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In response to pathogen attack, plants prioritize defense reactions generally at the
expense of plant growth. In this work, we report that changes in phytohormone signaling
pathways are associated with the stunted plant growth caused by blast disease in rice
seedlings. Infection of rice seedlings with blast fungus Magnaporthe oryzae (race 007.0)
at the four-leaf stage (three true leaves) resulted in considerable inhibition of the growth
of the upper uninfected distal leaves; the length of leaf blade and leaf sheath of the sixth
and seventh leaf was reduced by 27 and 82%, and 88 and 72%, respectively, compared
to that in the uninoculated plant control. Interestingly, cutting off the blast-infected fourth
leaf blade within 2 days post inoculation (dpi) significantly rescued the inhibition of leaf
growth, implying that an inhibitory substance(s) and/or signal was generated in the
blast-infected leaves (fourth leaf) and transmitted to the upper distal leaves (sixth and
seventh) during the 2-dpi period that induced growth inhibition. Expression analysis of
marker genes for phytohormone pathways revealed acute activation of the jasmonate
(JA) and abscisic acid (ABA) signaling pathways, and repression of auxin, gibberellic
acid (GA) and salicylic acid (SA) signaling pathways, in the sixth leaf. The genes related
to cell wall expansion were also significantly downregulated. In the blast-infected fourth
leaf, JA pathway was activated within 2 dpi, followed by activation of ABA pathway
3 dpi. Further, leaf inhibition caused by blast infection was partially rescued in the rice
mutant line coleoptile photomorphogenesis 2 (cpm2), which is defective in the gene
encoding allene oxide cyclase (OsAOC). These results indicate that the JA signaling
pathway is at least partly involved in the growth inhibition processes. Collectively, our
data suggest that, upon pathogen attack, rice seedlings prioritize defense reactions
against the infecting pathogen by temporarily ceasing plant growth through the systemic
control of phytohormone pathways.
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INTRODUCTION

Plants have evolved a set of mechanisms to tune the balance
of plant growth and defense reactions for better survival and
fitness in nature. In response to pathogen attack, plants allocate
more resources toward defense reactions, while temporarily
limiting the supply of nutrients and energy resources to less
urgent physiological processes such as photosynthesis and plant
growth (Huot et al., 2014; Takatsuji, 2017). Consequently,
defense responses negatively impact plant fitness because of
their usage of highly costly resources. Therefore, plants generally
restore the balance to favor growth and development in the
absence of pathogen challenges (Huot et al., 2014; Takatsuji,
2017). In addition, rather than deploying defense mechanisms
uniformly across different tissues, plants prioritize protecting
the tissues that contribute more to a plant’s future fitness,
such as young sink tissues and reproductive structures (optimal
defense hypothesis, ODH) (Meldau et al., 2012; Meldau and
Baldwin, 2013). While the molecular mechanisms remain largely
unknown, recent studies have implicated that a complex signaling
network involving phytohormones plays a major role in such a
trade-off between growth and defense (Huot et al., 2014; Kazan
and Lyons, 2014; Takatsuji, 2017). Phytohormones play central
signaling roles in diverse biological processes including plant
growth and development, as well as defense responses. Each of
the hormones generates and transmits a distinct growth and/or
defense signal, while crosstalk between them has been shown
to be essential for the outcome of plant–pathogen interactions
(Robert-Seilaniantz et al., 2011; Yang et al., 2013; Huot et al.,
2014; Takatsuji and Jiang, 2014). It has been well documented
that salicylic acid (SA), jasmonates (JA), and ethylene (ET) play
key roles in activation of defense responses to various pathogens
(Robert-Seilaniantz et al., 2011; Yang et al., 2013; Huot et al.,
2014; Takatsuji and Jiang, 2014). It was shown that a heat shock
factor-like transcription factor, TBF1, plays a key role in the
growth-to-defense transition in response to SA and the MAMP
signal, elf18, in Arabidopsis (Pajerowska-Mukhtar et al., 2012).
Other growth-regulating hormones, such as auxin, gibberellic
acid (GA), cytokinins (CKs), and abscisic acid (ABA), also have
an important part to play in plant–pathogen interactions via
cooperative or antagonistic crosstalk with the defense hormones,
SA, JA, and ET (Robert-Seilaniantz et al., 2011; Yang et al., 2013;
Takatsuji and Jiang, 2014; Ma and Ma, 2016).

