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Phoebe zhennan (Gold Phoebe) is a threatened tree species in China and a valuable
and important source of wood and bioactive compounds used in medicine. Apart from
anthropogenic disturbances, several biotic constraints currently restrict its growth and
development. However, little attention has been given to building adaptive strategies for
its conservation by examining its morphological and physio-biochemical responses to
drought stress, and the role of fertilizers on these responses. A randomized experimental
design was used to investigate the effects of two levels of irrigation (well-watered and
drought-stressed) and phosphorous (P) fertilization treatment (with and without P) to
assess the morphological and physio-biochemical responses of P. zhennan seedlings
to drought stress. In addition, we evaluated whether P application could mitigate the
negative impacts of drought on plant growth and metabolism. Drought stress had a
significant negative effect on the growth and metabolic processes of P. zhennan. Despite
this, reduced leaf area, limited stomatal conductance, reduced transpiration rate,
increased water use efficiency, enhanced antioxidant enzymes activities, and osmolytes
accumulation suggested that the species has good adaptive strategies for tolerating
drought stress. Application of P had a significant positive effect on root biomass,
signifying its improved water extracting capacity from the soil. Moreover, P fertilization
significantly increased leaf relative water content, net photosynthetic rate, and maximal
quantum efficiency of PSII under drought stress conditions. This may be attributable to
several factors, such as enhanced root biomass, decreased malondialdehyde content,
and the up-regulation of chloroplast pigments, osmolytes, and nitrogenous compounds.
However, P application had only a slight or negligible effect on the growth and
metabolism of well-watered plants. In conclusion, P. zhennan has a strong capability
for drought resistance, while P application facilitates and improves drought tolerance
mostly through physio-biochemical adjustments, regardless of water availability. It is
imperative to explore the underlying metabolic mechanisms and effects of different levels
of P fertilization on P. zhennan under drought conditions in order to design appropriate
conservation and management strategies for this species, which is at risk of extinction.
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INTRODUCTION

Scenarios of climatic change predict an increase in the duration
and severity of the drought events in major parts of the world,
which will potentially affect nutrient availability, plant growth
and productivity, and ecosystem function (Ledger et al., 2013;
He and Dijkstra, 2014). The increased production of reactive
oxygen species (ROS), as a result of drought stress, induces a
series of morphological and metabolic changes that affect normal
growth and development of many plant species (Keunen et al.,
2013; Oliveira et al., 2014). Stress signals are first perceived at
the membrane level by the receptors and then transduced in
the cell to up-regulate stress response genes that facilitate stress
tolerance (Mahajan and Tuteja, 2005). However, tolerance to
environmental stress varies depending on plant species, growth
stage and stress intensity (Demirevska et al., 2009).

Phosphorus (P) is a key element required for normal plant
development, but its low mobility in soil results in poor uptake by
plants, which consequently inhibits growth and metabolism. The
majority of soil types, including fertile soils, have low available
P, because the rate of absorption in the rhizosphere exceeds
the rate of its replenishment in soil solution (Suriyagoda et al.,
2011). Previous studies suggest that phosphorus contributes for
the extension of root system and P deficiency will exacerbate
drought stress (Cramer et al., 2009; Sardans and Penuelas, 2012).
The use of P fertilizer reduces its deficiency in soil, increases the
stress-tolerating ability of plants (Cortina et al., 2013) and results
in adjustments of physiological, morphological, and biochemical
processes that increase plant growth (dos Santos et al., 2004;
Jones et al., 2005; Campbell and Sage, 2006; Faustino et al.,
2013; Liu et al., 2015). Despite the importance of P in plant
productivity, relatively few studies have assessed its effects on
plant physiological and ecological processes under drought stress
(dos Santos et al., 2006; Naeem and Khan, 2009; Fleisher et al.,
2012; Jin et al., 2015; Liu et al., 2015). Most of these studies
examined the relationship between P application and physio-
biochemical adjustments under drought stress in non-woody
plants (mostly crop species). Much less attention has been paid
to evaluating the relationship between P application and drought
resistance mechanisms in high quality, timber producing forest
trees of conservation interest; this could be a potential area of
research due to issues of possible future climate change.

Forest trees account for approximately 82% of terrestrial
biomass and more than 50% of terrestrial biodiversity (Neale
and Kremer, 2011), they help mitigate against climate change
and provide a range of ecosystem services, such as nutrient
cycling, carbon sequestration, water and air purification, and
timber production for energy and industry (Harfouche et al.,
2014). Globally, forest trees are increasingly subject to different
types of environmental stresses that affect the growth and
sustainability of trees. The predicted increase in global drought
stress is likely to significantly impact forest trees by reducing
nutrient supply and uptake and altering its redistribution in soils
through mineralization (Schimel et al., 2007; Sanaullah et al.,
2012). Studies on the effects of nutrient availability on the growth
of woody species are common (He and Dijkstra, 2014), but
there is little understanding about the possible role of nutrient

application in the enhancement of stress tolerance ability of forest
tree species.

