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Huanglongbing (HLB) is one of the most destructive diseases of citrus, which has posed
a serious threat to the global citrus production. This research was aimed to explore the
use of chlorophyll fluorescence imaging combined with feature selection to characterize
and detect the HLB disease. Chlorophyll fluorescence images of citrus leaf samples
were measured by an in-house chlorophyll fluorescence imaging system. The commonly
used chlorophyll fluorescence parameters provided the first screening of HLB disease.
To further explore the photosynthetic fingerprint of HLB infected leaves, three feature
selection methods combined with the supervised classifiers were employed to identify
the unique fluorescence signature of HLB and perform the three-class classification
(i.e., healthy, HLB infected, and nutrient deficient leaves). Unlike the commonly used
fluorescence parameters, this novel data-driven approach by using the combination
of the mean fluorescence parameters and image features gave the best classification
performance with the accuracy of 97%, and presented a better interpretation for the
spatial heterogeneity of photochemical and non-photochemical components in HLB
infected citrus leaves. These results imply the potential of the proposed approach for the
citrus HLB disease diagnosis, and also provide a valuable insight for the photosynthetic
response to the HLB disease.

Keywords: citrus, Huanglongbing, chlorophyll fluorescence imaging, photosynthesis, feature selection,
classification

INTRODUCTION

Huanglongbing (HLB), also known as greening disease, is one of the most destructive diseases
to citrus industry. It is caused by a non-cultured phloem-restricted bacterium Candidatus
Liberibacter with three different species, Liberibacter africanus (Laf), Liberibacter asiaticus (Las),
and Liberibacter americanus (Lam), and is transmitted by the Asian citrus psyllid Diaphorina
citri (Bové, 2006). HLB has threatened citrus production worldwide, including Asia, Africa,
the United States, and Brazil. The infected trees are asymptomatic at early stages and become
symptomatic anywhere from months to years varied with the cultivars. It could serve as a source of
inoculums for pysllids with 60 days from the initial infection until it is infective (Lee et al., 2015),
resulting in a rapid spread of infection in a glove of citrus trees. The leaf yellowing with blotchy
mottle is considered as the most typical diagnostic symptom of HLB disease, especially on sweet
oranges. The severely infected trees have smaller leaves with mottled patterns that are often similar
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to some nutrient deficient symptoms. In addition, the production
of the HLB infected trees would dramatically decline with
small and lopsided fruits, leading to the enormous economic
loss.

So far, no effective control and cure measures are available
for the HLB disease. There is an urgent need to develop an
efficient method for the rapid and early detection of HLB disease
in both field and laboratory conditions, and thereby in need
of removal of the infected trees to prevent the further spread.
The current commonly used HLB diagnosis involves experience-
based inspection in the orchard and laboratory diagnostic tests.
The former is usually performed by professional experts to
recognize the typical symptoms of the disease in the field survey.
Reported studies have shown that the accuracy of identifying
an HLB infected tree by visual inspection is lower than 59%
(Pourreza et al., 2015). Polymerase chain reaction (PCR) method
that amplifies a DNA target sequence of the pathogen is usually
employed as a standard laboratory-based diagnostic method.
Although PCR can achieve a relative high accuracy for the
HLB detection, it requires a time-consuming and labor-intensive
sample preparation, and is not suitable for the continuous
onsite detection and early disease warning. Therefore, a fast and
non-destructive method is needed for growers to monitor their
groves and control the spread of the disease.

Over the years, reflectance spectroscopy and imaging methods
based on the selected or broad visible and near-infrared
(VIS-NIR) electromagnetic wavelengths were investigated to
detect plant diseases on the leaf and/or canopy levels (Inoue
et al., 2012; Gnyp et al., 2014; Kusnierek and Korsaeth, 2015), and
several studies have been reported on detection of citrus diseases.
Qin et al. (2011) used two-band ratio images selected from the
hyperspectral images to detect the canker disease of citrus fruit
with the overall classification accuracy of 95.7%. Mishra et al.
(2012) employed a VIS-NIR spectroscopy technique combined
with three different classifiers for identifying HLB infected citrus
trees. Although a reasonable classification accuracy was achieved
by multiple spectral measurements of the tree canopy, the
variation of sunlight and other environmental factors under
real field conditions can add additional noises and reduce the
detection accuracy. Later, they developed a vision sensor based
on the polarization planar rotation of light by the starch at
591 nm, which improved the HLB detection accuracy in both
zinc-deficient and non-zinc-deficient classes (Pourreza et al.,
2014). However, the applicability of this method largely depends
on the starch accumulation that varies in citrus cultivars and
growing conditions (i.e., different orchards and seasonal factors).
Sankaran et al. (2013) demonstrated the applicability of VIS-NIR
and thermal imaging for detection of HLB disease in citrus trees,
and they obtained an average overall accuracy of 87% for trees
with symptomatic leaves. Li X. et al. (2012) applied multispectral
and hyperspectral airborne imaging to detect HLB infected
trees in citrus groves. However, the classification accuracies
are relative low ranging from 28.7 to 90.2% by using different
image classification methods due to the large positioning error
of the ground truth. Garcia-Ruiz et al. (2013) compared two
aerial imaging platforms for identifying HLB infected citrus trees
with the classification accuracies in the range of 67–85% from