In rice, SA has been implicated in activation of defense
responses to various pathogens including blast fungus
Magnaporthe oryzae and leaf–blight bacteria Xanthomonas
oryzae pv. oryzae (Schweizer et al., 1999; Rohilla et al., 2002; Babu
et al., 2003; Yang et al., 2004; Shimono et al., 2007; Sugano et al.,
2010). The SA signaling in rice is mediated by two downstream
factors, OsNPR1 and WRKY45 (Shimono et al., 2007; Sugano
et al., 2010), unlike that in Arabidopsis where it is primarily
mediated by NPR1 (Wang et al., 2006). JA and ET are also
involved in resistance to rice pathogens M. oryzae, X. oryzae
pv. oryzae, and Rhizoctonia solani (Iwai et al., 2006; Mei et al.,
2006; Bailey et al., 2009; Seo et al., 2011; Yamada et al., 2012;
Helliwell et al., 2013; Riemann et al., 2013). In contrast to the
mostly antagonistic interaction between SA- and JA-mediated

signaling pathways in Arabidopsis, it was shown that SA and JA
activate a common defense system in rice (Brooks et al., 2005;
Laurie-Berry et al., 2006; Robert-Seilaniantz et al., 2011; Garg
et al., 2012; Tamaoki et al., 2013). The growth hormones auxin
and GAs have been shown to negatively affect rice resistance
to M. oryzae, X. oryzae pv. Oryzae, and Xanthomonas oryzae
pv. oryzicola (Tanaka et al., 2006; Ding et al., 2008; Yang et al.,
2008; Domingo et al., 2009; Fu et al., 2011). Auxin was shown
to upregulate expansin gene expression, leading to cell wall
loosening, and thus rendering the plant more susceptible to
pathogen invasions (Ding et al., 2008; Domingo et al., 2009). It
was further shown that overexpression of OsNPR1 in rice plants
resulted in growth attenuation (dwarf phenotype) by repressing
auxin signaling pathway through upregulating OsGH3.8, a gene
encoding IAA-amino synthase (Li et al., 2016). Yang et al. (2012)
reported that JA antagonistically interacts with GA signaling
cascade to prioritize defense over growth upon pathogen attacks
in both Arabidopsis and rice. We previously showed that CKs
and ABA interact with SA cooperatively and antagonistically,
respectively, in rice–M. oryzae interaction (Jiang et al., 2010,
2013).

It has been shown that rice plants diseased by virus and blast
fungus exhibit growth stunting. Rice infection by rice stripe virus
(RSV) (Satoh et al., 2010), rice dwarf virus (RDV) (Satoh et al.,
2011), rice grassy stunt virus (RGSV) (Satoh et al., 2013) and
rice tungro spherical virus (RTSV) (Budot et al., 2014) result
in a severe growth stunting. Molecular analysis revealed that
the virus infection-induced growth inhibition is associated with
suppression of GA and/or auxin signaling cascades and cell
wall synthesis and expansion (Satoh et al., 2010, 2011, 2013;
Budot et al., 2014). On the other hand, several decades ago, it
was observed that infection of rice seedlings with blast fungus
M. oryzae results in a severe growth inhibition in addition
to formation of blast disease lesions at the infection sites;
this morphological symptom is called “Zurikomi” that means
stunting of plant growth in Japanese (Tokunaga et al., 1959).
The growth inhibition is manifested the most in successive upper
two to three leaves counted from the infected leaf, especially
in the early stages of plant growth (Tokunaga et al., 1959;
Yoshida et al., 1992). Microscopic observation suggested that the
suppression of cell division is a major factor for stunting of blast-
infected plants (Yoshida et al., 1992). It was initially thought
that the growth stunting is caused by excess accumulation
of coumarin within plants triggered by the blast fungal toxin
piricularin (Tamari and Kaji, 1959a,b). This, however, could not
be confirmed in later studies (Satoh and Kozaka, 1966, 1971).
Moreover, ethylene evolution was detected from blast inoculated
rice plants (Kozaka and Teraoka, 1977), but which was found
not be associated with growth stunting of blast-infected rice
plants (Yoshioka et al., 1992). Thus, the detailed mechanism of
the growth stunting in blast-infected rice plants remains largely
unknown.

