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Earth harbors a highly diverse array of plant leaf forms. A well-known pattern linking
diverse leaf forms with their photosynthetic function across species is the global leaf
economics spectrum (LES). However, within homogeneous plant functional groups such
as tropical woody angiosperms or temperate deciduous woody angiosperms, many
species can share a similar position in the LES but differ in other vital leaf traits, and
thus function differently under the given suite of environmental drivers. How diverse
leaves differentiate from each other has yet to be fully explained. Here, we propose
a new perspective for linking leaf structure and function by arguing that a leaf may
be divided into three key sub-modules, the light capture module, the water-nutrient
flow module and the gas exchange module. Each module consists of a set of leaf
tissues corresponding to a certain resource acquisition function, and the combination
and configuration of different modules may differ depending on overall leaf functioning
in a given environment. This modularized-leaf perspective differs from the whole-leaf
perspective used in leaf economics theory and may serve as a valuable tool for
tracing the evolution of leaf form and function. This perspective also implies that the
evolutionary direction of various leaf designs is not to optimize a single critical trait,
but to optimize the combination of different traits to better adapt to the historical and
current environments. Future studies examining how different modules are synchronized
for overall leaf functioning should offer critical insights into the diversity of leaf designs
worldwide.

Keywords: leaf anatomical structure, leaf diversity, leaf form, leaf function, stomata, venation

INTRODUCTION

As the metabolic engine of plant growth, leaves are marvelous examples of biological complexity
and natural beauty (Vogel, 2012; Sack, 2013). Remarkable diversity occurs in the designs of leaf
form and function. On what principles do diverse leaf forms and functions vary from one species to
another? Comparative studies of leaf functional traits have been highly successful at identifying key
trade-offs in leaf form and function (Givnish, 1987; Westoby et al., 2002; Ackerly, 2004). Among the
numerous successes, the most noteworthy is probably the global leaf economics spectrum (LES),
which states that a universal trade-off exists between leaf construction costs [characterized by leaf
dry mass per area (LMA)] and leaf lifespan (LL) across different biomes and contrasting plant

Frontiers in Plant Science | www.frontiersin.org 1 September 2017 | Volume 8 | Article 1542

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
https://doi.org/10.3389/fpls.2017.01542
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2017.01542
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2017.01542&domain=pdf&date_stamp=2017-09-06
http://journal.frontiersin.org/article/10.3389/fpls.2017.01542/abstract
http://loop.frontiersin.org/people/303720/overview
http://loop.frontiersin.org/people/345924/overview
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-01542 September 4, 2017 Time: 15:23 # 2

Li et al. Leaf Modularized Design

functional groups (Wright et al., 2004). This whole-leaf level
cost-benefit perspective has been valuable for understanding leaf
carbon balance as well as whole plant growth (Poorter et al., 2013;
Westoby et al., 2013; Reich, 2014).

Although highly successful, the economics spectrum may be
insufficient for a full understanding of the complex evolutionary
steps and adaptation to current abiotic and biotic environments
in leaves as well as in whole plants. Emerging studies have
revealed that leaves with similar LMA can differ in other critical
traits such as leaf hydraulics (Sack et al., 2014; Li et al., 2015;
Blackman et al., 2016), stomatal conductance (Reich et al., 1999)
and leaf drought tolerance (Maréchaux et al., 2015) as well as
whole plant drought and shade tolerances (Hallik et al., 2009).
These studies suggest that different species do not always spread
out widely along a single axis of carbon economy (i.e., LMA-
LL); rather, they may vary along multiple dimensions of trait
trade-offs. In fact, only through the lens of multiple dimensions
of leaf traits and corresponding ecological and physiological
functions, the immense diversity of leaf designs observed in the
plant kingdom does seem possible (Laughlin, 2014; Li et al., 2015;
Blackman et al., 2016).