unmanned aerial vehicle-based data, and 61–74% with aircraft-
based data. In general, these results were not better than those
from the ground-based remote sensing methods.

Fluorescence spectroscopy is also considered as a promising
method for the rapid and early detection of biotic and abiotic
stress response in plants. Fluorescence emissions from molecules
of certain compounds such as plant pigments in leaves can
be captured after the natural and artificial ultraviolet (UV)
light excitation on a small sampling point (Pereira et al.,
2011; Harbinson, 2013). Sankaran and Ehsani (2013) used a
commercial handheld fluorescence sensor to collect fluorescence
signal from healthy and HLB infected leaves of different citrus
cultivars, and 97% classification accuracy in the discrimination
of healthy and symptomatic HLB infected samples was achieved
based on the bagged decision tree (BDT) classifier. However, the
classification accuracy was reduced to about 81% when using the
validation dataset from Hamlin and Valencia samples, and the
overall accuracy of differentiating healthy from asymptomatic
HLB infected samples was also very low with the best result
of 48.2% when using the support vector machine. Due to the
limitation of the sampling area, the spatial heterogeneity in a
leaf caused by plant diseases or other physiological disorders
may not be accurately described. Researchers proposed that
the fluorescence imaging technique could be more useful in
detecting the plant physiological response since it can obtain
the fluorescence signal as well as the within-plant variation
(Pinto et al., 2016; Song et al., 2016). Different fluorescence
imaging techniques with different excitation modes have been
developed. Steady-state UV light-induced fluorescence imaging
has been used to estimate anthocyanin in strawberries and
visualize systemic viral infections in Nicotiana benthamiana
plants by monitoring the signals of the chlorophyll fluorescence
and blue-green fluorescence, respectively (Pineda et al., 2008a;
Yoshioka et al., 2013). Fluorescence imaging spectroscopy
with 530 nm excitation that can obtain a fluorescence image
at 690 nm, was also employed to discriminate symptomatic
HLB infected leaves from healthy ones sampling from two
different orchards (Wetterich et al., 2013). Results showed a
good accuracy (90%) for Brazil samples but low (61%) for
United States samples. Later, they applied another two excitation
sources (405 and 470 nm) to detect citrus HLB disease from
nutrient deficient leaves, as well as healthy ones (Wetterich
et al., 2016, 2017). The combination of fluorescence bands
from two excitations improved the classification accuracy in the
range of 92–95% when discriminating HLB from zinc-deficiency
by using different machine learning methods. However, more
detailed knowledge about energy partition in photosystem II
(PSII) should be understood in HLB infected leaves. Kinetic
chlorophyll fluorescence imaging provides an efficient way to
trace energy partitioning in the photosystem II (PSII) and
monitor the electron transport pattern in photosynthesis. It plays
an important role in understanding the fundamental mechanism
of photosynthesis, pathology, and phenotypic plasticity to genetic
variations and plant environmental changes (Murchie and
Lawson, 2013; Choi et al., 2016; Sui et al., 2017). Kinetic
chlorophyll fluorescence imaging has been widely used to
evaluate freeze-thaw and drought tolerance in Arabidopsis (Ehlert
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and Hincha, 2008; Bresson et al., 2015), salt stress response in
wheat (Mehta et al., 2010), chronic ozone damage to soybean
leaves (Chen et al., 2009), and plant virus infection (Pineda
et al., 2011; Lei et al., 2017). However, few studies have used
kinetic chlorophyll fluorescence imaging to study the HLB
disease effects on plant photosynthetic functions and complex
pathogenesis. Furthermore, the spatial heterogeneity during the
disease development implies additional challenges for the rapid
diagnosis of HLB disease.