The slow-growing, forest tree species, Phoebe zhennan S. Lee
(Lauraceae; Golden Phoebe), is endemic to subtropical China
and is widely distributed at elevations below 1,500 m (Hu et al.,
2015). While P. zhennan is an economically important timber and
medicinal species, it has been listed as a threatened species by
International Union for Conservation of Nature (IUCN) and is
nationally protected (Gao et al., 2016). Apart from anthropogenic
disturbances, studies of forest plantations have suggested that
P. zhennan rarely reaches its full growth potential due to abiotic
constraints (Wu, 2009) such as drought stress. Although Hu
et al. (2015) studied the antioxidative response of P. zhennan
to drought conditions; this was a short-term study of 1 month
duration and, as such, does not provide a detailed understanding
of the effect of drought stress on growth and physio-biochemical
impairment or adaptive strategies. Nevertheless, it has been
suggested that slow-growing species are less sensitive to soil
mineral and drought stress, because of their low mineral
absorption rate and slow growth strategy (Chapin, 1980) and
it is possible that P. zhennan may possess inherent strategies
to abiotic stress. There is a lack of understanding of growth
and metabolic responses by P. zhennan to drought stress and
the possible associated morphological and physio-biochemical
adaptive strategies. Moreover, to the best of our knowledge, there
is no published research examining how P fertilizer application
may help mitigate drought stress in P. zhennan. The likelihood
of climate change mediated increases in arid conditions may
have implications for the economically important, but threatened
P. zhennan. Thus, research to promote the understanding of
drought tolerance and response mechanisms to addition of P
fertilizer in P. zhennan is timely.

In this study, we addressed the following objectives (1) to
assess the morphological and physio-biochemical responses of
P. zhennan to drought stress; and (2) to evaluate whether
P application mitigates the negative impact of drought by
improving the tolerance capacity of P. zhennan. Accordingly, we
investigated plant growth, water status, gas exchange, chlorophyll
fluorescence, reactive oxygen production rate, antioxidant
enzyme activities, and biochemical parameters.

MATERIALS AND METHODS

Experiment Design
The experiment was conducted at the Center for Ecological
Studies at the Chinese Academy of Sciences, Sichuan in south-
west China. Healthy and uniform, 2-year-old P. zhennan plants
were collected from Sichuan Agricultural University, Sichuan
province, and transplanted to 10 L plastic pots filled with
approximately 4 kg of homogenized topsoil (pH 7.3, total
nitrogen 0.19%, and carbon 2.67%). The pots were arranged
in a complete randomized block design in a greenhouse
(temperature range 18–32◦C, relative humidity range 50–85%)
and regularly watered. Light availability was homogeneous inside
the greenhouse, and direct sunlight reduction due to covering
was in the range of 6–9%. After growing for 2 months in the
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greenhouse, the plants were subject to three replicates of four
treatments for 90 days: two water regimes (well-watered and
water-stressed) and two levels of P fertilization (with and without
P fertilization). Immediately prior to applying the treatments,
total and available P in soils was first determined to be 0.89 g
kg−1 and 27.6 mg kg−1, respectively. Available P was extracted
with 0.5 M NaHCO3 (pH 8.2) according to Olsen and Sommers
(1982) and measured colorimetrically by the molybdate-ascorbic
acid as described by Murphy and Riley (1962). Soil relative water
content (SRWC) of the two water treatments (control: 80–85%;
severe drought: 30–35%) was calculated using the weight method
(Xu et al., 2009). The pots were weighed daily and watered up to
their respective target SRWC, by replacing the amount of water
transpired and evaporated. SRWC was expressed as:

SRWC = (Wsoil +Wpot + DWsoil)/
(
WFC −Wpot

)
where Wsoil was the current soil weight, Wpot was the weight of
the empty pot, DWsoil was the dry soil weight, and WFC was the
soil weight at field capacity.

Phosphorous fertilization was supplied as sodium dihydrogen
phosphate (NaH2PO4, 25.5% P) with the dose of 129.3 mg P
mixed in 200 mL water per pot every 30 days. In order to
avoid systematic error produced by fluctuation in environmental
conditions, pots were rotated after every 5 days during the
experiment. Each treatment was replicated three times. Plant
samples were collected at the end of the experiment.

Plant Growth and Biomass
Plant height (cm), stem diameter (mm), and leaf area (cm2) were
measured by using a measuring tape, caliper, and a leaf area
meter (CI 202, United States), respectively. After removing the
plants from the soil, roots, stems, and leaves were separated and
weighed. Samples were oven dried at 70◦C for 24 h, to measure
biomass.

Leaf Relative Water Content
Expanded leaves were collected from each plant and weighed
to obtain fresh weight (FW). The leaves were then immediately
dipped into distilled water at a temperature of 4◦C and under
dark conditions. After 12 h, leaves were weighed to obtain turgor
weight (TW) and then dried for 24 h in an oven set at 70◦C to
determine dry weight (DW). The following equation was used to
calculate leaves relative water content (LRWC).

LRWC = [(FW− DW)/(TW− DW)] × 100%.

Gas Exchange and Chlorophyll
Fluorescence
The net CO2 assimilation rate (Pn), stomatal conductance (Gs),
and intercellular CO2 concentration (Ci) were measured with a
portable open-flow gas exchange system (LI-6400, LI-COR Inc.,
United States), between 9:00 and 11:00 h, on fully expanded leaves
that were at similar stages of development. During this time,
relative air humidity, CO2 concentration, and photon flux density
were maintained at 60–70%, 380 µmol mol−1 and 800 µmol
m−2 s−1, respectively. Intrinsic water use efficiency (WUEintr)

was calculated by dividing the instantaneous values of Pn by Gs.
The maximum quantum efficiency of photosystem II (Fv/Fm)
of the leaves was measured with a portable pulse amplitude
modulated fluorometer (PAM-2100, Walz, Effeltrich, Germany),
where the leaves were dark-adapted with clips for 20 min. After
this time, minimal fluorescence (Fo) was measured under a weak
pulse of modulating light over 0.8 s, and maximal fluorescence
(Fm) was induced by a saturating pulse of light (8,000 mmol
m−2 s−1) applied over 0.8 s. Fv/Fm was calculated, where Fv was
the difference between Fm and Fo.

