2%) of farmland in permanent pastures, and small areas
of grass-based ley pastures (12 ± 2%) and crops (5 ± 2%).
Stocking rate was among the lowest of the farm sample
(0.90 LU/ha) yet farmers applied mineral fertilizers (20 kg
N/ha). As for B1, concentrate distribution was limited, i.e.,
0.57 t DM/LU but remained high when considering farm
productivity. Reliance on grazing for animal feeding was higher,
which led to only 37% of animal feed being distributed. The
farmer adjusted this percentage (±12%) and the percentage
of harvests as silage and consequently of silage in animal

diets (±8%) according to climatic conditions of each year.
Thus, farmer B2 promoted managed adaptability of his farm
configuration but as for B1, he suffered from limited technical
efficiency due to inconsistency between stocking rate, mineral
fertilization, concentrate distribution per animal and farm
productivity.

B6 lay between B1 and B2, with 36% (±6%) of its
area in permanent pastures vs. 61% (±11%) in grass-
based ley pastures and 3% (±5%) in crops. Stocking rate
was high and variable across years (1.84 LU/ha ±0.38).
Grazing was central in farm organization, with only 35%
(±9%) of animal feed being distributed. This farmer
adapted the rate of mineral nitrogen fertilization (40 kg
N/ha ±25) and the amount of concentrate distributed
(0.86 t DM/LU ±23%) over the years. As for B1,
farmer B6 promoted managed adaptability of his farm
configuration but suffered from efficiency issues similar to
B1 and B2.

Similarly, the farms considered the least vulnerable (D8,
D7, and M2) displayed differences in farm configurations and
adaptations implemented by farmers (Figure 8). Farm D8
had 30% of its area dedicated to silage maize production
against 13% as natural pastures and 43% as grass-based ley
pastures. Stocking rate was high (2.05 LU/ha) and stable
across years. To sustain this stocking rate, and try to secure
fodder production, the farmer applied 87 kg N/ha/year. In this
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FIGURE 8 | Partial least squares (PLS) regression of the six vulnerability variables (orange) according to exposure, farm configuration and farmers’ technical
adaptation variables (blue) along components 1 and 2, showing (top) relationships of the variables along these dimensions and (bottom) individual data points
(bottom) denoted with farm numbers (B: beef, D: dairy, or M: mixed followed by a number corresponding to the farm) followed by numbers corresponding to each
year. Full names of variables are provided in Tables 1A,B.

farm, to uncertainty and risks related to grazing, 83% (±4%)
of animal feed was distributed, 80% in the form of silage.
Concentrate supplementation (1.24 t DM/LU, i.e., 222 g/kg
of milk) was efficient compared to local standards (around
250 g/kg of milk, pers. comm.). Farmer D8 did not implement
adaptations over the years, keeping all (surveyed) practices
constant despite climatic and economic variability. He rather

counted on the technical efficiency and robustness of his farm
configuration.

In contrast, farm D7 had 20% of its area dedicated to
silage maize production, 29% to permanent pastures and 28%
to grass-based ley pastures. Stocking rate was intermediate
(1.33 LU/ha). Yet, nitrogen fertilization was high (66 kg N/ha)
and stable. The percentage of distributed feed was limited to
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70% (±3%) of animal intake including 78.4% of silage. Again,
concentrate supplementation (1.34 t DM/LU, i.e., 225 g/kg of
milk) was efficient compared to local standards. The main
difference compared to D8 was that this farmer reacted to
contextual variability and adjusted the stocking rate (±18%) and
the duration of animal off-farm grazing (±224%) according to
annual conditions. Farmer D7 developed these two options to
promote managed adaptability of his farm configuration.

Farm M2 differed from D7 and D8 in that the farmer
relied on diversity of his farm configuration to self-regulate
the impacts of climatic and economic variability. Farm M2
was a mixed farm with both beef and dairy cattle. This
farm had only 12% of its area dedicated to silage maize
production but included a wide range of crops (32% of its
area), cover crops (1%) and pasture types (21% of permanent
pastures, 47% of grass-based ley pastures). A higher rate of
concentrate supplementation (1.16 t DM/LU, i.e., 313 g/kg of
milk) was another source of security for farm productivity against
variability. Stocking rate was high (1.61 LU/ha) and stable across
years and fertilization was limited (20 kg N/ha). Like farmer
D8, farmer M2 did not implement adaptations over the years
but counted on robustness and self-adaptability of his farm
configuration.