Therefore, this research was aimed to characterize the
photosynthetic function of the HLB infected leaves by measuring
the fluorescence signals using kinetic chlorophyll fluorescence
imaging, and extract the photosynthetic fingerprints that can
uniquely identify the HLB disease by performing the advanced
machine learning and statistical analysis. The findings in this
research provide an important insight to understand the citrus
HLB disease infection related to changes in plant photosynthetic
activities, and demonstrate that kinetic chlorophyll fluorescence
imaging could offer a rapid and non-invasive means for detecting
HLB in citrus trees.

MATERIALS AND METHODS

Leaf Sample Collection
Citrus leaf sampling was carried out at a commercial orchard
in Nanping, Fujian Province, China in March 2016. The
branches were detached from the citrus trees from three
categories including healthy, HLB infected (symptomatic and
asymptomatic), and nutrient deficient (zinc and magnesium
deficient) samples marked by the HLB experts, and immediately
wrapped with wet cottons and placed inside a cooler to avoid
desiccation. Leaves were then detached from the branches
in the laboratory (Supplementary Figure S1), and chlorophyll
fluorescence image acquisition was performed immediately after
detachment.

Kinetic Chlorophyll Fluorescence
Imaging
Chlorophyll fluorescence images of leaf samples were measured
by an in-house chlorophyll fluorescence imaging system
(FluorCam FC800, Photon Systems Instruments, Brno, Czechia)
(Supplementary Figure S2) after dark adaptation. A CCD camera
with a prime lens (SV-H1.4/6, VS Technology, Tokyo, Japan) was
used to capture chlorophyll fluorescence transients in a batch
of images with the spatial resolution of 696 × 520. Four light-
emitting diodes (LEDs) panels with the incident angle of 45◦
were installed as the light source, which include two red-orange
LEDs (620 nm) panels (<0.1 µmol·m−2

·s−1) for flashes and
actinic light 1 (0–250 µmol·m−2

·s−1), and two cool white LEDs
(>8000 K) panels (0–1600 µmol·m−2

·s−1) for actinic light 2 and
saturating flashes (0–3000 µmol·m−2

·s−1). A leaf sample holder
with a manually adjustable vertical stage was used for positioning
samples to an imaging distance of 20 cm from the lens.

Before the experiment, a preliminary study was performed
to determine the optimal protocol for the kinetic chlorophyll
fluorescence image acquisition of citrus leaves. The dark-adapted

time was determined by checking the value of the maximum PSII
quantum yield (Fv/Fm) of citrus leaves at different dark-adapted
time as shown in Supplementary Figure S3. It was observed
that Fv/Fm was stable with the value of 0.80 after 20 min dark
adaptation, which was considered as the optimal time. Although
this 20 min period may be a problem for practical applications, it
is appropriate for achieving this research goal. In addition, the
intensity of the saturating pulse was described in percentage in
image acquisition software. 50% was considered as the optimal
intensity of the saturating pulse when the value of Fv/Fm reached
0.81 (Supplementary Figure S4), which corresponded with the
absolute intensity value of 800 µmol·m−2

·s−1 when measured
at the position of 20 cm distance from the lens using a quantum
meter (Model MQ-200, Apogee Instruments, Inc. United States).
The detailed chlorophyll fluorescence quenching protocol is
described in Figure 1. The minimum fluorescence in dark-
adapted state (Fo) was measured after 20 min dark adaptation,
and followed by a strong flash of light of 800 µmol·m−2

·s−1

at 5.56 s that transiently reduces the plastoquinone pool
and the primary quinone acceptor QA so that the maximum
fluorescence in dark-adapted state (Fm) was recorded. The
leaf sample was then exposed to an actinic light with the
intensity of 100 µmol·m−2

·s−1 for 70 s. Saturating flashes
(800 µmol·m−2

·s−1) were applied to measure the maximum
fluorescence during light adaptation (Fm_Ln) at 32.24, 42.24,
52.24, and 72.24 s, respectively, and the maximum fluorescence
at the light-adapted steady state (Fm_Lss) was obtained during
the saturating flash (t = 92.24 s) at the end of the actinic
light period. The instantaneous maximum fluorescence signals
during dark relaxation (Fm_Dn) with the saturating flashes
at 122.24, 152.24, and 182.24 s were also measured. Based on
the measured fluorescence signals, the variable fluorescence
in dark-adapted state (Fv = Fm − Fo), instantaneous
non-photochemical quenching during light adaptation
(NPQ_Ln = (Fm − Fm_Ln)/Fm_Ln), steady-state non-
photochemical quenching (NPQ_Lss= (Fm− Fm_Lss)/Fm_Lss),
and instantaneous non-photochemical quenching during dark
relaxation (NPQ_Dn = (Fm − Fm_Dn)/Fm_Dn) can be also
obtained.

