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Quantifying changes in interspecific plant growth and physiology under climate warming
will facilitate explanation of the shifts in community structure in subtropical forest.
We evaluated the effects of 3 years climate warming (ca. 1◦C, 2012–2015) on plant
growth and physiological parameters of six subtropical tree species by translocating
seedlings and soil from a higher to a lower elevation site. We found that an increase
in soil/air temperature had divergent effects on six co-occurring species. Warming
increased the biomass of Schima superba and Pinus massoniana, whereas it decreased
their specific leaf area and intrinsic water use efficiency compared to other species.
Warming decreased the foliar non-structural carbohydrates for all species. Our findings
demonstrated that a warmer climate would have species-specific effects on the
physiology and growth of subtropical trees, which may cause changes in the competitive
balance and composition of these forests.

Keywords: climate warming, tree growth, subtropical forest, stomatal traits, non-structural carbohydrates

INTRODUCTION

Tropical and subtropical forest ecosystems occupy large areas of the global surface and provide
important ecosystem services, such as carbon storage, global biogeochemical cycles and the
conservation of biodiversity. The impacts of climate warming (Pachauri et al., 2014), however, are
gradually representing a prominent disturbance, affecting from individuals to whole ecosystems
(Arend et al., 2011). Numerous studies of subtropical and tropical forests have reported that
climate warming is changing forest structure and tree mortality (Zhou et al., 2013, 2014). Shifts
in plant community composition, plant cover and growth (increases in plant biomass) will affect
the vegetation feedbacks to climate change.

Many temperature manipulations have been conducted to quantify growth and physiological
responses (Gimeno et al., 2012; Huang et al., 2015). However, because most studies focus on
responses of individual tree species, we have little understanding of how warming would affect
co-occurring species. Competition with neighboring plants is very common in various ecosystems
(Wang et al., 2012; Wang Y. et al., 2016), so that the competitive hierarchies of co-occurring species
may re-ranked by divergent morphological and physiological responses under warming (Hikosaka
et al., 2005).

Many warming experiments have been conducted in temperate ecosystems where plant
growth may be temperature-limited (Way and Oren, 2010). Increased biomass production
of tree seedlings under elevated temperature were observed in these warming experiments
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(Ghannoum et al., 2010; Way and Oren, 2010; Sendall et al.,
2014), although responses were often small or transient and
varied across species and study site (Lin et al., 2010). However,
the responses of tropical and subtropical tree species to climate
warming remain unexplored. Several studies suggested that
tropical tree species which have narrower temperature tolerance
may be more susceptible than temperate tree species under future
warming scenarios (Sala et al., 2000; Cunningham and Read,
2002). In addition, biomass allocation patterns may be altered
when plants are exposed to warming (Kasurinen et al., 2016;
Wang P. et al., 2016). However, there are quite few experiments
which have been carried out in tropical and subtropical areas,
and responses of plant growth in tropical and subtropical forest
ecosystems remain poorly resolved.

Plant growth may be affected directly by response of
biochemical (i.e., photosynthesis) (Smith and Dukes, 2013) and
physiological processes (i.e., stomatal conductance) (Zheng et al.,
2013), or indirectly by changes in nutrient and water availability
(Jónsdóttir et al., 2005). In connection with plant growth and
carbon assimilation, stomatal traits including the length and
density of stomata, which can determine the maximum stomatal
conductance to CO2 and H2O (Franks and Beerling, 2009), could
change to optimize their gas exchange (Zhang et al., 2010).
Changes in stomatal apertures and density are often associated
with changes in water-use efficiency (Franks et al., 2015) which
can affect plant growth and water stress (Han et al., 2013). It is
widely recognized that plants must achieve a balance between
carbon assimilation, carbon storage and growth, all of which are
directly or indirectly affected by climate warming (Smith and
Stitt, 2007). The concentration of non-structural carbohydrates
(NSC) within plant tissues, which depends on the balance
between carbon supply (i.e., photosynthesis) and carbon demand
(i.e., growth) (Michelot et al., 2012), were considered to decrease
under short-term warming (Huang et al., 2015). Therefore, it
is necessary to study the interaction among carbon assimilation
rate, plant biomass and NSC under warming.