In this study, we report that a yet unknown inhibitory
substance(s) and/or signal(s) is generated in the M. oryzae-
infected leaves and transmitted to the upper distal leaves, where it
activates JA and ABA, while suppressing GA and auxin signaling
pathways, and consequently causing an inhibition of growth
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in the leaves. These findings provide new insights into the
controlling mechanism of growth-defense balance in plants.

MATERIALS AND METHODS

Plant Materials and Measurements
The Japonica rice cultivar ‘Nipponbare’ was used in this study.
Seeds were germinated in soil (Bonsol No. 2; Sumitomo Chemical
Corp., Tokyo, Japan) in plastic pots (50 mm square × 50 mm
deep, and a drainage hole), four seeds per pot, and the seedlings
were grown in a greenhouse at 28◦C in the day (14 h) and 23◦C
in the night (10 h). The relative humidity in the greenhouse was
approximately 70%.

A rice mutant line coleoptile photomorphogenesis 2
(cpm2) defective in the gene encoding allene oxide cyclase
(OsAOC) (Biswas et al., 2003) and its wild-type (WT)
rice line ‘Nihonmasari’ were used for investigation of the
role of JA in growth stunting of blast-infected rice plants.
The homozygous mutant seedlings were selected from a
heterozygous population based on phenotype of elongated
shoots compared with WT. The homozygosity of mutant
seedlings was further confirmed by PCR genotyping,
using primer set, 5′-ACGAACATCTCCTGCACCTT-3′ and
5′-CTCGCGAGTCTCCGTCAG-3′.

About 4–5 weeks after blast inoculation, the fully grown fifth
to seventh leaves were detached from shoot bases, and measured
for lengths of leaf blades and leaf sheaths with a scaled ruler.

Pathogen Culture and Inoculations
Culture and inoculations of the blast fungus M. oryzae (race
007.0) were carried out according to Akagi et al. (2015). Briefly,
the fungus was grown on an oatmeal agar medium (30 g/L
oatmeal, 5 g/L sucrose, and 16 g/L agar) at 26◦C for 10–12 days.
Conidia formation was induced by irradiation under continuous
black–blue light (FL15BLB; Toshiba, Osaka, Japan) at 24◦C for
2–4 days. The conidia were suspended in 0.02% Silwet L-77 at a
density of 1–2× 105/mL and sprayed onto rice plants at the four-
leaf stage. As a mock treatment control, the same volume of 0.02%
Silwet L-77 was sprayed. After incubation in a dew chamber at
24◦C for 24 h, the rice plants were moved back to the greenhouse.

Gene Expression Analysis
Rice seedlings at the four-leaf stage were blast-inoculated, and
the inoculated fourth leaf blades of half the plants was cut off at
2 dpi. Sixth whole leaf was collected at 3 dpi, and leaf blades and
leaf sheathes separately at 6 dpi. Three biological replicates were
collected, four leaves in each replicate.

Real time-polymerase chain reaction (RT-PCR) was used to
analyze the samples for expression of marker genes for JA
(JAmyb and OMT), ABA (SalT and OsWsi18), auxin (ARF1
and IAA9), GA (OsGA2ox3 and OsGA20ox1) and SA (WRKY45
and OsNPR1), and PR genes OsPR1b and PBZ1. The genes and
primer sequences used for qRT-PCR are listed in Supplementary
Table 1.

Total RNA was isolated using the TRIzol reagent (Invitrogen)
and reverse-transcribed by using ReverTra Ace (TOYOBO,

Osaka, Japan) according to the manufacturer’s protocol.
Quantitative RT-PCR (qRT-PCR) was run on a Thermal Cycler
Dice TP800 system (Takara Bio) using SYBR premix ExTaq
mixture (Takara Bio) as previously described (Shimono et al.,
2007).