Photosynthetic Pigments
Chlorophyll a (Chl a), chlorophyll b (Chl b), and carotenoids
(Car) were determined using 0.2 g FW leaf samples, with 80%
acetone as a solvent. Leaf samples were placed in dark conditions
for 36 h and absorbance was recorded at 662, 645, and 470 nm
spectrophotometrically (Lichtenthaler and Buschmann, 2001).

Determination of Biochemical
Parameters
Dried leaf samples (0.2 g DW) were mixed with 6 mL of 80%
ethanol at 80◦C for 30 min. The resulting extracted supernatant
was analyzed for soluble sugars (SS) following the anthrone
method using sucrose as a standard (Zhang and Qu, 2003). For
NO3

− concentration, 0.2 g of frozen leaves was homogenized in
5 mL of deionized water, while for NH4

+ concentration, 0.2 g of
frozen leaves was homogenized in 2 mL of 10% HCl. The resulting
supernatants were analyzed using a quantitative colorimetric
method as described by Tang (1999). Proline was extracted with
2 mL of 10% acetic acid and 5 mL of 3% sulfosalicylic acid,
respectively. The resulting supernatants were analyzed according
to the method of Liu et al. (2014). Soluble proteins (SP) were
determined using Bradford G-250 reagent.

ROS and Lipid Peroxidation
Two measures of ROS were estimated. Firstly, production rate
of superoxide anion (O2

·−) was measured by monitoring nitrite
formation from hydroxylamine, in the presence of O2

·− (Elstner
and Heupel, 1976). Fresh leaves (0.2 g) were homogenized with
2 mL of 65 mM phosphate buffer (pH 7.8) and centrifuged
at 5000 × g for 10 min. The incubation mixture contained
0.9 mL of 65 mM phosphate buffer (pH 7.8), 0.1 mL of 10 mM
hydroxylammonium chloride, and 1 mL of supernatant. After
incubation at 25◦C for 20 min, 17 mM sulphanilamide, and 7 mM
α-naphthylamine were added to the incubation mixture and kept
at 25◦C for 20 min. Ethyl ether in the same volume was added and
centrifuged at 1500× g for 5 min. The absorbance wavelength for
the aqueous solution was 530 nm.

Secondly, hydrogen peroxide (H2O2) concentration was
determined by monitoring the absorbance of the titanium-
peroxide complex at 410 nm (Patterson et al., 1984). Fresh leaves
(0.2 g) were homogenized with 5 mL of acetone and centrifuged
at 3,000 × g for 10 min. The reactive mixture, containing 0.1 mL
of titanium reagent (50 µL of 20% titanium tetrachloride in
concentrated HCl), 0.2 mL of ammonia, and 1 mL of supernatant,
was centrifuged at 3,000× g for 10 min. The resulting precipitate
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was washed five times with acetone, before being centrifuged at
10,000 × g for 5 min. The precipitate was solubilized in 3 mL
of 1 M H2SO4 and the absorbance at 410 nm was measured.
Lipid peroxidation was estimated by measuring malondialdehyde
(MDA) content according to the thiobarbituric acid (TBA) test
at 450, 532, and 600 nm, respectively (Zhou et al., 2007). For
MDA assay, 0.25 g of fresh leaves were ground in 5 mL of
1% trichloroacetic acid (TCA) and centrifuged at 5,000 g for
10 min. Supernatant (1 mL) was added to 4 mL of 20% TCA
(containing 0.5% TBA) and the mixture was heated at 95◦C for
30 min, before being cooled in an ice bath. Absorbance was
read using a spectrophotometer at 450, 532, and 600 nm (Zhou
et al., 2007). The MDA concentration was calculated using the
following equation:

MDA (mol g−1FW) = 6.45(OD532−OD600) − 0.56OD450

Antioxidant Enzyme Activities
Three measures of antioxidant stress were assessed. Superoxide
dismutase (SOD) activity was determined using the nitroblue
tetrazolium (NBT) method (Fu and Huang, 2001). One unit of
SOD activity was defined as the amount of enzyme required
for 50% inhibition of NBT reduction at 560 nm. Activities
of catalase (CAT) and peroxidase (POD) were determined
using the methods of Fu and Huang (2001). For CAT, the
decomposition of H2O2 was determined by measuring the
reduction in absorbance at 240 nm for 1 min. For POD, the
oxidation of guaiacol was determined by measuring the increase
in absorbance at 470 nm for 1 min. One unit of CAT and
POD activity was defined as an absorbance change of 0.01
unit’s min−1.

Statistical Analysis
All measurements were repeated three times, and the data
were organized using Microsoft Excel 2007 and presented as
means ± standard errors (SEs). SPSS version 16.0 (Chicago,
IL, United States) was used to run one-way analysis of
variance (ANOVA) and Duncan’s multiple range tests at the
0.05 significance probability level were used to compare mean
values. Prior to analysis, data were checked for normality and
homogeneity of variances. Origin pro 8.5 was used for graphical
presentation; error bars represent standard errors, and all data in
the figures represent the means± SEs.