PCR Analysis
Polymerase chain reaction analysis was conducted to confirm
the HLB status of leave samples at Plant Pathology Laboratory
of Zhejiang University. Two sets of primers designed from
conserved regions of 16S ribosomal DNA were synthesized for
HLB detection at TSINGKE Biological Technology, China. DNA
was extracted from the healthy, nutrient deficient, and HLB
infected leaf samples using CTAB (Cetyltrimethylammonium
Bromide) methods with the following protocol, respectively:
200 mg midrib tissue of each leaf was transferred to a 2 mL
centrifuge tube and ground to the fine powder in liquid nitrogen
using an automatic grinding miller (Tissuelyser-64, Shanghai
Jingxin Industrial Development Co., Ltd.). 800 µL CTAB was
then added into the tube, and heated at 65◦C in water bath
for 30 min with intermittent agitation. 800 µL mixture (phenol:
chloroform: isopropanol = 25: 24: 1) was added and the tube
was centrifuged at 12,000 rmp for 10 min at room temperature.
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FIGURE 1 | Schematic description of the chlorophyll fluorescence quenching protocol in this study. Dark boxes indicate the dark-adapted periods during the
measurement. The white box is related to the irradiance of actinic light (100 µmol·m−2

·s−1). Solid black arrows represent the moments of irradiance of saturating
flashes (800 µmol·m−2

·s−1), and the hollow arrow indicates the state of Fo measurement.

500 µl supernatant was then transferred into a new 2 mL tube,
and 1000 µL 95% alcohol and 150 µL NaAC were added.
The homogenate was placed on the ice for 12 min and then
centrifuged at 12,000 rmp for 2 min. DNA was re-precipitated
with 400 µL of 75% alcohol at 12,000 rmp for 2 min. 100 µL
ddH2O was added to the precipitation and DNA was stored at
−20◦C at last. PCR amplification was conducted in a 20 µL
mixtures reaction using 7.5 µL ddH2O, 1 µL Primer-F, 1 µL
Primer-R, 10 µL green taq mix (Vazyme) and 0.5 µL DNA
template. The detailed PCR amplification protocol can be found
in the literature (Gouda et al., 2006).

Data Analysis
A total of 26 images for each leaf sample related to the
fluorescence quenching process were obtained from kinetic
chlorophyll fluorescence imaging, which provide detailed
information of dynamics of PSII activities about plant status.
Commonly used fluorescence parameters such as Fv/Fo,
Fv/Fm, and NPQ_Lss can be easily calculated by averaging the
intensity of the region of interest (ROI) for the corresponding
fluorescence image. They are considered as the important
parameters in the analysis of photosynthesis associated with
plant physiological changes, and their capabilities of identifying
the HLB infected leaves from the healthy or nutrient deficient
leaves were investigated by advanced machine learning and
statistical analysis. Feature selection methods were performed on
all the fluorescence parameters to extract the unique fluorescence
features that could develop a photosynthetic fingerprint of
the HLB disease. Three feature selection methods including
random frog (RF), sequential forward selection (SFS), and
Monte Carlo uninformative variable elimination (MC-UVE)
were used. RF algorithm is based on the reversible jump Markov
Chain, and its output provides the selection probability of each
feature that can be used as a measure of feature importance.
The detailed information of RF can be found in the literature
(Li H. et al., 2012). The SFS algorithm is a bottom-up process
that starts with an empty feature subset and repeatedly adds
the most significant feature selected by an objective function.
The feature cannot be discarded at a later stage once it is
retained. The fisher criterion is usually used as an objective
function (Geng, 2014). MC-UVE develops multiple models
with randomly selected calibration sample set produced by
the MC method, and the variable is then evaluated with the
stability of the corresponding coefficient of the model (Han et al.,
2008).

The development of the HLB disease and the spread of the
symptoms vary spatially in the leaf, which result in a large
variation of fluorescence intensities in the image. Therefore,
image features were also investigated for the further classification.
Principal component analysis (PCA) was applied to reduce the
dimension of the chlorophyll fluorescence image cubes and
obtain an uncorrelated orthogonal basis set from the original
image set. Scale-invariant feature transform (SIFT) was then used
to detect the local features in principal component images. The
feature descriptors were first computed as orientation histograms
and then transformed to a 128 dimensional SIFT feature vector,
which is invariant to the image scale and rotation and robust to
local geometric distortions.