DISCUSSION

Implications for Reducing Vulnerability of
Cattle Farms to Climatic and Economic
Variability
Interannual variability in climatic conditions and economic
conditions had no significant effect on vulnerability variables.
This was because differences in initial farm configurations and
farmers’ technical adaptations were more discriminant than
interannual variability in climatic conditions and input or output
prices. Moreover, distribution of farms within the factorial design
of the PLS was mainly determined by farms’ initial positions
rather than by transitions that occurred during the survey
period. This reveals initial differences in farm vulnerability
were partly decreased through adaptive capacity, but the
technical adaptations implemented did not fully compensate for
initial differences. Among the attributes of adaptive capacity
identified by Marshall et al. (2014), perception of risk and
uncertainty, as well as skills for planning farm configurations,
were accordingly more important than the ability to cope with
change.

Another reason for this result relates to the farm sample.
Farm adaptations implemented during the survey period were
rather limited. Most farms remained quite similar to their
initial configuration. Thus it was not ideal to illustrate the
potential of the proposed method to characterize adaptation
pathways that reduce most cattle-farm vulnerability to climatic
and economic variability. We are currently applying this
method on farms operating a conversion to organic farming
that implies implementation of more significant adaptations
than that of farms surveys for the purpose of this article.

Moreover, our sample of farms combined beef, dairy and mixed
farms. Patterns of combinations between farmer practices and
economic performance might differ among farm types. For
this reason, even when changing economic indicators (e.g.,
to net cash flow), economic performance was not related to
specific practices. This could be the reason why we did not
explain economic performance whereas we do explain it on
other analysis focused on dairy farms that we are currently
conducting.

Despite differences in exposure to climatic and economic
variability among sample farms, it emerged that functional
diversity of the farmland tended to reduce farm vulnerability
to climatic and economic variability, as already observed
by Martin and Magne (2015). Farmland diversity was
consistent with high percentage of cropland on the farm
(to grow maize, immature cereals, grain legumes), high
percentage of harvests as silage (to harvest maize and
immature cereals) and accordingly high amounts of fodder
distributed per animal. Technical efficiency which can
be assessed through consistency between stocking rate,
mineral fertilization, concentrate distribution per animal
and farm productivity was another key determinant of farm
vulnerability.

No specific combination integrating all studied farmers’
practices emerged that reduces cattle-farm vulnerability to
climatic and economic variability. Instead, we observed that
different combinations led to similar levels of vulnerability. In
these systems, the practices implemented (stocking rate, input
use, etc.) were consistent with the objective of developing the
properties targeted (efficiency, robustness, adaptability, etc.), as
discussed by Bloksma and Struik (2007). For instance, farm D8
was designed for system efficiency (Dumont et al., 2013) and
robustness (Ten Napel et al., 2011) through consistent matching
of animal diets to animal feeding requirements, of stocking rate to
land-use capacity and management intensity, etc. Farm M2 relied
on farmland diversity to promote redundancy in animal feed
production and adaptability to impacts of climatic and economic
variability, as observed by Martin and Magne (2015).

These results confirm earlier findings (Reidsma et al.,
2010; Nicholas and Durham, 2012) showing that farm-
level adaptation is required to adapt to variability in the
production context (climate, prices, etc.). Depending on
farm vulnerability, incremental adaptations, system adaptations
(Rickards and Howden, 2012), or transformational adaptations
might be needed. Incremental adaptations are extension of
actions and behaviors already observed to achieve unchanged
objectives despite changing conditions. System adaptation
engages in modifying farm subsystems (e.g., herd or land
use) and revising actions, behaviors and objectives from
known examples. Transformational adaptation involves drastic
changes at the whole-farm level and in actions and behaviors
with in-depth revision of objectives. Incremental adaptations
might be sufficient to ensure sustainability of the least
vulnerable farms, which have robustness or resilience against
climatic and economic variability. In contrast, in the most
vulnerable farms, system and transformational adaptation
appear to be the only way to improve conditions and
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ensure their sustainability. It has been shown that capacity to
transform a farm varies greatly among farmers (Marshall et al.,
2014).

Merits and Limits of the Method
Longitudinal analysis is a complex and multistage process that
can be performed using several approaches. Most scientific
work on vulnerability and related concepts including resilience
(Darnhofer et al., 2010b) and adaptation (Füssel, 2007) has
produced theoretical frameworks and qualitative methods.
The integrated and operational method we developed enables
assessing farm vulnerability to multiple contextual changes
(i.e., both climatic and economic) and explains how this
vulnerability can be reduced according to farm configurations
and farmers’ technical adaptations over time. Relying on random
regressions, it considers farm effects as random effects, which
ensures that inferences will be valid for all existing farms.
Our methods can be complemented by additional statistical
analysis including (i) heatmaps (graphical representation of
data where the individual values contained in a matrix are
represented as colors) to shed light on farms displaying
similar patterns of explanatory and vulnerability variables,
and (ii) explanatory variable selection in high dimensional
linear mixed model (Rohart, 2016). The latter enables to
deepen the relations between a given vulnerability variable
(while PLS regression analyzes all the vulnerability variables
together) and most robust explanatory variables to predict this
variable.