Phytohormone Treatments and
Measurements
All stock solutions, except brassinolide (BR), were prepared
at a concentration of 100 mM as described previously (Jiang
et al., 2009). BR was prepared at 20 mM concentration. Indole-
3-acetic acid (IAA; Sigma, St. Louis, MO, United States),
gibberellin A3 (GA3; Wako, Osaka, Japan), ABA [(±)-cis–trans,
Sigma], methyl jasmonate (ME-JA; Wako), and brassinolide (BR;
Wako) were dissolved in absolute ethanol. Kinetin (Sigma) and
benzothiadiazole S-methyl ester (BTH; Wako) were dissolved
in dimethyl sulfoxide (DMSO); and 1-aminocyclopropane-1-
carboxylic acid (ACC; Sigma) and sodium salicylate (SA; Nacalai
Tesque, Tokyo, Japan) in H2O.

For plant treatments, rice seedlings at four-leaf stage (three
true leaves) were transferred to a container containing each of
the phytohormone solutions at 50 µM for IAA, GA3, CK, ACC,
ABA, JA, and BTH, and at 10 µM for BR. Water was used as mock
control. The rice seedlings were further grown for 4 weeks, and
leaf lengths of the fifth leaf were measured.

Measurement of JA and ABA content were performed as
described previously (Kojima and Sakakibara, 2012).

Experimental Design and Data Analysis
All the experiments were conducted with three replicates each
consisting of one to two planting pots with four plants per pot
for each inoculation. The plants for each replicate were placed
in a separate container, and the three replicate containers were
rotated within the growth chamber every 2–3 days to minimize
any effect of location. All the experiments were repeated at least
twice independently; these produced similar results, so data from
only one trial are presented.

Statistical analyses were performed using the statistical
software SPSS 21.0 (IBM Corp., Armonk, NY, United States).
One-way analysis of variance (ANOVA) was used to compare
differences in the means among treatments (P = 0.05).

Calculations of mean values and standard deviations, graph
plotting and correlation analysis were performed using Microsoft
Office 365-Excel software (Microsoft Corporation, Tokyo,
Japan).

RESULTS

Blast Infection Caused Growth Inhibition
of Rice Seedlings
Rice seedlings at four-leaf stage, with fourth leaves fully expanded,
were inoculated with a compatible blast fungus race 007. Visible
blast disease lesions appeared on the fourth leaf blades at 3 dpi
and the fourth leaf blades were wilted by 7 dpi (data not shown).
From then on, upper leaves above the inoculated fourth leaves
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FIGURE 1 | Blast infection causes stunted growth of rice seedlings.
(A) Images of mock control (left) and blast-infected (right) rice seedlings. Rice
seedlings at the four-leaf stage were inoculated with blast fungus M. oryzae
(race 007.0), and the photograph was taken at 12-dpi. Numbers indicate leaf
positions counted from shoot base. (B) Lengths of leaf blades (upper column)
and leaf sheathes (bottom column) of fifth to seventh leaves, measured at
5 weeks post inoculation (5 wpi). Values are the means ± standard errors; the
asterisks indicate significant difference from the mock control plants (t-test,
∗ indicates P < 0.01).

(N) exhibited severe growth stunting; this was particularly true
for both leaf blades and leaf sheathes, in N+2–3 leaves (sixth
and seventh leaves) (Figures 1A,B). As shown in Figure 2B, sixth

leaf in the infected plants was greatly suppressed, and the distal-
half of most leaf blades was dead and dried. These results are
consistent with previous observations by Tokunaga et al. (1959)
and Yoshida et al. (1992). The growth inhibition was slight and
negligible in N+4 and upper leaves, consistent with observation
by Yoshida et al. (1992).

Cutting off Blast-Infected Leaf Blades
Significantly Rescued the Growth
Inhibition
We hypothesized that a growth inhibition substance and/or
signal is generated in the blast-infected leaves and transmitted
to upper distal leaves. To determine this, we cut off the
inoculated fourth leaf blades with a scissor in times at 1, 2, 3,
4, 5, 6, and 7 dpi, and observed the effect on plant growth.
The results show that cutting off the blast-infected leaf blades
within 48 h after inoculation can significantly rescue the growth
of plants (Figures 2A–C), particularly N+2–3 leaves (sixth
and seventh leaves) (Figures 2B,C). Cutting off blast-infected
leaves after 48 h had little rescue effect on the leaf growth
(Figure 2C).