To fully understand the multi-dimensionality of leaf form
and function, a whole leaf needs to be divided into different
component parts, each responsible for a specific function.
Indeed, LMA is a product of leaf thickness and tissue density
(Niinemets, 1999; Poorter et al., 2009), both of which are
influenced by anatomical drivers such as leaf cellular and tissue
composition, airspace volume and structure, and ultrastructural
cell characteristics (Villar et al., 2013; John et al., 2017). Different
combinations of leaf anatomical traits can result in similar LMA
values across species (Figure 1A), but different values of these
traits affect leaf-level water transport (Tyree et al., 1999; Sack
et al., 2003; Sack and Holbrook, 2006; Brodribb, 2015; Buckley
et al., 2015), CO2 diffusion (Terashima et al., 2011; Muir et al.,
2016), and light capture (Vogelmann et al., 1996) differently.
Therefore, a whole leaf analysis alone might hide the linkages
between the key structural components and their corresponding
functions. For a fully functional analysis, it can be illuminating to
employ the concept of modularity, which implies that different
independent (or semi-independent) modules each carrying a
different function can be integrated as a whole (Wagner and
Altenberg, 1996).

Here, we propose that a leaf can be divided into three key
modules, and each module is composed of a set of correlated leaf
traits. We emphasize that different modules are not necessarily
fully independent from each other, but identifying each module
can serve as a tool for tracing the evolutionary pathways of key
leaf physiognomies and functions. We also argue that a leaf is an
evolutionary patchwork composed of separate modules and that
deciphering different trait combinations of the modules will offer
new insights into the diverse leaf structures and functioning.

THREE KEY SUB-LEAF MODULES

A leaf is highly heterogeneous in its structure and can be
divided into three major types of modules corresponding to

light capture, water-nutrient transport, and CO2 absorption.
The first module is the light capture module, which is mainly
composed of epidermal cells and tightly packed palisade cells
(Figure 1B). The epidermal cells are transparent and do not
contain chlorophyll, however, the outer cell wall can function as
a lens focusing light deeper into the leaf interior (Vogelmann
and Björn, 1986; Martin et al., 1989; Poulson and Vogelmann,
1990). Furthermore, palisade cells can operate as optical fibers,
allowing the penetration of light deeper into the leaf (Vogelmann
and Martin, 1993; Smith et al., 1997; Brodersen et al., 2008).
Nevertheless, due to high concentration of chlorophyll, palisade
cells are responsible for the majority of light capture (Lee et al.,
1990; Vogelmann et al., 1996). Besides, leaf petioles and midribs
serve to determine leaf angle (Niinemets et al., 2006, 2007b),
which further can modulate light interception (Salisbury, 1949;
Smith et al., 1998; Falster and Westoby, 2003; de Boer et al.,
2016). Apart from these main components, some plant species
can have unique features such as vertical sclereids that can also
function as optical fibers for light penetration (Karabourniotis,
1998; Nikolopoulos et al., 2002). Typically, the light capture
module is primarily associated with the upper layer of a leaf,
especially for horizontally inclined leaves (Parkhurst and Givnish,
1986; Smith et al., 1997). In particular, in dense canopies (e.g.,
forests and woodlands as well as dicot herb canopies), most
leaves receive light from high solar inclination angles; once the
light enters the leaf, light intensity decreases rapidly (Vogelmann
et al., 1996). Some key trait characteristics to this module
include epidermal outer cell wall properties, palisade cell size,
palisade tissue thickness, chlorophyll content, and petiole length
(Figure 2).

The second module is the water-nutrient flow module, which
is mainly composed of leaf venation network (Figure 1B).
The leaf venation network consists of both major and minor
veins, with major veins being responsible for transport and
partitioning of water and nutrients hierarchically throughout
different orders of leaf venation system, and minor veins
being responsible for delivering the water to precise locations
to meet the water demands for photosynthesis and water
transpiration through the stomata (Roth-Nebelsick et al.,
2001; Sack and Holbrook, 2006; Brodribb et al., 2007; Sack
and Scoffoni, 2013). Furthermore, leaf venation provides an
indispensable network for the flow of nutrients and other
materials throughout the leaf and to outside the leaf via phloem
and xylem, including nitrogen resorption (Zhang et al., 2015)
and export of photosynthetic products (Turgeon, 2006). Some
key traits involved in water-nutrient flow module include vein
diameter and density, vessel (or tracheid) size and density,
leaf hydraulic conductance and nitrogen resorption efficiency
(Figure 2).