Both the mean fluorescence parameter-based and image-
based classification models were developed for detecting the HLB
disease, and the inputs of the models were the features extracted
from the mean fluorescence parameters and the principal
component images, respectively. Two classifiers including partial
least squares discriminant analysis (PLS-DA) and support vector
machine (SVM) were employed to discriminate the HLB infected
leaves from the healthy and the nutrient deficient ones. The
PLS-DA algorithm is an extension of the PLS model, where the
dependent variable is a vector that represents the class label
values for each class (Aliakbarzadeh et al., 2016). The SVM
classifier is developed based on the statistical learning theory
to find a hyperplane that gives the largest distance between the
margins of the training data set, and it can be achieved by
solving a convex quadratic programming problem using a kernel
function (Chapelle et al., 2002; Cen et al., 2016). The three-class
classification was performed by labeling “1” for healthy samples,
“2” for HLB infected samples and “3” for nutrient deficient
samples. All the samples were divided into two groups with
60 for the training set and 30 for the validation set by using
Kennard-Stone algorithm (Macho et al., 2001). The machine
learning and the statistical analysis were performed using Matlab
2011a (The Mathworks, Inc., Natick, MA, United States) and IBM
SPSS Statistics (version 20.0, IBM Corporation, Armonk, NY,
United States).

RESULTS

PCR Result
The status of leaves was verified though amplifying target DNA
template obtained from leaf midrib tissue. The sensitivity of
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PCR analysis with different primer sets is shown in Figure 2.
Two different sizes of amplicons (1160 and 161 bp) from
the 16S ribosomal DNA represented the HLB bacterium DNA
template amplified with two specific primers (OI1/OI2c and
rplLAS-F/rplLAS-R), respectively. It is indicated that lanes 1 and
4 were PCR positive, and lanes 2, 3, 5, and 6 were PCR negative.
Finally, citrus samples were divided into three classes with 30
healthy, 30 HLB infected, and 30 nutrient deficient samples.

Effect of HLB Infection on Commonly
Used Chlorophyll Fluorescence
Parameters
Figure 3 shows a statistical summary (i.e., mean, range, median,
outliers, and quartiles) of four commonly used chlorophyll
fluorescence parameters, Fo, Fv/Fo, Fv/Fm, and NPQ_Lss, in
healthy, HLB infected, and nutrient deficient leaves. There was
no statistically significant difference in Fo among the three
classes (Figure 3A); while the variation of Fo in the HLB
infected leaves was larger than those in healthy and nutrient
deficient samples. Compared with healthy leaves, Fv/Fo decreased
by 48.9 and 51.1% in HLB infected and nutrient deficient
leaves, respectively, indicating the decreased photosynthetic
rate in unhealthy leaves. However, no difference in Fv/Fo
between HLB infected and nutrient deficient classes was observed
(Figure 3B). The parameters Fv/Fm and NPQ_Lss showed
significant differences among healthy, HLB infected and nutrient
deficient leaves (Figures 3C,D). Fv/Fm of healthy samples was
higher than those of other two classes, and Fv/Fm of HLB infected
samples decreased less than those in nutrient deficient ones
(Figure 3C). The values of NPQ_Lss in HLB infected and nutrient
deficient leaves increased compared with those in healthy leaves.
This result provided the first screening of HLB disease using the
commonly used chlorophyll fluorescence parameters.

Furthermore, a set of chlorophyll fluorescence quenching
parameters (Fv/Fo_Ln, Fv/Fm_Ln, NPQ_Ln, Fv/Fo_Dn,
Fv/Fm_Dn, and NPQ_Dn) related to the stress-induced
changes in the photosynthetic process were analyzed using the
spider plots as shown in Figure 4. It includes the parameters
measured at the dark-adapted state, light adaptation, and dark
relaxation. The distance from the center of the spider plot
indicates the relative change of the fluorescence parameter with
different leaf conditions. Generally, fluorescence quenching
parameters of HLB infected and nutrient deficient leaves
exhibited a strong contrast compared with those of healthy
samples, which is consistent with the reported studies
(Pineda et al., 2008b; Spoustová et al., 2013; Mishra et al.,
2016). The instantaneous variable-to-initial fluorescence and
the maximal PSII quantum yield during light adaptation
(Fv/Fo_Ln and Fv/Fm_Ln) and dark relaxation (Fv/Fo_Dn
and Fv/Fm_Dn) dramatically decreased in HLB infected and
nutrient deficient leaves. The difference in instantaneous
maximal PSII quantum yield at multiple phases between the
HLB infected and nutrient deficient samples was also observed.
The value of instantaneous non-photochemical quenching
in HLB infected and nutrient deficient leaves during light
adaptation increased significantly, particularly, a large difference