The coniferous and broad leaved mixed forest represents one
of the most widespread secondary vegetations and developed
well in southern subtropical China. Shifts in the structure and
distribution of these forests under climate warming are likely to
have important consequences. Here, we conducted a downward
translocation (translocate soil and trees from 300to 30 m a.s.l)
experiment to examine the effects of elevated temperature on
tree growth and physiological performance of six subtropical tree
species in a mixed forest. In light of previous studies (Li et al.,
2016a,b), we tested the following hypotheses: (1) the six species
would show divergent responses of tree growth and biomass
allocation pattern, and (2) warming cause adjustments in plant
morphology and physiology to support growth.

MATERIALS AND METHODS

Study Site
We conducted this research at Dinghushan Biosphere Reserve,
an UNESCO / MAB site located in the central Guangdong
Province in southern China (112◦10′E, 23◦10′N). The local

climate is typical south subtropical monsoon, with mean annual
precipitation of 1956 mm and mean annual temperature of 21◦C.
The bedrock is sandstone and shale. Soils are classified as ultisols
with a pH 4.0–4.9 in the top 5 cm.

Translocation Experiment
We selected two field translocation sites, one control site and one
warm site (at 300 m and 30 m a.s.l, respectively). At each site, we
selected three 3 × 3 m plots in an open area and then shielded
below-ground (0.8 m deep) with concrete brick wall bonding
with ceramic tile, leaving one hole connected with PVC tube at
the bottom and the top of the wall to collect underground water
and surface runoff, respectively. In April 2012, soil and 1-year-
old seedlings were collected from a coniferous and broadleaved
mixed forest that is near the control site. Three different layers of
soils (0–20, 20–40, and 40–70 cm) were homogenized separately.
Seedlings were stored in shade containers with soil from the
collection sites. In May 2012, three different layers of soils were
transferred into the plots correspondingly. The seedlings were
transplanted into the plots in a randomized block design (n = 6
replicates per species).

The six species included in this study were specifically
selected due to their common occurrence and distribution range
(existence in almost all regions along the altitudinal gradient)
from the mixed forest. They included Schima superba Gardn.
et Champ, Syzygium rehderianum Merr. et Perry, Machilus
breviflora (Benth.) Hemsl, Pinus massoniana Lamb., Castanopsis
hystrix Hook. f. et Thomson ex A. DC, Ardisia punctata Lindl.
All species were evergreen, ensuring that their leaves are exposed
to the full seasonal changes of temperature. Coniferous and
broadleaved species (P. massoniana vs other species) were
chosen.

Each plot was installed with a meteorological station to
record air temperature (HMP155A, Vaisala, Finland). We
continuously monitored soil temperatures and soil moisture
(0–10 cm depth) using automated sensors (CT 109, CS616
and CR1000 Data Loggers, Campbell, United States). More
detailed information about the collection and establishment
of the experiment has been reported previously (Li et al.,
2016a,b).

Growth Measurements and Sample
Collection
Tree height and basal diameter were measured at the time of
planting in May 2012 and then assessed in June annually. Plant
height was measured as the distance between the soil surface
and the tip of the apical bud. The basal diameter was assessed
at the soil surface. One tree per species in each chamber was
destructively harvested in June 2014 and June 2015. The soil on
the roots was carefully removed, and any root material in the
soil was also collected. The fresh weights of all leaves, stems and
branches, and roots of the harvested trees were measured. Then
samples of leaves, stem and branches, and roots were collected
to calculate dry/fresh ratio (oven-dried at 65◦C until constant
weight / fresh weight). The biomass of each harvested tree was
calculated with fresh weights of all organs and dry/fresh ratio.
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FIGURE 1 | Dynamics of soil temperature (A), volumetric water content (B) at 10 cm depth in the control and warm sites from July 2012 to December 2015. Error
bars are standard error.

Strong correlations among dry biomass for each component
part, basal area and height existed irrespective of size in trees
harvested, which were stated in the equation:

B = a × (D2H)+ b (1)

Where B is dry biomass of each tree components including
root, stem and leaf (g m−2), a, b represent the regression
coefficients, D is plant basal diameter (cm), H is tree height
(cm), and a, b are regression coefficients (See Supplementary
Table S1). The biomass of other un-harvested tree was
calculated separately using their height and basal diameter
and the allometric relationship described by the equation
above.