Jasmonate Signaling Is Activated in
Blast-Infected Leaves
We previously reported activations of SA, ABA, and CK signaling
pathways in blast-infected leaf blades of rice seedlings (Jiang et al.,
2010, 2013). To determine the changes in JA signaling pathway
during blast infection, we analyzed expression of JA-responsive
marker gene JAmyb (Lee et al., 2001) in blast-inoculated fourth
leaf blades in a time course manner up to 6 dpi. We found that
JAmyb is significantly upregulated by blast infection within 2 dpi,
and peaked at 4 dpi and retained the upregulation until the end
of the time course (Figure 3).

Distal Changes in Phytohormone
Signaling Pathways
To obtain insight into the growth stunting by blast infection,
we examined changes in phytohormone pathways in the sixth
leaf (N+2) by expression analysis of hormone-responsive marker
genes (Figure 4 and Supplementary Table 1). The results
indicated activation of stress hormone pathways, and suppression
of growth promoting hormone pathways in blast-infected plants
(Figure 4).

Jasmonate-responsive genes, JAmyb (Lee et al., 2001) and
OMT (Yoshii et al., 2010), and ABA-responsive genes, SalT
(Rabbani et al., 2003) and OsWsi18 (Joshee et al., 1998),
were significantly upregulated in response to blast infection
at 3 dpi, and the expression levels were further increased at
least until 6 dpi (Figures 4A–D). Interestingly, cutting off the
inoculated fourth leaf blades reduced the induction of these genes
(Figures 4A–D). Determination of JA and ABA contents in the
sixth whole leaf at 3 dpi showed no significant differences between
uninoculated control and blast-infected plants (Supplementary
Table 2).

By contrast, auxin-responsive genes,ARF1 (Waller et al., 2002)
and IAA9 (Jain et al., 2006), were downregulated in response
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FIGURE 2 | Cutting off the blast-infected leaf blades significantly rescues the stunted growth of upper distal leaves. (A) Image of rice seedlings of mock control (Con,
left), blast-infected (B, right), and cutting off blast-infected leaf blades (Bc, middle). Rice seedlings at the four-leaf stage were inoculated with blast fungus M. oryzae
(race 007.0), and the photograph was taken at 5 wpi. (B) Close observation of the sixth leaf in mock control (Con, left), blast-infected (B, right), and cutting off
blast-infected leaf blades (Bc, middle) at 16-dpi. (C) Lengths of leaf blades (upper column) and leaf sheathes (bottom column) of sixth and seventh leaves of rice
seedlings shown in (A). Blast-infected leaf blades were cut off at dpi as indicated by numbers in parentheses. (N) depict no cutoff of leaf blades. Values are the
means ± standard errors; different letters on the bars indicate a significant difference (P < 0.05) based on Duncan’s test.

to blast infection, and cutting off the inoculated leaves partially
restored the downregulation (Figures 4E,F). On the other hand,
a significant upregulation of GA-inactivation gene OsGA2ox3
(Sakai et al., 2003) and GA biosynthesis gene OsGA20ox1
(Toyomasu et al., 1997) were observed in blast-infected plants
(Figures 4G,H). Cutting off the inoculated leaves partly reduced
the upregulation (Figures 4G,H). OsGA2ox3 encodes an active
GA 2-oxidase that inactivates bioactive GAs and its immediate
precursors (Sakai et al., 2003); and OsGA20ox1 encodes a key
enzyme for GA biosynthesis, whose expression is negatively
regulated by GA (Toyomasu et al., 1997; Sakamoto et al.,

2001). These results indicate that signaling pathways of auxin
and GA in the upper distal leaves are downregulated by blast
infection.