The third module is the gas exchange module, which is
mainly composed of stomata and connected intercellular air
spaces in the palisade and spongy mesophyll and mesophyll
cells with chloroplasts (Figure 1B). Stomata are sensitive
valves for CO2- H2O exchange and can respond rapidly to
plant water availability and evaporative demand, which is
influenced by air humidity and leaf temperature as affected
by ambient temperature and leaf radiation interception and
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FIGURE 1 | Illustration of the concept of modularity of leaf design. Different species can have different internal leaf structures such that the key leaf trait, leaf dry
mass per unit area (LMA) alone may not be informative enough for describing the diversity of leaf designs as exemplified by a comparison of two species with similar
LMA (77.3 g m−2 for Archidendron clypearia and 68.9 g m−2 for Litsea baviensis) (A). A frequently observed mode for the combination of three key sub-leaf
modules: from top to bottom, a leaf can be divided into a light capture module, a water-nutrient flow module and a gas exchange module (B). Demonstration of the
vast diversity of leaf internal structures. Such diverse leaf designs can be seen as the result of different adjustments to the frequently-observed mode (C).

loss (Smith et al., 1997; Hetherington and Woodward, 2003;
Franks et al., 2009). In addition, chloroplast characteristics and
cell position alter the gradients of CO2 diffusion from sub-
stomatal cavities to chloroplasts (Flexas et al., 2012; Tomás et al.,
2013; Tosens et al., 2016). Variation of stomatal structure, such
as stomatal crypts and waxy deposits can also affect leaf gas
exchange (Roth-Nebelsick, 2007). Some key traits involved in
the gas exchange module include stomatal size, stomatal density,
stomatal conductance, the size and distribution of chloroplasts
with respect to cell walls and exposure of cell walls to the
gas phase inside the leaf, and photosynthetic capacity per cell
(Figure 2).

EVOLUTIONARY HISTORY FOR EACH
SUB-LEAF MODULE

In understanding the current diversity across these three sub-
modules, it is important to consider that the evolution of
different leaf modules was often largely independent, i.e.,
key features of each module evolved in response to their
most prominent selection pressures. The light capture module
underwent substantial selection as plants radiated to more
open habitats (Feild and Arens, 2005), the water-nutrient flow
module was modified by ever increasing transpirational pull in
more open habitats (Feild et al., 2003), and the gas exchange
module was modified in response to the gradually declining
atmospheric CO2 concentration (Franks and Beerling, 2009).
Over time, different configurations of these modules were
combined into various leaves. The evolutionary direction of
various leaf designs is not to optimize a single critical trait
or module, but to optimize the combination of different traits
to better adapt to the highly variable historical and extant

environments that diverse species across different plant types
occupy.

In particular, for angiosperms which constitute one of the
most important plant groups in terms of species diversity
and biomass production on the Earth, the 400-million-year
history is also a step-by-step process. Fewer trait combinations
among a limited number of early angiosperm species diversified
into more trait combinations among a high number of
derived angiosperm species. During this process, gaining new
advanced functions and capacities was a key mechanism for
angiosperm radiation and diversification. Compared to other
plant groups, the underlying superiority of angiosperms in
having more diverse trait combinations is also confirmed
by recent global synthesis of leaf traits (see Diaz et al.,
2016).

During early angiosperm evolution, the light capture module
was rather weakly developed among woody angiosperms
(i.e., during the early Cretaceous c. 135 Ma) (Bond and
Scott, 2010). Many ancestral species, such as Amborella,
had little or no differentiation of palisade mesophyll from
spongy mesophyll (Feild et al., 2003; Feild and Arens,
2005). Such a weakly developed light capture module was
widespread in the understory shady habitats (Feild and
Arens, 2005; Bond and Scott, 2010). Yet, as more woody
angiosperms radiated into open habitats, a more clearly
differentiated light capture module began to appear, especially
among canopy angiosperms. These species shared the common
characteristic of multiple layers of tightly packed palisade
tissue.