In the area of field-based vulnerability assessments applied
to agricultural systems, the integrated method we developed is
original in several aspects:

(i) Farm vulnerability is often reduced to productivity or
income issues (Reidsma et al., 2010; Dong et al., 2015) and
based on raw measurements, while our method enables several
vulnerability variables to be addressed. Thus, it is possible to
integrate key issues into sustainable agriculture, such as technical
and economic efficiency. While other approaches are limited to
trends in these variables (Dong et al., 2015), our method breaks
them down into mean level, trend, and variability, which enriches
the vulnerability assessment. This makes it possible to analyze
trade-offs among vulnerability variables and to identify sources
of improvements at individual and farm-sample levels. To verify
the consistency of the analysis and to exemplify the results, it is
often necessary to come back to the individual farm level. This
was illustrated by the study presented in this article where the size
of the farm sample is limited.

(ii) Unlike previously published quantitative methodologies
for assessing farm vulnerability (Reidsma et al., 2009; Dong et al.,
2015), our method allows flexibility in the type of vulnerability
variables considered (raw measurements, fitted values, slope
and residuals of a linear regression; Figure 2). For instance,
we analyzed our case study using either raw measurements or
fitted values. Results of both were quite similar; therefore, we
presented only results of raw measurements, but those of fitted
values would be more relevant when de-noised data is needed.
If fitted values are preferred, the intercept of the corresponding
linear regression can replace the mean level. One could also

consider a more complex function (e.g., non-linear) instead of
a linear mixed model as a straightforward extension. In the
study presented in this article, the low number of data per
farm over time limited the choice to a linear trend, in addition
to the ease of interpretation of this parameter. Moreover, the
selected vulnerability and explanatory variables are not a rigid
list. Instead, it is possible to fully adapt the list depending on
the local context to include vulnerability variables representing,
e.g., farmer workload and explanatory variables representing, e.g.,
farmer knowledge and experience.

Thus, our method does not force users to use
a given set of vulnerability variables, remaining
adaptable to the specific characteristics of each
project.

(iii) Whereas many studies are limited to a single contextual
change, mainly climate (Reidsma et al., 2009; Dong et al., 2015),
and therefore reduce the complexity of farmers’ decision-making
contexts, our method enables addressing several variables that
reflect exposure to contextual change, i.e., climatic and economic
variability as well as other relevant variables. Moreover, by
considering farm effects as individual effects, linear models at the
core of our method integrate farm-specific contextual changes
not explicitly included in the analysis. Indeed, individual effects
result from a set of issues (e.g., family issues, pest outbreaks) hard
to characterize with simple indicators or costly to measure.

(iv) Many studies focus on strategic changes and consequently
use multi-year time steps [5 years in Rueff et al. (2012), 14 years in
García-Martínez et al. (2009)] or provide limited descriptions of
farmers’ management practices over time (Reidsma et al., 2010).
Our method can consider dynamic changes in these practices
and their interactions (i.e., co-occurrence of changes in farmers’
practices) among years. It is even possible to integrate delayed
effects of technical adaptations by integrating land use and
herd management variables of the previous year as explanatory
variables for a given year. For instance, we analyzed our case
study with farmers’ practices of each year and of each previous
year used as explanatory variables. Results were not changed
because technical adaptations implemented by farmers were
limited. However, if analyzing farm data over longer time frames
(e.g., 10 years), it is possible to characterize delayed effects
of past technical adaptations (e.g., 5 years before). Thus, our
method considers both farmers’ planning (designing consistent
farm layouts) and coping abilities (finding optimal technical
adaptations).

(v) Whereas vulnerability assessment methods are not always
oriented toward practice (Reidsma et al., 2010; Dong et al.,
2015), our method is intended to support agricultural extension
agents and farmers in the adaptation process. It provides relevant
information about farm vulnerability to climatic and economic
variability and about the most promising adaptation pathways.
It is currently used in other research and development projects,
which enabled us to confirm its ability to understand the
drivers of vulnerability within samples of similar farms. For
instance, from a France-wide database of organic dairy farms, the
method revealed that concentrate feeding was one of the most
discriminant practices in a subsample of farms that had more
than 90% of their area in grasslands.
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CONCLUSION

Our method offers insight to unravel the complex issue of
cattle-farm vulnerability to climatic and economic variability.
It showed that even in a small region such as Aveyron,
no single combination of farmers’ practices decreases cattle-
farm vulnerability to climatic and economic variability. It
also revealed that system and transformational adaptations
of the practices implemented (stocking rate, input use, etc.)
appears the only way to ensure the sustainability of the most
vulnerable farms. Since it can be easily applied to other
farming contexts, our method has the potential to support
farmers in the development of sector-specific and locally relevant
adaptations.
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