Contrary to expectation, SA responsive marker genes
WRKY45 (Shimono et al., 2007) and OsNPR1 (Sugano et al.,
2010), and PR genes OsPR1b and PBZ1, were downregulated
in response to blast infection (Figures 5A,B). Cutting
off the infected leaf blades slightly restored expression of
OsPR1b and PBZ1 in leaf blades, while no appreciable effect
on WRKY45 and OsNPR1 was observed (Figures 5C,D).
Expression levels of the genes were relatively low and had no
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FIGURE 3 | Transcriptional induction of JA marker gene, JAmyb, in response
to blast infection in the blast-infected leaf blades. Rice seedlings at the
four-leaf stage were inoculated with blast fungus M. oryzae (race 007.0).
Transcript levels of JA-responsive genes, JAmyb, were determined at the
indicated time points (dpi) by qRT-PCR using Rubq1 as an internal control.
Open and filled circles depict mock control and blast-inoculation, respectively.
Mean values of three biological replicates with standard deviations are shown.

appreciable restoration by cutting off the infected leaf blades
(Figures 5C,D).

Cell Wall Related Genes Are
Downregulated
Cellulose synthase genes OsCESA5 and OsCESA6, cellulose
synthase-like gene OsCSLA9, and expansin OsEXP1 and
OsEXP15 were downregulated in response to blast infection,
and cutting off the inoculated leaves partially reduced the
downregulation (Figures 6A–E). These results are similar to
those in stunted rice plants infected with RTSV (Budot et al.,
2014).

Reduction in JA Levels Partially Rescued
the Growth Stunting
As JA responsive marker genes were significantly upregulated
in the stunted leaves (Figures 4A,B), a rice mutant line
cpm2 defective in the gene encoding allene oxide cyclase
(OsAOC) (Biswas et al., 2003) was employed to investigate
the possible association of JA signaling pathway with the
growth stunting of blast-infected rice plants. The levels of
endogenous JA and JA-isoleucine have been shown to be
significantly reduced in cpm2 compared with that in its
WT plants (Riemann et al., 2013). Compared with WT
line (Nihonmasari), cpm2 plants exhibited more elongated
leaves (Figure 7A). Blast infection resulted in reduction in
leaf length of both cpm2 and its WT plants (Figure 7A).
However, cpm2 had a remarkably higher relative leaf growth
(leaf length in blast-infected plants relative to that in mock
control plants) (Figure 7B), indicating that JA-reduction
partially rescued the leaf growth inhibition caused by blast
infection.

Exogenous JA and ABA Caused Stunted
Seedling Growth
The effect of each phytohormone on plant growth was examined
by root drenching of rice seedlings with each phytohormone at
four-leaf stage and measuring leaf lengths of the fifth leaf of
the seedlings, 4 weeks after the onset of treatments. As shown
in Supplementary Figure 1, GA treatment promoted elongated
growth. In contrast, JA and ABA treatments severely suppressed
plant growth. The inhibition effects of leaf growth by JA and ABA
were fairly similar to those by blast infection (Supplementary
Figure 1B). Other phytohormones showed only minor effects on
leaf growth (Supplementary Figure 1).