The evolution of water-nutrient flow module has also been
a step by step process. One notable aspect of this gradual
process is the substantial increase of vein density in angiosperms
compared to other plant groups (Boyce et al., 2009; Feild
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FIGURE 2 | A trait framework based on the three key sub-leaf modules. In the center, the leaf economics spectrum (LES) concept of integrating investment and
payback (LMA and leaf longevity, LL) is a fundamental principle, defining the trade-offs of the three modules. By unpacking the trade-off between LMA-LL into four
other relations (i.e., interactions between leaves and light-water-nutrients-gas composition), we show the pathway moving beyond traditional leaf economics. Taking
this framework as a starting point, we can have a more holistic understanding of global-scale variation in leaf structure and function. Certain trait syndromes are
suggested for each module, ranging from cell size, tissue-level density or thickness to the rates of physiological processes.

et al., 2011a), which took about 250 million years. High leaf
vein densities endowed woody angiosperms with higher leaf
water supply capacity than that in their competitors (Boyce
et al., 2009), and contributed to the rise of photosynthetic
capacity in the early angiosperm diversification (Brodribb and
Feild, 2010), but nevertheless, there are still large differences
in leaf vein density within this group (Boyce et al., 2009).
Other concurrent innovations include the decreasing size of
vein diameter (Feild and Brodribb, 2013), the unique spatial
arrangements of veins (Zwieniecki and Boyce, 2014), the
modifications of perforation plates of primary xylem vessels
(Feild and Brodribb, 2013), and the reduction of cell wall
thickness and chloroplast size improving the rate of CO2
diffusion into chloroplasts (Tosens et al., 2016; Veromann et al.,
2017), all these traits showing higher overall values than more
ancient plant groups but large differences within the woody
angiosperm groups.

Concurrently with the decline in atmospheric CO2
concentration, innovations of the gas exchange module took
place gradually over the past 400 million years. As atmospheric
CO2 concentration decreased, stomatal density increased, while
stomatal size decreased among most land plants. The increases
in stomatal density contributed to an overall increase in the

maximum stomatal conductance, while decreased stomatal
size enabled greater sensitivity to environmental changes
(Franks and Beerling, 2009). In the early Cretaceous, early
angiosperm leaves had a low gas exchange capacity with a
low maximum stomatal pore area (Feild et al., 2011b). The
overall superior performance of angiosperms was achieved
by gaining the capacity to close stomata in response to high
CO2 concentration, ensuring a higher water use efficiency
than that in other lower land plants (Brodribb et al., 2009),
but again, with high variations across species within this
group.

DIVERSITY OF LEAF DESIGNS

An important goal of this paper is to highlight how a
modularized-leaf perspective may provide a useful approach for
characterizing and understanding the variation of leaf form and
function beyond traditional LES perspective (Figure 1C). LES
mainly defines the large-scale leaf design patterns across different
leaf types and different biomes, while our concepts of key sub-
leaf modules can further describe the variation of smaller-scale
leaf designs within one leaf type or/and one plant functional
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type (PFT) or/and one biome. Though LES has a great value
in revealing global-scale leaf strategies (Diaz et al., 2016), it is
insufficient for describing the diversity of leaf designs. A global
meta-analysis of variation of LMA demonstrated that LMA failed
to distinguish between species within a biome or a functional
group (Poorter et al., 2009). For example, within species-rich
subtropical forests, Pithecellobium clypearia and Litsea baviensis
(77.3 and 68.9 g m−2) are both evergreen woody angiosperms
species with similar LMA, but they can differ markedly in leaf
light-capture and water-nutrient flow modules (Figure 1A). As
already argued, different species can differentiate their leaves by
modifying module-level traits without altering the values of LMA
(Figure 2). Ultimately, the divergent modular construction of
leaves underlies the emergent trade-offs between leaf structures
and function known as the worldwide LES (Wright et al.,
2004).

In fact, different sub-leaf modules are not necessarily
fully independent from each other, and plenty of studies
have shown coordinated variation across modules (e.g.,
Sack et al., 2003; Brodribb et al., 2005, 2007). Given that
different modules develop together, they might often be
interdependent. Especially, when there is a limiting factor
(e.g., light, nutrients, or water), these three sub-leaf modules
would converge toward maximizing the use of the limiting
resource (Mason and Donovan, 2015). Nonetheless, even though
different modules co-vary, the direction of such covariations
is not fixed. For instance, leaf nitrogen concentration can
be either positively (Schulze et al., 1994), or negatively
correlated (Taylor and Eamus, 2008) with maximum stomatal
conductance.