In June 2015, total plant leaf area was determined by a
portable leaf area meter (LI-3100A, Li-Cor, United States). For
each harvested seedling, specific leaf area [Specific leaf area
(SLA); leaf area/leaf biomass. cm2 g−1] and leaf area ratio [leaf
area ratio (LAR); total leaf area/total plant biomass, cm2 g−1]
were calculated. As P. massoniana is a needle-leaved species
which could not be measured for leaf area, we only studied
the other five species for SLA and LAR in our experiment.
The whole plant biomass, the fraction of biomass allocated
to roots [root mass ratio (RMR); roots mass fraction], leaves
[leaf mass ratio (LMR); leaves mass fraction] and stems [shoot

mass ratio (SMR); stems mass fraction] and the roots to
shoots ratio (R/S; roots biomass/shoots biomass) were also
calculated.

Leaf C Isotope Discrimination and
Non-structural Carbohydrate (Soluble
Sugar and Starch)
Leaf samples from the destructive harvests in June 2015 were
oven dried at 70◦C and ground to powder to analyze leaf C
isotope discrimination (δ13C) and soluble carbohydrates. The leaf
C isotope discrimination (δ13C) has been increasingly accepted
as an index to infer intrinsic water use efficiency (Dawson et al.,
2002). The C stable isotope composition was obtained by mass
spectrometry (Finnigan Mat, Delta S, Bremen, Germany) in the
public laboratory of Southern China Botanical Garden, Chinese
Academy of Sciences, with Pee Dee Belemnite as standard. The
δ13C (in parts per thousand, h) was as (Farquhar et al., 1989):

δ13C = (Rsample/Rstandard − 1) × 1000 (2)

where Rsample and Rstandard are the 13C:12C ratios of the leaf
sample and the 13C/12C ratio of the international Pee Dee
Beleminite (PDB) standard.
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TABLE 1 | Effects of warming, species and their interactions on growth and physiological parameters.

Variables Warming Df Species Df Warming∗Species Df

Stem diameter 25.0∗∗∗ 1 101.6∗∗∗ 5 17.4∗∗∗ 5

Tree height 49.6∗∗∗ 1 101.2∗∗∗ 5 7.9∗∗∗ 5

Stomatal length 16.8∗∗ 1 173.8∗∗∗ 4 0.6 4

Stomatal density 6.4∗ 1 28.8∗∗∗ 4 0.9 4

Biomass 6.4∗ 1 15.1∗∗∗ 5 3.0∗ 5

Root mass ratio 0.1 1 398.9∗∗∗ 5 5.4∗∗ 5

Stem mass ratio 1.4 1 545.1∗∗∗ 5 0.5 5

Leaf mass ratio 0.2 1 58.4∗∗∗ 5 4.5∗∗ 5

Root / Shoot 0.5 1 668.9∗∗∗ 5 2.7∗ 5

Specific leaf area 83.9∗∗∗ 1 44.5∗∗∗ 4 4.7∗∗ 4

Leaf area ratio 26.1∗∗∗ 1 15.7∗∗∗ 4 1.4 4

Leaf δ13C 4.7∗ 1 69.2∗∗∗ 5 8.0∗∗∗ 5

Soluble sugar 23.9∗∗∗ 1 15.7∗∗∗ 5 0.9 5

Starch 21.8∗∗∗ 1 93.6∗∗∗ 5 8.1∗∗∗ 5

Numbers and dfs are F-values and their degrees of freedom, respectively. Asterisks indicate the level of significance (no asterisk = not significant, ∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001).

FIGURE 2 | Basal diameter of six tree species in the control and warm sites from June 2012 to June 2015. Schima superba (A), Castanopsis hystrix (B), Machilus
breviflora (C), Pinus massoniana (D), Syzygium rehderianum (E), and Ardisia lindleyana (F). Error bars are standard error. ∗p < 0.05; ∗∗p < 0.01.

Methods of soluble sugar and starch assay were described
in Mitchell et al. (2013) with some modifications. Soluble
carbohydrates were extracted using an ethanol technique and
determined using the anthrone colorimetric assay (Ebell, 1969).
The concentrations were calculated by comparing with glucose
standards, expressed as mg glucose g−1DW.

Stomatal Length and Stomatal Density
In June 2014 and 2015, three leaves per tree were collected
from all tree species except for P. massoniana in each chamber.
Leaf epidermises on the adaxial side were taken centrally in the
leaf midway. The epidermises were mounted on a microscope

slide and observed using a light microscope (DM2500, Leica,
Germany). For each epidermal peel, 20 stomata were sampled to
measure length and 3 fields (300 µm × 300 µm) were sampled
for density. As stomatal traits of P. massoniana could not be
measured using this method, we only studied other five species
for stomatal traits.