between the HLB infected and the nutrient deficient leaves was
observed during the third (NPQ_L3) and fourth (NPQ_L4)
of the saturating flashes and the light-adapted steady-state
(NPQ_Lss). Generally, the results shown in Figures 3, 4 reveal
that commonly used fluorescence parameters have the potential
for identifying the unhealthy leaves from the healthy ones,
but it might be a challenge to differentiate the HLB infected
leaves from the nutrient deficient ones by only using these
parameters.

HLB Detection Based on Optimal
Features Extracted from Mean
Fluorescence Parameters
Commonly used chlorophyll fluorescence parameters have
demonstrated that both HLB infection and nutrient deficiency
could cause the change of fluorescence emission as presented
in Figures 3, 4. However, they may not be the best parameters
that would provide an accurate detection of HLB disease. Feature
selection methods were applied here to extract the optimal
features from all the mean fluorescence parameters that could
characterize HLB infected leaves, and their performances are
shown in Figure 5. It was observed that the classification
accuracies varied greatly with the number of selected features,
and exhibited the increasing tendency with the increased feature
number. In general, the SFS selected features clearly exceeded
those obtained from RF and MC-UVE methods when using both
SVM and PLS-DA classifiers for three-class classification; while
the performance of the RF and MC-UVE was more influenced
by the classifier. As shown in Figure 5B, SFS-SVM achieved the
best classification result of 90% with the feature subset size of 11,
denoting that these 11 features might involve the most important
fluorescence signatures related to the photosynthesis process
affected by the HLB disease and nutrient deficiency, resulting
in a better classification among healthy, HLB infected, and
nutrient deficient leaves. It was also noted that the classification
performance with selected features by SFS was better than that
with the full dataset.

The best classification results using three feature selection
methods with two classifiers based on mean fluorescence
parameters are presented in Table 1. The SVM classifier
significantly outperformed PLS-DA with the classification
accuracy of 90% when using the features from all three feature
selection methods. Among the combinations of the two classifiers
and three feature selection methods, SFS with each of the two
classifiers tended to produce the smallest feature subsets of
6 for PLS-DA and 11 for SVM with the high classification
accuracies. The result also showed that the non-photochemical
quenching related parameters measured during light adaptation
were all selected by three methods, which was consistent with the
previous analysis in Figure 4C.

Chlorophyll Fluorescence Image-Based
Classification
Chlorophyll fluorescence images related to the first three optimal
parameters selected by RF, SFS, and MC-UVE methods were
shown in Figure 6. The variations among healthy, HLB infected
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FIGURE 2 | Electrophoresis on 1% agarose gel of DNA amplified with two specific primers (OI1/OI2c and rplLAS-F/rplLAS-R).

FIGURE 3 | Box-and-whisker plots of commonly used chlorophyll fluorescence parameters including (A) Fo, (B) Fv/Fo, (C) Fv/Fm, and (D) NPQ of healthy, HLB
infected and nutrient deficient leaves. Different letters indicated significant differences (p < 0.05) by using Duncan test. Values in the figure were mean ± standard
deviation (SD).
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FIGURE 4 | Spider plots of selected fluorescence parameters including (A) Fv/Fo, (B) Fv/Fm, and (C) NPQ at different states of healthy, HLB infected and nutrient
deficient citrus leaves measured during fluorescence quenching process.

FIGURE 5 | Comparison of classification accuracies of random frog (RF), sequential forward selection (SFS), and Monte Carlo of uninformative variables elimination
method (MC-UVE) using (A) partial least squares discriminant analysis (PLS-DA) and (B) support vector machine (SVM) classifiers for the classification of healthy,
HLB infected, and nutrient deficient leaves.

and nutrient deficient leaves were clearly observed. Some
parameter images also showed the heterogeneity within the leaf
due to the HLB infection or nutrient deficiency. This is agreement

with the reported study on a localized decrease in photosynthesis
during the disease infection or other physiological disorder
processes (Kenny et al., 2011; Calatayud et al., 2013).
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TABLE 1 | Classification results based on chlorophyll fluorescence parameter analysis with the optimal features.