RESULTS

Plant Growth and Biomass
Reduction in morphological traits was observed in drought-
stressed plants compared with well-watered plants (Table 1).
Under water deficit conditions, shoots and root biomass, leaf
area and stem diameter significantly decreased (45.2, 39.8,
28.5, and 9.1%, respectively) compared with well-watered plants
irrespective of P application. Root biomass in drought-stressed
plants was significantly higher (14.4%) in fertilized plants than
in unfertilized plants. There were no significant treatment
differences for the other growth parameters.

Leaf Relative Water Content,
Photosynthetic and Chlorophyll
Fluorescence
In comparison with well-watered unfertilized plants there
was a significant reduction in LRWC, Pn, Fv/Fm, Ci, and
Gs (27.2, 72.6, 17.2, 34.72, and 73.94%, respectively) of
drought-stressed unfertilized plants. Under drought stress
conditions, LRWC, Pn, and Fv/Fm were significantly lower in
unfertilized plants than in fertilized plants, while there were
no significant effects of fertilizer on the other parameters
in drought-stressed plants (Table 2). Water use efficiency
(WUEintr) showed an opposite trend and increased 44.13%
under drought condition than well-watered plants, regardless
of P application. However, there was no significant change in
WUEintr in P fertilized plants under water-stressed conditions.
There was no effect of P fertilizer on LRWC or any
of the photosynthetic and chlorophyll parameters in well-
watered plants. Moreover, under drought condition water
consumption rate was higher in P-fertilized plants than
unfertilized plants but lower than well-watered plants (data not
shown).

Photosynthetic Pigments
Concentration of Chl a and Chl b in non-fertilized plants
was significantly lower (22.2 and 40.0%, respectively) in water-
stressed than in well-watered plants (Figures 1A,B). We found
that Chl a and Chl b concentration was significantly greater
in drought-stressed plants that had been treated with fertilizer
than in those that had been unfertilized. Neither water nor

TABLE 1 | Changes in morphological parameters of Phoebe zhennan for non-fertilized (−P) and fertilized (+P) treatments with and without water stress.

Traits Well-watered Water-stressed

−P +P −P +P

Leaf biomass (g) 2.12 ± 0.29a 1.98 ± 0.48a 1.52 ± 0.08a 1.55 ± 0.06a

Shoot biomass (g) 9.99 ± 0.9a 9.7 ± 0.87a 5.47 ± 0.42b 5.96 ± 0.45b

Root biomass (g) 5.18 ± 0.17a 5.37 ± 0.12a 3.12 ± 0.08c 3.57 ± 0.12b

Leaf area (cm2) 32.55 ± 3.03a 32.72 ± 1.73a 23.26 ± 1.1b 22.19 ± 0.71b

Height (cm) 34.33 ± 1.2a 35.33 ± 2.19a 32.33 ± 1.2a 33.33 ± 0.88a

Diameter (mm) 4.81 ± 0.1a 4.68 ± 0.11ab 4.37 ± 0.09b 4.47 ± 0.13ab

Means followed by different letters indicate significant differences (P ≤ 0.05) among the four treatments according to Duncan’s test. Values are means ± SE.
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fertilizer treatment had any effect on carotenoid concentration
(Figure 1C).

Biochemical Parameters
The concentration of NH4

+ was higher in well-watered plants
than drought-stressed plants, while the opposite was found
for proline concentration (Table 3). With the exception of SS
concentration, which was greater in fertilized than unfertilized
drought-stressed plants, we found no significant effect on
biochemical parameters of fertilizer within well-watered or
drought-stressed plants.

ROS Production and Lipid Peroxidation
Regardless of P application, measures of ROS production (O2−

and H2O2) and lipid peroxidation (MDA) were significantly
higher in plants under drought stress conditions than in well-
watered plants (Figure 2). Addition of P had no significant effect
on concentration of either both O2− and H2O2 in the two water
treatments or MDA in well-watered plants; however, it resulted
in significantly lower MDA content in drought-stressed plants
(Figures 2A–C).

Antioxidant Stress
Activity of POD and CAT was higher in drought-stressed plants
than in well-watered plants, and SOD activity was highest in
unfertilized, drought stress plants (Figure 3). Addition of P had
no significant effect on the measures of antioxidant stress in either
of the water treatments.

DISCUSSION

Drought Stress and Biomass
Drought stress is considered a major environmental stress that
adversely affects tree growth and forest productivity around
the world (Bartlett et al., 2012; Harfouche et al., 2014). We
found that, irrespective of P application, biomass of the above
and below ground plant parts of P. zhennan was significantly
lower under drought stress conditions compared with well-
watered conditions. Low water content in soil decreases mobility
of available ions, nutrient availability, and microbial activities