DISCUSSION

As early as several decades ago, it was observed that rice plants
infected with blast fungus M. oryzae exhibit a severe growth
inhibition in addition to formation of blast disease lesions at
the infection sites on leaf blades (Tokunaga et al., 1959). The
growth inhibition was manifested the most in successive upper
two to three leaves counted from the infected leaf (Figure 1),
consistent with previous reports (Tokunaga et al., 1959; Yoshida
et al., 1992). This morphological symptom (Zurikomi) may
be considered a consequence of a trade-off between growth
and defense, in which rice plants prioritized defense reactions
at the expense of plant growth at the time of infection.
However, the underlying mechanism for this phenomenon has
remained essentially elusive. It was previously suggested that
excess accumulation of coumarin (Tamari and Kaji, 1959a,b) or
ethylene evolution (Kozaka and Teraoka, 1977) in response to
blast infection might be responsible for the growth inhibition;
however, these suggestions were not supported in later studies
(Satoh and Kozaka, 1966, 1971; Yoshida et al., 1992). In
this study, we found that cutting off the blast-infected leaf
blade within 2 dpi significantly rescued the growth inhibition
of upper distal leaves (Figure 2). This suggests that a yet
unknown inhibitory substance(s) and/or signal is generated in
the blast-infected sites and transmitted to upper uninfected
distal leaves, where it induced growth inhibition. In the upper
distal leaves, JA- and ABA-pathways were upregulated, whereas
auxin- and GA-pathways were downregulated (Figure 4). It has
been shown that JA and ABA negatively impact plant growth,
in contrast to auxin and GAs, which promote plant growth
(Swiatek et al., 2003; Xiang et al., 2008; Zhang and Turner,
2008; Yang et al., 2012; Liu et al., 2015; Hibara et al., 2016).
The GA-responsive cell wall related genes (Budot et al., 2014)
were also significantly downregulated (Figure 6). Further, the
JA-deficient rice mutant cpm2 showed a less pronounced leaf
growth inhibition compared with its WT plants upon blast
infection (Figure 7). In addition, treatment of rice seedlings
with JA and ABA resulted in stunted growth resembling
blast infection (Supplementary Figure 1). Taken together, these
results strongly suggest that an inhibitory substance(s) and/or
signal(s) generated in the blast-infected leaves activated JA
and ABA, and suppressed GA and auxin signaling pathways
in the upper distal leaves, which in turn resulted in growth
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FIGURE 4 | Expression analysis of marker genes for JA (A,B), ABA (C,D), IAA (E,F), and GA (G,H) in the sixth leaf of mock control (CW, CB, and CS), blast-infected
(BW, BB, and BS), and cutting off blast-infected leaf blades (BcW, BcB, and BcS). Rice seedlings at four-leaf stage were blast-inoculated, and half of them were
subjected to cutting off the inoculated fourth leaf blades at 2-dpi. Whole sixth leaf from every treatment was collected at 3-dpi (CW, BW, and BcW), and leaf blades
(CB, BB, and BcB) and leaf sheathes (CS, BS, and BcS) separately at 6-dpi. Values are the means ± standard errors. Different letters above bars indicate a
significant difference (P < 0.05) based on Duncan’s test; (w): for whole leaves, (b): for leaf blades, (s): for leaf sheaths.

stunting of the leaves. These findings provide new insights into
the controlling mechanism of growth-defense balance in rice
plants.

It has been reported that JA antagonistically interacts with
the GA signaling cascade to prioritize defense over growth upon
pathogen attacks in both Arabidopsis and rice (Yang et al.,

2012). It was shown that Arabidopsis and rice coi1 mutants,
defective in JA perception, exhibited GA hypersensitivity; JA
delayed GA-mediated degradation of DELLA protein, and
conversely the DELLA mutant was less sensitive to JA in
terms of growth inhibition (Yang et al., 2012). Our previous
and present studies showed that the signaling pathways of
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FIGURE 5 | (A–D) Expression analysis of SA responsive genes and PR genes
in the sixth leaf as described in Figure 4. Values are the means ± standard
errors. Different letters above bars indicate a significant difference (P < 0.05)
based on Duncan’s test; (w): for whole leaves, (b): for leaf blades, (s): for leaf
sheaths.

both JA (Figure 3) and ABA (Jiang et al., 2010) are activated
in blast-infected leaves. However, they differed in induction
time: JA within 2 dpi, whereas ABA at 3 dpi. Taking these
results together with the data shown in Figures 2, 4–7, it is
tempting to speculate that JA may possibly take a role in signal
transmission from blast-infected sites to upper distal leaves.
Naturally, this hypothesis needs to be validated in future studies.

FIGURE 6 | (A–E) Expression analysis of cell wall-related genes in sixth leaf as
described in Figure 4. Values are the means ± standard errors. Different
letters above bars indicate a significant difference (P < 0.05) based on
Duncan’s test; (w): for whole leaves, (b): for leaf blades, (s): for leaf sheaths.