Feature First three Classifier Feature Healthy (%) HLB infected (%) Nutrient Overall

selection selected features number deficient (%) accuracy (%)

RF Fv/Fm_D3, NPQ_L3, Fv/Fo_D2 PLS-DA 7 80 80 50 70

SVM 23 80 90 100 90

SFS Fv/Fm_Lss, NPQ_Lss, NPQ_L2 PLS-DA 6 90 80 80 83

SVM 11 80 90 100 90

MC-UVE NPQ_L3, Fv/Fm_D3, Fv/Fo_L4 PLS-DA 13 90 80 50 73

SVM 23 80 90 100 90

RF, random frog; SFS, sequential forward selection; MC-UVE, Monte Carlo of uninformative variables elimination method; PLS-DA, partial least squares discriminant
analysis; SVM, support vector machine.

FIGURE 6 | Images of representative samples of first three features selected by RF, SFS, and Monte Carlo of uninformative variables elimination (MC-UVE).

The spatial heterogeneity of the HLB symptoms caused
by the HLB bacterium presents more challenges for the
disease identification. Hence, chlorophyll fluorescence image-
based analysis was also performed to improve the HLB detection
accuracy. The first six principal component (PC) images
representing over 95% variables were used for image feature
extraction. Features extracted by SIFT from PC images were used
as the SVM classifier input. Table 2 summarized the three-class
classification results of using SVM based on image features and
image features combined with the mean fluorescence parameters,
respectively. The overall accuracy based on image features was
77%, which was not as good as that using mean fluorescence
parameters with the classification accuracy of 90%. However, the
combination of the image features and the mean fluorescence
parameters significantly improved the classification performance

with the overall accuracy of 97%. This suggests that contrast
information among these three classes was enhanced when using
data fusion.

DISCUSSION

Various studies have reported that chlorophyll fluorescence is
a promising technique for non-invasive measurement of PSII
activities, and could achieve a rapid screening of photosynthetic
processes related to the plant status (Ehlert and Hincha, 2008;
Rolfe and Scholes, 2010; Ivanov and Bernards, 2016). Commonly
used chlorophyll fluorescence parameters, such as Fo, Fv/Fo,
Fv/Fm, and NPQ_Lss, obtained by exposing the leaf to a
combination of darkness, actinic lights and a series of saturating
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TABLE 2 | Support vector machine (SVM) classification results based on the principal component (PC) image features and the combination of image features and mean
fluorescence parameters.

Sample status PC images Combination of PC image features

features and mean fluorescence parameters

Healthy HLB infected Nutrient deficient Healthy HLB infected Nutrient deficient

Healthy 8 (80%) 2 0 10 (100%) 0 0

HLB infected 0 7 (70%) 3 0 9 (90%) 1

Nutrient deficient 0 2 8 (80%) 0 0 10 (100%)

Overall accuracy 77% 97%

flashes as shown in Figure 1, are considered as the most useful
parameters to interpret energy dissipation of chlorophyll in
the thylakoid membrane. In our study, these four fluorescence
parameters measured in healthy, HLB infected, and nutrient
deficient leaves showed the potential of differentiating the
unhealthy leaves from the healthy ones except Fo (Figure 3).
Large variations in Fo might be one of the reasons that it
is difficult to provide a straightforward explanation about the
impacts of HLB infection and nutrient deficiency on the PSII
reaction center and energy transfer. The parameter Fv/Fo is
considered as an indicator of the number and the size of
active photosynthetic reaction centers (Dan et al., 2000). The
dramatic declines of Fv/Fo in HLB infected and nutrient deficient
leaves indicate the change in the rate of electron transport from
PSII to the primary electron acceptors with the reduction of
the number and the size, which have also been reported in
different plants exposed to the disease and the environmental
stresses (Zhou et al., 2009; Martinazzo et al., 2012; Janka et al.,
2013). The decrease of Fv/Fm in HLB infected and nutrient
deficient leaves could be a result of the major damage to the
photosynthetic apparatus in response to the HLB infection and
nutrient deficiency. The value of NPQ_Lss in HLB infected
and nutrient deficient leaves might be related to the different
degrees of tissue damage, which can also be reflected from the
severity of the HLB and nutrient deficient symptoms. Reported
studies have revealed that the increase of the NPQ_Lss depends
on the stimulated electron flow as a protection mechanism
(Tatagiba et al., 2016). What’s more, it indicates the excess
excitation energy dissipated as heat in order to reduce the
photooxidative damage, which is also coupled to a gradual loss
of chloroplastic pigments in response to the HLB infection and
nutrient deficiency, eventually resulting in blotchy yellowing
symptoms in leaves. Meanwhile, the significant differences
observed in Fv/Fm and NPQ_Lss values between the HLB infected
and nutrient deficient leaves demonstrated that it was possible
to identify HLB infected leaves from the nutrient deficient ones,
although the interpretation is not straightforward for a number
of reasons.