in the soil (Hu and Schmidhalter, 2001). Furthermore, root
interaction with arbuscular mycorrhizas (AM) can increase plant
tolerance to drought because the fungi improves plant water
status by modulating ABA-mediated abiotic signaling pathway
involving D-myo-inositol-3-phosphate synthase (IPS) and 14-
3-3 proteins (Li et al., 2016). Moreover, in the plant it causes
partial or total stomatal closure, drop in water potential, loss of
cell turgor reduction of cell expansion, and if the dehydration
is severe, the disruption of normal bilayer structure of the
cell membranes through a reduction in synthesis, and possibly
denaturation of cytosolic and organelle protein that leads to
impaired cell metabolism (Mahajan and Tuteja, 2005). We
found that application of P to plants under drought stress
resulted in significantly greater root biomass, which may be
attributed to several factors, including increased uptake of P,
higher consumption rate of assimilates in root material, and
enhanced hydraulic conductance of the root system (Garg et al.,
2004). Phosphorous application plays an important role in root
development thereby increasing accessibility to other nutrients
in the rhizosphere (Liao and Yan, 2000; Razaq et al., 2017).
Moreover, the root tip is responsible for sensing and signaling
of P availability, and to initialize the reduction in root growth
in P deficient environments and the proteins containing an
SPX domain are important in regulating not only P uptake but
also P distribution within subcellular compartments (Rouached
et al., 2010). Higher root biomass also improves the ability of
roots to extract soil moisture, contributing to drought tolerance
(Meng and Yao, 2015); therefore, P application may enhance
the drought tolerance of P. zhennan through the promotion
of root biomass. This higher root biomass would be a further
advantage in drought conditions where water is available in
deeper soil profiles (Tardieu, 2012). We also found that P
fertilization had no effect on the biomass of above and below
ground plant parts in well-watered condition and suggest this
may be due to the slow-growing nature of P. zhennan, and/or
the sufficient availability of P in the soil to meet the functional
requirements of the establishing seedlings. Curiously, our results
contrast with studies that report increased growth rate and
biomass accumulation in P fertilized plants (Graciano et al.,
2005; Jones et al., 2005; Ram et al., 2006) but support other
studies that suggest non-significant effects of P fertilization on

TABLE 2 | Changes in leaf relative water content, photosynthetic and chlorophyll fluorescence parameters, water use efficiency in P. zhennan for non-fertilized (−P) and
fertilized (+P) treatments with and without water stress.

Traits Well-watered Water-stressed

−P +P −P +P

LRWC (%) 41.5 ± 1.93a 41.7 ± 2.74a 30.2 ± 0.89b 36.3 ± 1.16a

Pn (µmol m−2 s−1) 2.57 ± 0.11ab 3.11 ± 0.3a 1.24 ± 0.07c 2.03 ± 0.29b

Ci (µmol mol−1) 248.21 ± 17.16a 249.91 ± 15.8a 162.02 ± 10.8b 207.88 ± 16.39ab

Gs (mol m−2 s−1) 0.036 ± 0.004ab 0.047 ± 0.0136a 0.0093 ± 0.0003c 0.0209 ± 0.0049bc

WUEintr (µmol mol−1) 74.4 ± 11.73b 73.17 ± 12.53b 133.18 ± 7.17a 101.51 ± 11.16ab

E (mmol m−2 s−1) 1.51 ± 0.18ab 1.86 ± 0.62a 0.4 ± 0.01b 0.89 ± 0.17ab

Fv/Fm 0.81 ± 0.02a 0.82 ± 0.02a 0.67 ± 0.01c 0.74 ± 0.02b

Means followed by different letters indicate significant differences (P ≤ 0.05) among the four treatments according to Duncan’s test. Values are means ± SE.
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FIGURE 1 | Changes in chloroplast pigments, chlorophyll a (Chl a, A),
chlorophyll b (Chl b, B), and carotenoids (Car, C) for fertilized (+P) and
non-fertilized (–P) treatments with and without water. Means followed by
different letters indicate significant differences (P ≤ 0.05) among the four
treatments according to Duncan’s test. Vertical bars show ± SE.

growth parameters (Yin et al., 2012; Liu et al., 2015). The
high variability in the responses of different plant species to P
application may be because response to fertilization depend on
the species, available nutrients, nutrient interactions, soil physical
properties, water availability, among many other factors that
modulate the response of the plant to an increase in particular
nutrient concentration in the soil. Absorption of P takes place
at the soil surface, and its lower diffusion rate and slower
movement toward the root, compared with other nutrients,
possibly affect its use efficiency (Schachtman et al., 1998; Grant
et al., 2005). However, in greenhouse experiments, growing
conditions are well controlled; therefore P use efficiency can be
improved if P is mixed uniformly with the volume exploited
by roots (Mitchell, 1957; Sample et al., 1980). However, P use
efficiency varied within a species. For example in Hordeum

vulgare the expression of the gene HVPT5, that can be used
to estimate phosphate use efficiency, was higher under low P
availability in a tolerant accession, but its expression did not
change in the sensitive accession (Ren et al., 2016). Moreover,
plants have inducible high affinity phosphate transporters and
constitutive low affinity phosphate transporters encoded by Pht
(phosphate transporter) gene family that ensure P uptake from
the soil and distribution within different organelles of plant
to sustain photosynthesis, respiration, and growth even under
low P availability conditions (López-Arredondo et al., 2014).
Member of Pht1 gene family encoded high affinity P transporters
which are mostly expressed in epidermal and outer cortex of
the root cells and have already been identified as mediators of
P uptake when P is limited (Schunmann et al., 2004). However,
members of the Pht2, Pht3, and Pht4 gene families were found
to be associated mostly with P distribution within subcellular
compartments (Versaw and Harrison, 2002; Guo et al., 2008).
Moreover, recently, the role of microRNAs (miRNAs) has been
revealed in the regulation of P homeostasis (Doerner, 2008).
miRNA399 has been uncovered as a component of the shoot-
to-root P deficiency signaling pathway, it moves via phloem and
repress E2-conjugase which causes increase in the expression of
root P uptake transporters and hence in the acquisition of P by
the roots and its translocation and distribution to the shoot (Lin
et al., 2008).