Moreover, only a partial growth restoration in blast-infected
cpm2 seedlings (Figure 7) indicates the existence of additional
factor(s) functioning in the growth stunting. In this context,
ABA may also participate in the growth inhibition in later
stages following the JA. Meanwhile, it is also possible that the
partial growth restoration in cpm2 seedlings is due to remaining
quantities of JA (Riemann et al., 2013). The mechanism of
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FIGURE 7 | Growth inhibition by blast infection is partially rescued in
JA-deficient mutant cpm2. (A) Rice seedlings at the four-leaf stage were
inoculated with blast fungus M. oryzae (race 007.0), and lengths of leaf blades
(upper column) and leaf sheathes (bottom column) of sixth and seventh leaves
were measured at 5-wpi. WT: wild type control of cpm2; (–) = mock control;
(+) = blast-infected. Values are the means ± standard errors; the asterisks
indicate significant difference from the mock control plants (t-test, ∗ and ∗∗

indicate P < 0.05 and 0.01, respectively). (B) Relative growth of leaf blades
(upper columns) and leaf sheaths (bottom columns) of sixth and seventh
leaves were expressed as leaf length in blast-infected plants relative to that in
mock control plants.

distal activation of JA- and ABA-signaling pathways in response
to blast infection is unknown. Determination of JA and ABA
contents showed no appreciable changes either in blast-infected
rice leaves (Schweizer et al., 1997; Jiang et al., 2013) or in
upper distal leaves (Supplementary Table 2), even though the
marker genes were activated in both the local (Schweizer
et al., 1997; Jiang et al., 2010) and distal sites (Figure 4).
A similar phenomenon was also observed for SA, in which blast
infection of rice seedlings induced SA responsive genes without a
concomitant increase in endogenous SA levels (Silverman et al.,
1995). A possible explanation for these observations may be
the intracellular relocalization or releasing from sequestration
of these phytohormones in response to blast fungus infection.
Alternatively, the possibility that a local increase of the
phytohormones at the infection spots was technically difficult to
detect cannot be excluded.

Stunted or dwarfed plant growth is also observed in rice
plants infected with several disease-causing viruses, which has

been associated with suppression of GA and/or auxin signaling
cascades and expression of genes related to cell wall synthesis
and expansion (Satoh et al., 2010, 2011, 2013; Budot et al.,
2014). It has also been shown that the defense master regulator
OsNPR1 attenuates rice plant growth by repressing auxin
signaling pathway (Li et al., 2016). Consistent with these,
we found significant reduction in auxin and GA pathways
(Figures 4E–H) as well as in expression levels of cell wall related
genes (Figure 6) in the upper distal leaves of blast-infected rice
seedlings. This indicates that the reduction in auxin and GA
pathways also plays a causative role in the growth stunting.
Whether the reduction in auxin and GA pathways is associated
with the upregulation of JA and ABA pathways remains to be
elucidated.

Unexpectedly, SA responsive marker genes WRKY45 and
OsNPR1, and PR genes OsPR1b and PBZ1 are downregulated
in response to blast infection in the upper distal leaves
(Figure 5). This may imply that rice plants prioritize the defense
against infecting pathogen over the distal uninfected tissues
as well in order to efficiently cope with the life-threatening
situation. There have been several reports that priming of rice
seedlings by pre-inoculation with an avirulent M. oryzae isolate
enhanced resistance following infection by virulent isolates
(Manandhar et al., 1998; Ashizawa et al., 2005; Yasuda et al.,
2008; Filippi et al., 2014). However, to our knowledge, no
study has yet explored the systemic defense regulation during
rice–pathogen (M. oryzae) interaction. The downregulation of
the WRKY45 and OsNPR1 may be due to the activation of
ABA, as ABA negatively impacts on SA signaling pathway
(Jiang et al., 2010; Sugano et al., 2010). It would be interesting
to investigate how blast resistance changes in relation to
alterations of phytohormone pathways in distal tissues upon blast
infection.

In summary, we showed that a yet unknown inhibitory
substance(s) and/or signal(s) is generated in the M. oryzae-
infected leaves and transmitted to the upper distal leaves, where
it causes growth stunting through activation of JA and ABA, and
suppression of GA, auxin, and SA signaling pathways, to mediate
the prioritizing of defense responses against pathogen attack over
growth in rice plants.
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