Statistical Analysis
Basal diameter, tree height as well as stomatal traits were
analyzed using a repeated-measures analysis of variance (RM-
ANOVA) with warming (referred to downward translocation),
species and their interaction as independent factors. Two-way
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FIGURE 3 | Tree height of six tree species in the control and warm sites from June 2012 to June 2015. Schima superba (A), Castanopsis hystrix (B), Machilus
breviflora (C), Pinus massoniana (D), Syzygium rehderianum (E), and Ardisia lindleyana (F). Error bars are standard error. ∗p < 0.05; ∗∗p < 0.01.

FIGURE 4 | Plant biomass (A), specific leaf area (B), and leaf area ratio (C) of six species in the control and warm sites in June 2015. Error bars are standard error.
∗p < 0.05; ∗∗p < 0.01.

ANOVA was used to assess the effects of warming, species
and their interaction on other growth and physiological traits.
Data analyses were carried out using SPSS 17.0 (SPSS Inc.,
Chicago, IL, United States). T-test was also used to analyze
the significant differences in these parameters as well as soil
moisture and temperature between warm and control site. All
analyses were conducted using SPSS 17.0 (SPSS Inc., Chicago, IL,
United States). Variables normality and residual homocedasticity
were checked.

RESULTS

Soil Temperature and Soil Volumetric
Water Content
Soil temperature and soil moisture exhibited clear seasonal
patterns (Figure 1). From July 2012 to December 2015, monthly

soil temperature was on average 1.27◦C higher under warming
(p < 0.05, Figure 1A). From September 2012 to December
2015, mean soil volumetric water content were 0.19 and 0.23
m3m−3 in the warm and control sites, respectively (p < 0.05,
Figure 1B).

Tree Growth and Biomass Allocation
In general, warming, species and their interactions had significant
effects on basal diameter, height and biomass over the entire
experimental period (Table 1). Warming significantly increased
basal diameter of S. superba (+33 and +28% in 2013 and 2014,
respectively) and P. massoniana (+57, +106, and +77% in
2013, 2014, and 2015, respectively) (p < 0.05, Figures 2A,D)
(Figure 2); however, it had no significant effect on other tree
species. Tree height of S. superba (+28, +51, and +51% in 2013,
2014, and 2015, respectively), P. massoniana (+27, +78, and
+53% in 2013, 2014, and 2015, respectively) and S. rehderianum
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FIGURE 5 | Plant biomass allocation of six species at warm and control site in June 2015. (A) RMR: root mass ratio, (B) LMR: leaf mass ratio, (C) SMR: stem mass
ratio, (D) R/S: root/shoot mass ratio. Error bars are standard error. ∗p < 0.05; ∗∗p < 0.01.

(+29% in 2014) were significantly higher under warming
(p < 0.05, Figures 3A,D,F) (Figure 3). In 2015, warming
significantly increased whole plant biomass of S. superba and
P. massoniana by 107% and 206%, respectively (p < 0.05),
but did not significantly affect other tree species (p > 0.05)
(Figure 4A).

Except for P. massoniana, warming had no significant
effect on biomass allocation patterns in June 2015
(Table 1). P. massoniana had greater RMR and root/shoot
(R/S), lower LMR and SMR under warming (p < 0.05,
Figure 5).

Specific leaf area and LAR were significantly affected by
downward translocation in June 2015 (Table 1). Except for
S. superb, SLA of other species was significantly higher in the
warm sites compared to those in the control site for all species
(p < 0.05) (Figure 4B). LAR of S. rehderianum and A. lindleyana

in the warm site were significantly greater than that in the control
site (p < 0.05, Figure 4C).

Leaf δ13C
Warming, species and their interactions significantly affected
leaf δ13C in June 2015 (Table 1). Leaf δ13C of S. rehderianum
and A. lindleyana was significantly lower under warming, but
leaf δ13C of C. hystrix was significantly higher under warming
(p < 0.05, Figure 6).

Non-structural Carbohydrates
Leaf soluble sugar and starch varied significantly between species
and were all affected significantly by warming in June 2015
(Figures 7A,B and Table 1). The soluble sugar of S. superba,
S. rehderianum, C. hystrix and M. breviflora was 22, 23, 30, and
29% lower under warming, respectively (p < 0.05, Figure 7A).
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FIGURE 6 | Carbon isotope composition in leaves of six tree species in the
control and warm sites in June 2015, respectively. Error bars are standard
error. ∗p < 0.05; ∗∗p < 0.01.