We found that leaf area of drought-stressed plants was
significantly lower than in well-watered plants, irrespective of
P application. Generally, water deficiency during the vegetative
growth stage changes leaf turgidity and temperature, and reduces
the supply of assimilates, thus inhibiting leaf growth. In drought
tolerant plant species, reduction in leaf area is considered an
adaptive strategy to reduce water loss through transpiration
(Rostamza et al., 2011). However, the lack of difference in
leaf area, but higher Pn rate and LRWC that we observed
in P fertilized, drought-stressed P. zhennan, suggests better
acclimatory response to drought stress conditions. Dehydration
tolerance of a plant can be measured using the LRWC index.
In our study, LRWC in plants under drought conditions was
significantly lower than that in well-watered plants. Reductions in
LRWC in response to drought-stressed conditions have also been
observed in different plant species (Shubhra et al., 2004; Yang
and Miao, 2010). We found that P fertilizer increased LRWC
in drought-stressed plants, but not in well-watered plants. The
higher LRWC in fertilized, drought-stressed plants in our study
may be associated with the greater biomass of P fertilized plants.
Several studies have also reported improved LRWC due to either
an improved ability of root to extract water or an improved
conservation of water in the plant tissues (Centritto et al., 1999;
Garg et al., 2004; Shubhra et al., 2004; Sato et al., 2010). However,
our results contradict several studies that showed non-significant
effects of P fertilization on LRWC under water deficit condition
(dos Santos et al., 2004; Singh et al., 2006; Liu et al., 2015). This
variability in the effect of P in drought-stressed plant species may
be due to interspecific differences in physiological, biochemical,
and molecular mechanisms, such as gene expression and protein
assimilation. Genes induced by drought stress have been shown
to not only protect plant cells from dehydration but also regulate
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TABLE 3 | Osmolytes accumulation (soluble sugars concentration) and concentration of nitrogenous compounds reduction and assimilation in P. zhennan for
non-fertilized (−P) and fertilized (+P) treatments with and without water stress.

Traits Well-watered Water-stressed

−P +P −P +P

Soluble sugars (mg g−1 DW) 0.44 ± 0.01b 0.41 ± 0.02b 0.47 ± 0.02b 0.57 ± 0.03a

NH4
+ (mg g−1 DW) 0.93 ± 0.03a 0.93 ± 0.06a 0.63 ± 0.04b 0.77 ± 0.058b

NO3
− (mg g−1 DW) 2.75 ± 0.2a 2.85 ± 0.1a 2.01 ± 0.16b 2.33 ± 0.12ab

Soluble proteins (mg g−1 DW) 65.33 ± 4.03ab 67.55 ± 1.6a 57.94 ± 0.9b 60.1 ± 1.41ab

Proline (mg g−1 DW) 0.037 ± 0.001b 0.036 ± 0.003b 0.055 ± 0.006a 0.057 ± 0.004a

Means followed by different letters indicate significant differences (P ≤ 0.05) among the four treatments according to Duncan’s test. Values are means ± SE.

FIGURE 2 | Changes in superoxide anion (O2
·−, A), hydrogen peroxide

(H2O2,, B), and lipid peroxidation (MDA, C) for fertilized (+P) and non-fertilized
(–P) treatments with and without water. Means followed by different letters
indicate significant differences (P ≤ 0.05) among the four treatments
according to Duncan’s test. Vertical bars show ± SE.

signal transduction of certain genes, many of them encode
ion transport proteins which need ATP (P rich compound)
and P is also an important element in various metabolic steps
of protein synthesis (Bohnert and Jensen, 1996; Bohnert and
Sheveleva, 1998). Moreover, a complex intercross between P

FIGURE 3 | Changes in superoxide dismutase (SOD, A), peroxidase (POD,
B), and catalase (CAT, C) for fertilized (+P) and non-fertilized (–P) treatments
with and without water. Means followed by different letters indicate significant
differences (P ≤ 0.05) among the four treatments according to Duncan’s test.
Vertical bars show ± SE.

and N availability in plant water use was demonstrated in the
subtropical trees Eucalyptus grandis and Pinus taeda (Faustino
et al., 2013; Graciano et al., 2016; Costa et al., 2017). Differences
in dry mass partitioning as well as changes in morphology and
physiology in different organs explain why fertilization can affect
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plant drought tolerance in different direction, accordingly with
the environmental factors (soil texture and moisture, nutrient
availability, stress intensity and duration) and capacity of the
plant to make morphological and physiological acclimations to
stressful conditions.