Although previous research has reported a desired
discrimination accuracy (92–95%) with adding fluorescence at
690 nm by using fluorescence imaging spectroscopy suggesting
the significant contribution of emission from chlorophyll a
molecule for HLB detection (Wetterich et al., 2016, 2017), more
fundamental understanding about energy partition in PSII

in the HLB infected leaves should be gained. The chlorophyll
fluorescence quenching process represents the complex dynamics
of plant photosynthetic reaction during a transition from a dark-
adapted to a light-adapted state (Govindjee, 1995). Some
parameters measured at different time-courses during quenching
process could offer photosynthetic signatures related to the plant
disease (Berger et al., 2007). Further analysis of chlorophyll
fluorescence parameters obtained during fluorescence quenching
process as shown in Figure 4 provided additional feature
information related to the HLB disease, especially the consistent
decrease in instantaneous non-photochemical quenching at
several states in response to the HLB infection indicated a direct
effect of HLB disease on PSII due to the irreversible damage of
the leaf tissue.

Advanced machine learning and statistical analysis of finding
the photosynthetic fingerprints of the HLB disease detection
was shown to be superior to the commonly used fluorescence
parameters. Designing an effective criterion to select an
optimal subset of features is a challenging problem for data
classification. For the mean fluorescence parameters analysis,
SFS-SVM reached a best overall accuracy of 90% suggesting that
features selected by SFS can better describe the pattern of the
fluorescence data than the other two methods. Compared with
the commonly used fluorescence parameters, feature selection
methods provided a new insight to achieve a better interpretation
of the original data by removing the redundant information
and enhancing the most useful information related to the
HLB infected characteristics. Although image features could
provide the spatial information about the photochemical and
non-photochemical components, the performance of the three-
class classification based on image features extracted from PC
images combined with the SVM classifier, was not better than
those from mean fluorescence parameters (Tables 1, 2). This
suggests that nutrient deficiency in leaves would induce similar
image texture to HLB infected ones as shown in Figure 6. This
is probably a reason why local image features had a poorer
classification performance. The best classification accuracy of
97% using the combination of image features and mean
fluorescence parameters revealed its capability to discriminate
among healthy, HLB infected, and nutrient deficient leaves. In
general, the results obtained in this study was comparable to
those obtained using other spectroscopy and imaging techniques
(Garcia-Ruiz et al., 2013; Sankaran et al., 2013; Wetterich
et al., 2016, 2017). However, one should notice the differences

Frontiers in Plant Science | www.frontiersin.org 9 August 2017 | Volume 8 | Article 1509

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-01509 August 26, 2017 Time: 14:52 # 10

Cen et al. Chlorophyll Fluorescence for Huanglongbing Detection

of experimental conditions and samples when comparing our
classification accuracy with those from other techniques. It is
true that the conventional method depending on the commonly
used chlorophyll fluorescence parameters provided a better
plant physiological interpretation, but it is challenging to
perform a quantitative analysis of decision making for the HLB
diagnosis in various conditions. Recent studies have approved
that feature selection methods as well as data fusion have
exploited a new way to interpret and extract the hidden
information from the original data, such as image and spectral
data (Li et al., 2015; Liu and Li, 2016; Fu et al., 2017).
Better classification results by employing proper feature selection
method and classifier (Table 2) demonstrated the capability of
this data-driven strategy for the chlorophyll fluorescence image
analysis.

In this study, we presented a comprehensive investigation
on the photosynthetic characteristics of HLB infected citrus
leaves and the possibility of the HLB disease detection
using chlorophyll fluorescence imaging combined with feature
selection. The combination of mean fluorescence parameters
and images features significantly improved the classification
performance with the accuracy of 97%, which indicated a better
interpretation for the spatial heterogeneity of photochemical and
non-photochemical components in HLB infected citrus leaves.
The proposed approach cannot only achieve a better detection

accuracy of the HLB disease, but also be developed as a new
means for the plant photosynthetic analysis.
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