The starch of S. superba, C. hystrix, and M. breviflora was
30, 62, and 35% lower under warming, respectively (p < 0.05,
Figure 7B).

Stomatal Length and Stomatal Density
Stomatal length and stomatal density varied significantly
between tree species and were affected significantly by warming

(Tables 1, 2). Warming significantly decreased stomatal density
of S. superba and C. hystrix by 17 and 30% in 2015
(p < 0.05).

DISCUSSION

Consistent with our first hypothesis, we observed significant
interspecific variation in growth between six species in response
to warming, with S. superba and P. massoniana exhibiting
greater increments in growth. P. massoniana, which is a native
gymnosperm species, has greater competitive ability and growth
rates than other coexisting species at the early successive stage
(Tang et al., 2011). It has been suggested that warming can
stimulate growth of herbaceous monocots, woody gymnosperms
and eucalyptus species (McCulloh et al., 2016; Lemoine et al.,
2017; Liu et al., 2017; Sharwood et al., 2017). For example,
Hou et al. (2011) found that short-term warming stimulated
tree growth in height but had no effect on ring width in Abies
faxoniana seedlings. In Juniperus thurifera seedlings, increasing
warming temperatures significantly enhanced radial growth
rate (Gimeno et al., 2012). Similarly, we observed significant
enhancement in height, basal diameter and biomass of S. superba
and P. massoniana in response to warming (Figure 2). The
enhancement in biomass production of these two species was
substantial, being close to 107 and 206% in 2014, respectively.
This result was in contradiction to results in previous studies
that tropical and subtropical tree species may be near a high
temperature threshold (Cunningham and Read, 2002; Clark et al.,
2010; Way and Oren, 2010; Bowman et al., 2014), which may
result from different plant adaptabilities and local soil water
conditions under a warmer environment (Crous et al., 2013).
Furthermore, our results showed that the biomass allocation
pattern of P. massoniana was significantly different between
the warm and control sites (Figure 5). Roots of P. massoniana

FIGURE 7 | Soluble sugar (A) and starch concentration (B) in leaves of six species in the control and warm sites in June 2015. Error bars are standard error.
∗p < 0.05; ∗∗p < 0.01.
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TABLE 2 | Stomatal length and stomatal density in five tree species in warm and control site in June 2014 and 2015.

Year Species Site Stomatal length (µm) Stomatal density (stomata/mm−2)

2014 Schima superba Control 12.11 ± 1.67 438.8 ± 119.2

Warm 11.90 ± 1.28 442.5 ± 82.7

2015 Control 13.56 ± 0.91 509.8 ± 67.9∗

Warm 12.37 ± 0.70 424.6 ± 15.4

2014 Syzygium rehderianum Control 12.57 ± 3.24 348.1 ± 44.1

Warm 10.74 ± 1.44 345.6 ± 63.6

2015 Control 10.53 ± 0.09 412.3 ± 50.2

Warm 10.59 ± 0.42 440.4 ± 49.7

2014 Castanopsis hystrix Control 11.03 ± 1.07 437.0 ± 45.0

Warm 10.06 ± 1.31 465.4 ± 54.8

2015 Control 10.48 ± 0.48 481.4 ± 75.1∗

Warm 10.59 ± 0.76 337.9 ± 32.2

2014 Machilus breviflora Control 11.02 ± 0.89 386.4 ± 80.6

Warm 10.56 ± 0.76 304.9 ± 118.9

2015 Control 9.93 ± 0.45 380.2 ± 5.66

Warm 8.42 ± 0.89 409.2 ± 33.4

2014 Ardisia lindleyana Control 17.99 ± 1.00 244.0 ± 47.2∗∗

Warm 16.78 ± 1.97 200.0 ± 49.3

2015 Control 16.52 ± 1.24 311.0 ± 54.4

Warm 15.43 ± 1.50 242.0 ± 58.1

∗p < 0.05; ∗∗p < 0.01.

received greater biomass under warming, whereas there was less
biomass allocation to stems and needles. It has been discovered
that warming increases the allocation of dry mass to stems, leaves
at the expense of roots (Wang et al., 2012; Dawes et al., 2015). In
the present study, the enhanced growth performance in response
to warming indicated that temperature dominate plant growth,
regardless of limited water content. Higher R/S of P. massoniana
under warming also indicated that in a changing environment the
species has certain plasticity in biomass allocation.