Gas Exchange, Chlorophyll Fluorescence
and Photosynthetic Pigments
Drought stress reduces photosynthetic rate, due to a decrease
in leaf expansion and associated damage to photosynthetic
machinery (Wahid and Rasul, 2005). Our findings revealed that
Pn significantly decreased under drought stress, but the drop was
higher in unfertilized than in fertilized plants. Stomatal closure
is considered to be the main factor in decreasing photosynthesis
under water deficit conditions (Anjum et al., 2011). Stomatal
closure in response to soil water deficit occurs because roots
release high concentrations of abscisic acid (ABA) to the xylem
and, as a result, the increased pH of xylem sap promotes
ABA loading and subsequent transport to the shoots (Hartung
et al., 2002). It is known that many drought-inducible genes
respond to ABA level in leaves, for example, ABA-dependent
and ABA-independent regulatory systems of gene expression
can be regulated under drought stress (Zhu, 2002). Qin and
Zeevart (2002) reported that protein dephosphorylation and
farnesylation are responsible for ABA signaling, while Sauter et al.
(2001) showed that ABA stimulates K+ ions efflux from the
guard cells, resulting in loss of turgor pressure, and decrease Gs.
Reduction of Gs limits gas exchange, decreases Ci concentration
and rates of photosynthesis, due to decline in Rubisco activity
(Reddy et al., 2004). Similarly, our results indicated a significant
decline in Gs and Ci under drought stress, more sharply in
unfertilized than in fertilized plants. There is still debate, however,
about whether drought restricts photosynthetic rate through
stomatal closure or metabolic impairment (Tezara et al., 1999).
Our results revealed that lower Pn was not only associated
with Gs limitation, but was also due to impaired photosynthetic
apparatus as reflected by significant decrease in Fv/Fm during
water deficit conditions. We also found that P application under
drought stress conditions resulted in significantly higher Pn and
Fv/Fm, but had no significant effect on stomatal conductance
or transpiration rate. Thus, our results suggest an enhanced
drought tolerance mechanism that conserves water, as indicated
by increased LRWC, is stimulated by the addition of P. These
results are consistent with previous studies that have reported
enhanced photosynthetic activity in different plant species treated
with P fertilizer under drought stress (Burman et al., 2009;
Singh et al., 2013; Liu et al., 2015). In addition, other factors
may have positive impacts on Pn, in response to P application,
such as increased production of assimilatory products (ATP
and NADPH) and carboxylation activities (Lawlor and Cornic,
2002). WUEintr is considered to be an important component of
adaptation to drought stress and in our study; WUEintr showed an
opposite trend to Pn, where it was significantly higher in drought-
stressed plants, irrespective of P application. Therefore, plants
under drought partially closed the stomata to reduce waters
losses but the photosynthesis was affected proportionally in lesser

extent. However, P application in our study had no significant
effect on WUEintr of water-stressed and well-watered plants, as
has also been reported in other studies (Oliveira et al., 2014; Liu
et al., 2015).

Reduction in chlorophyll concentration is a sign of oxidative
stress or pigment photooxidation under drought stress (Zhang
and Kirkham, 1996) and low levels of photosynthetic pigments
limit the rate of photosynthesis, thus reducing primary
production. Our results showed that water deficit caused
significant damage to the photosystem by degrading chloroplast
pigments. The degraded chloroplast pigments may have also
contributed to the decreased Pn observed in our study. Similar
findings have been observed in other studies that suggest
drought stress damage photosynthetic pigments (Frosi et al.,
2013; Rivas et al., 2013). Previous work has shown that Chl
a and Chl b are susceptible to soil water deficiency (Farooq
et al., 2009) Furthermore, soil dehydration has been shown
to damage lamellae vesiculation and chloroplast membranes,
inducing reductions in chlorophyll (Anjum et al., 2011). In our
study, P application had a significant positive effect on Chl
a and Chl b concentration, which may explain the higher Pn
rate in P fertilized, drought-stressed plants, because high leaf
chlorophyll concentration may allow for increased harvesting
of light over shorter periods of time, as evidenced by the
observed higher photosynthetic rates. Although there were
changes in chlorophyll concentration, P fertilization did not
change carotenoids concentration. This result is different of that
found in the herbaceous Petunia hybrid, in which high P inhibited
carotenoids biosynthetic genes (Nouri et al., 2015). Although our
results were contradictory to some studies, in which negligible
changes in chlorophyll concentrations due to P fertilization may
be due to the duration and severity of drought (Zhang and
Kirkham, 1996; Campbell and Sage, 2006; Singh et al., 2013).
Nevertheless, our findings are supported by previous studies
that suggest P application increases synthesis of photosynthetic
pigments in plants under drought stress (Sharma, 1995; Sinha
et al., 1995).

Osmolytes Accumulation and
Nitrogenous Compounds
Plants adapt to drought environments by increasing the solute
concentration of cells to maintain osmotic function and
hydration (Ramanjulu and Bartels, 2002). Plants accumulate
a variety of osmolytes in the cytosol, therefore the ability
to increase osmotic pressure is considered to be a potential
cellular drought tolerance mechanism, as it improves or
maintains turgidity and continuation of plant growth. Apart from
osmotic adjustment, osmolytes also help in ROS detoxification,
membrane stabilization, as well as protecting macromolecules
(Keunen et al., 2013). Our results showed that there was
no significant increase in SS concentration under drought
in unfertilized plants. However, P fertilization significantly
increased SS concentration in drought-stressed plants compared
with well-watered; this may be due to the inhibition of normal
SS utilization and translocation during water stress or hydrolysis
of starch (Shubhra et al., 2004). Accumulation of SS protects
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cells in water deficit environments by substituting the hydroxyl
group for water, thus maintaining a hydrophilic interaction
between proteins and membranes to retain membrane integrity
(Hoekstra et al., 2001). This positive effect of P fertilization
on SS accumulation and mobilization clearly indicates its role
in improving drought tolerance of P. zhennan. We found
that proline concentration was significantly higher in drought-
stressed plants than in well-watered. Proline accumulation in
low moisture environments is due to reciprocal regulation of
two pathways: up-regulation of proline synthesizing enzymes and
down-regulation of proline degrading enzymes activities (Peng
et al., 1996). Reddy et al. (2004) reported that the accumulation
of proline in response to drought stress was regulated by a
rate limiting enzyme, PFC5, in higher plants. Previous studies
conducted on different plant species showed varied response of
proline accumulation to P application under drought stress. For
example Liu et al. (2015) suggested that P application significantly
decrease proline concentration in water-stressed Fargesia rufa;
however, Al-Karaki et al. (1996) found that P application
significantly increased proline accumulation in sorghum while
the bean plants showed higher accumulation at low P level than
at high P level. We found that P application neither decreased
nor enhanced proline accumulation in drought-stressed plants.
It clearly indicates that proline accumulation responses to P
fertilization in drought-stressed plants are inconsistent, varying
according to specific tolerance mechanisms and level of P applied.
It is already understood that proline accumulation increase under
drought stress in many plant species but not necessarily with P
application.