Even more importantly, under non-constraining growth
conditions, key traits corresponding to each module can have
room to evolve independently and maximize each function
separately without constrains limiting these maxima. For
example, leaf carbon and water use related traits are independent
among 85 woody angiosperms in tropical-subtropical
forests (Li et al., 2015), and vein density (water-nutrient
flow module) was unrelated to stomatal conductance
(gas-exchange module) among 35 evergreen Australian
angiosperms (Gleason et al., 2016). Such independence
across modules can lead to diverse combinations of different
traits, and consequently to the high diversity of leaf designs
in species-rich biomes. Indeed, leaves do contain different
fractions of mesophyll, epidermis and vascular tissues, and
these fractions always adjust to different environmental
conditions, with different environmental pressures altering the
distribution of leaf tissues in different manners (Niinemets,
1999; Niinemets et al., 2007a). In fact, if sub-leaf modules
always co-varied and did so in a consistent manner, possible
combinations of leaf structures across species would be very
few, leaving relatively little room for adaptation to different
environments.

Although we often find these three modules arranged in
the sequence shown in Figure 1B, spatial arrangements of
these sub-leaf modules can vary across different habitats and
different plant types (e.g., angiosperms, gymnosperms, ferns,
mosses, and aquatic plants). Variation in modular arrangement

can lead to different configurations of these three key modules,
and consequently to even greater diversity of leaf designs.
Stomata can develop on both surfaces of a leaf, termed as
amphistomatous leaves (Parkhurst, 1978), which is a derived
feature for angiosperms (Mott et al., 1982). Amphistomatous
species with high conductance to CO2 diffusion (Mott et al., 1982;
Beerling and Kelly, 1996; Muir, 2015) are most common among
fast-growing species (Muir, 2015), and are usually successful
in high-light habitats (Mott et al., 1982; Beerling and Kelly,
1996; Muir, 2015). Similarly, palisade cells can also be found on
both the lower and upper layers of a leaf (Smith et al., 1997).
Examples can be found in the isobilateral leaves of eucalypts in
arid environments (Evans et al., 1993; Ögren and Evans, 1993;
de Boer et al., 2016), and in the trees of the open savannas
in the Amazon (e.g., Byrsonima crassifolia) (Ferreira et al.,
2015).

FUTURE DIRECTIONS

From the perspective of leaf modularity, studies of leaf
functional traits and leaf diversity are approaching a new
era. Recognizing the corresponding trait syndromes for
each module, rather than focusing only on whole-leaf
traits, is strongly recommended for future leaf trait-based
studies attempting to understand the mechanisms of species
diversity and species-environment relationships (Figure 2).
The LES concept of integrating investment and payback
(LMA-LL) is a fundamental principle, defining the trade-
offs of the three modules. Thus, variation in LMA is a
by-product of individual responses of different modules
to the environment (Figure 2). By considering different
components of LMA in relation to four key environmental
drivers (i.e., light, water, and nutrient availabilities, and
gas composition) (Figure 2), and examining how different
modules interact with the environment, we can obtain a
more mechanistic understanding of patterns of leaf structure
and function at both local and global scales. Besides, to
improve predictions of species responses to environmental
changes, more attention should be paid to the environmental
response curves of each module in future predictive models
of global change that intend to use leaf traits to predict future
vegetation.

Another important step forward will be to examine
trait combinations of different sub-leaf modules across
species at the global scale. In this way, we can pinpoint
the underlying mechanisms driving different ecological
strategies and high leaf diversity. Under such a framework,
both significant and non-significant correlations among
different leaf traits can be useful for identifying coordination
and independence both within and among different modules.
Furthermore, we can trace back how different modules
were integrated into a single leaf over time among different
plant functional groups having different leaf types. In
future biodiversity models, detailed leaf functional types
(LFTs) can be defined for better representation of leaf
diversity, by identifying different combinations of sub-leaf
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modules both within one PFT and across different PFTs.
Overall, combinations of different modules have contributed
to different leaf ecological strategies and thus, to tremendous
plant diversity over the long evolutionary history, and will
continue to shape leaf and whole-plant responses in the
future.
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