In this study, significant increases in SLA of C. hystrix,
M. breviflora, S. rehderianum, and A. lindleyana were observed
under warming (Figure 4B), which means that there is a larger
amount of leaf area displayed per unit mass in these four
species (Poorter et al., 2009). Higher SLA is associated with
efficient light capture and could have led to larger assimilation
gains (Wang et al., 2012). Significant differences in LAR of
S. rehderianum and A. lindleyana found between warm and
control sites indicated that the same amount of whole plant
biomass supported a larger leaf area in the warm site (Figure 4C).
Consistent with our previous studies, from 2012 to 2014, the
mean average photosynthetic rates under saturating light for
S. superba, M. breviflora, P. massoniana, and A. lindleyana in the
warm site were 7, 19, 20, and 29% higher under warming (Li
et al., 2016a). The warming-induced changes in plant biomass
production could have directly resulted from enhanced plant
photosynthesis due to higher temperature.

In our study, the leaf starch and soluble sugar content
decreased significantly under warming (Figure 7). Similar
results have been previously reported in other tree species
(Deslauriers et al., 2014; Jamieson et al., 2015). The decrease
in concentration of carbohydrates may due to the higher

foliar respiration rate under warming, which will result in
increased consumption of assimilates, such as starch and sugars
(Dietze et al., 2014). Soluble sugar and starch accumulation
in leaves can have direct effects on photosynthesis through
physiological mechanisms (Pritchard et al., 1997), biochemical
feedbacks (Rasse and Tocquin, 2006) and gene-expression
control (Moore et al., 1999). Furthermore, more carbon
may be available to allocate to growth under warming.
A previous study suggested that leaf respiration acclimated
more strongly than photosynthesis under warming, increasing
carbon assimilation but moderating carbon losses (Way and
Oren, 2010). Therefore, our results suggest that the response
of photosynthesis and carbohydrates allocation contributed
directly to the divergent response of tree growth under
warming.

Furthermore, the present results showed that warming
decreased stomatal density in S. superba, C. hystrix, and
A. lindleyana, and had significant effect on stomatal length
(Tables 1, 2). Many previous studies have also found warming
affected stomatal density and length due to the changes in
epidermal cell density (Zheng et al., 2013; Carins Murphy et al.,
2016). Lower stomatal density might be induced by elevated
temperature, limited water supply and slightly higher vapor
pressure deficit (VPD) in the warm site. Our previous studies
have reported that the VPD in the warm site was significantly
lower than in the control site (Li et al., 2016a). These results
suggested that the leaf maximum stomatal conductance and
transpiration rate may be constrained by the negative relationship
between stomata density and elevated temperature (Franks et al.,
2009). It has been previously reported that manipulation of
stomatal density could change both instantaneous and long-term
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water use efficiency (WUE) without altering the photosynthetic
capacity (Franks et al., 2015). In our study, significant decrease
of leaf δ13C in S. rehderianum and A. lindleyana were
observed under warming (Figure 6), which indicates that
warmingdecreased WUE in these two species (Dawson et al.,
2002). However, C. hystrix under warming showed significantly
higher leaf δ13C-value. In our previous study, we found that
warming stimulated photosynthesis in S. rehderianum and
A. lindleyana and decreased it in C. hystrix (Li et al., 2016a).
Higher WUE in C. hystrix under warming has probably been
caused by a lowed stomatal conductance and hence a reduced
water loss (Li et al., 2016a), together with a reduction in
photosynthesis. The decreases of WUE in S. rehderianum and
A. lindleyana under warming may have caused by greater water
losses due to increased VPD (León-Sánchez et al., 2016; Li et al.,
2016a).

CONCLUSION

We found an increase in total biomass production, a shift in the
allocation pattern and changes in the physiological in seedlings
grown between the warm and the control site for 3 years.
The pattern of response was not uniform between species: our
data suggest that S. superba and P. massoniana growth has
increased to a greater extent than other species. Therefore, we
can conclude that, climate warming may have pronounced effects
on trees’ morphology and physiology to support growth under

limited soil water condition, inter-specific competition in the
subtropical mixed forest. Warmer environment may increase
the competitive advantage of S. superba and P. massoniana.
Continued warming may thus lead to changes in the competitive
balance and, ultimately, the composition of these mixed
forests.
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