Nitrogen is an important nutrient for plant growth as it is
involved in the synthesis of chlorophyll, amino acids, nucleic
acid, and proteins. Generally, water stress can reduce available N
uptake, resulting in a decrease in the production of nitrogenous
compounds (Lawlor and Cornic, 2002; Garg et al., 2004).
Similarly, our results showed lower amounts of NH4

+, NO3
−,

and SP under limited water supply, regardless of P fertilization.
Possible reasons for this decreased SP concentration in drought-
stressed plants include an associated increased function of
protease enzymes, proteolysis or decreased protein synthesis, as
well as the lower Pn, i.e., less carbon to build any metabolite.
Furthermore, our findings revealed that P application slightly
up-regulated NH4

+ and NO3
− levels in water-stressed plants

and these may be attributed to changes in associated enzyme
activities (Burman et al., 2004, 2009). Azcon et al. (1996) also
observed a positive effect of P fertilization on the reduction
and assimilation of nitrogenous compounds. It appears that P
fertilization can enhance the drought tolerance of P. zhennan
by accumulating osmoprotectors and enhancing nitrogenous
compounds reduction and assimilation.

ROS Production, Lipid Peroxidation, and
Antioxidant System
Response to drought is an inherent property of a plant, but
it also depends on the length and severity of stress period.
Long term drought stress causes a decline in the rate of
photosynthesis, leading to an over-production of ROS (Foyer and

Noctor, 2005; Carvalho, 2008). An increase in ROS level triggers
protein degradation, lipid peroxidation, DNA fragmentation
and may cause cell death (Apel and Hirt, 2004). ROS (O2

·−

and H2O2) production and MDA content were found to
be significantly higher in drought-stressed plants compared
with the well-watered, regardless of P application because of
low photosynthetic rate and other physiological disruption
within the cell. Induction of antioxidant enzyme activities
is a general tolerance strategy to drought stress, as it helps
plants to overcome oxidative stress and associated damage. The
antioxidative enzyme SOD is responsible to dismutase O2

·−

into H2O2 in the chloroplast, mitochondrion, cytoplasm, and
peroxisome, while POD and CAT play important functions
in scavenging H2O2. Antioxidative (SOD, POD, and CAT)
enzyme activities were also found to be significantly higher
in drought-stressed plants compared with well-watered plants,
irrespective of P application, suggesting a strong antioxidant
defense mechanism in P. zhennan under drought conditions.
These results indicate that antioxidative enzyme processing is
substrate (ROS) inducible, leading to increased expression of
genes encoding these enzymes. Reddy et al. (2004) reported that
drought stress induced mRNAs corresponded to the genes of
antioxidant enzymes. Similar results were also reported in other
studies conducted on variety of plant species (Mittler, 2002;
Murshed et al., 2013; Oliveira et al., 2014). In our study, P
application resulted in slightly lower levels of O2

·− and H2O2
under drought stress, while level of MDA was significantly lower.
P application had no significant effect on antioxidant enzymes
or their activities and remained higher under drought treatment.
Our findings indicate P. zhennan has the potential to tolerate
natural drought conditions and that P fertilization may have a
positive role in maintaining the tolerance capacity and mitigating
the effects of drought stress.

CONCLUSION

Drought stress severely affected the growth and metabolism
of P. zhennan. However, our findings also revealed that this
tree species utilizes a range of drought tolerant strategies.
These strategies include decreased leaf area, limited stomatal
conductance and transpiration rate, increased antioxidative
activities and accumulation of osmoprotectors. P application
had negligible or almost no effect on the morphological
and physio-biochemical traits under well-watered conditions.
However, P application had significant positive effects on the
root biomass, net photosynthesis rate, chlorophyll fluorescence,
leaf relative water content, and chloroplast pigment as well as in
biochemical adjustments (i.e., SS) that confer improved tolerance
of P. zhennan to drought stress. These findings provide baseline
information to improve our understanding of the morphological
and physio-biochemical responses of P. zhennan under drought
stress and the positive effects of P fertilization on plants in
drought-stressed environments. Balanced P fertilization may
facilitate P. zhennan seedlings in agroforestry system if there
are frequent drought events because P has positive effect on
drought tolerance. We suggest further studies into underlying
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biochemical and molecular mechanisms under drought stress
conditions, as well as and the possible role of different levels
of P fertilization in mitigating negative effects of drought or for
improving drought tolerance of P. zhennan.
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