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Agbiotechnology uses genetic engineering to improve the output and value of crops.
Altering the expression of the plant Type I Proton-pumping Pyrophosphatase (H+-
PPase) has already proven to be a useful tool to enhance crop productivity. Despite the
effective use of this gene in translational research, information regarding the intracellular
localization and functional plasticity of the pump remain largely enigmatic. Using
computer modeling several putative phosphorylation, ubiquitination and sumoylation
target sites were identified that may regulate Arabidopsis H+-PPase (AVP1- Arabidopsis
Vacuolar Proton-pump 1) subcellular trafficking and activity. These putative regulatory
sites will direct future research that specifically addresses the partitioning and transport
characteristics of this pump. We posit that fine-tuning H+-PPases activity and cellular
distribution will facilitate rationale strategies for further genetic improvements in crop
productivity.
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INTRODUCTION

Constitutive expression of plant type I Proton-pumping Pyrophosphatase (H+-PPase) in crops
improves several valuable traits including salt and drought resistance, shoot and root biomass
and nutrient and water use efficiencies (Yang et al., 2007, 2014; Li et al., 2008; Bao et al., 2009;
Pasapula et al., 2011; Pei et al., 2012; Arif et al., 2013; Paez-Valencia et al., 2013; Schilling et al., 2014;
Wang et al., 2014). Currently more than 15 different crops have been improved using H+-PPase
technology and in some cases these engineered plants demonstrate improved yield even in field
conditions (reviewed in Gaxiola et al., 2016a,b; Schilling et al., 2017). The H+-PPases influences
plant growth in both normal and abiotic stress conditions; however, how this protein alters growth
has remained puzzling (Gaxiola et al., 2016a).

Fifteen years ago, the effects of H+-PPases were thought to be solely due to alterations around
the vacuole (Gaxiola et al., 2001). The ability to buffer changes in the concentrations of essential
and toxic ions requires judicious transport across the tonoplast (reviewed in Schumacher, 2014).
This is energized by two proton pumps, the vacuolar H+-ATPase (V-ATPase) and the H+-PPase.
V-ATPases are highly conserved, multisubunit proton pumps that consist of two subcomplexes.
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Increasing levels of V-ATPase activity has proven to be difficult
because this is a complex of many proteins. However, the
Arabidopsis Vacuolar Proton-pump 1 (AVP1) transporter encodes
a single polypeptide capable of enhancing the pumping of
protons into the lumen of the vacuole (Kim et al., 1994). The
simplicity of the structure made it an excellent candidate for
manipulating proton gradients and this technology has been
used in engineering numerous transgenic crops. Some of the
improved growth in these engineered lines may be due to altered
tonoplast transport as the salt-tolerant phenotype of transgenic
lines expressing AVP1 or a homologue correlates in most of
the crops tested with an increase in Na+ uptake into vacuoles
(reviewed in Gaxiola et al., 2016a).

In the last several years, evidence has emerged that the H+-
PPases is not solely localized to the vacuole and this pump
may function as both a pyrophosphatase and as PPi-synthase
(Pizzio et al., 2015; Gaxiola et al., 2016b; Khadilkar et al., 2016;
Regmi et al., 2016; Schilling et al., 2017). In mesophyll cells the
H+-PPase localizes at the tonoplast and with its PPi hydrolytic
activity may serve two functions, vacuolar energization (Fuglsang
et al., 2011 and references therein), and cytosolic PPi scavenging
(Ferjani et al., 2011). However, at the tonoplast it is possible
that the H+-PPase can function as a PPi synthase depending
of the vacuole pH. Evidence obtained from tonoplast fractions
of maize coleoptiles and oranges suggests that a strong trans-
tonoplast proton gradient affords this reverse PPi-synthase
function (Rocha Facanha and de Meis, 1998; Marsh et al.,
2000). The plasma membrane (PM) localization of H+-PPases
is prominent in the sieve element-companion cell complexes
(SE-CCs) in Ricinus communis and Arabidopsis (Paez-Valencia
et al., 2011). In oxygen-deprived SE-CCs the PM localized
type I H+-PPases may function as a PPi synthase due to
the prevailing trans-membrane proton-gradient (Paez-Valencia
et al., 2011; Gaxiola et al., 2012; Tschiersch et al., 2012; Pizzio
et al., 2015). Higher levels of PPi favor Sucrose Synthase (SUS)-
mediated Suc hydrolysis and respiration for the generation of
ATP and the proton motive force (pmf) required for phloem
Suc loading and long-distance transport (Paez-Valencia et al.,
2011; Gaxiola et al., 2012, 2016b; Pizzio et al., 2015). This leads
to speculation that the majority of phenotypes in H+-PPase-
expressing transgenic crops may be due to increased PPi-synthase
activity in SE-CCs to augment sucrose phloem loading and long-
distance transport.

There are multiple scenarios that could explain the plasticity
of the H+-PPases in terms of localization and activity. For
example, a posttranslational modification could act as both
a sorting signal and-or an activity switch. Alternatively, a
protein chaperone could guide H+-PPase cell sorting and-
or regulate its activity. Furthermore, a steep H+ gradient
across the membrane may trigger the change of PPase
to PPi-synthase activity (Marsh et al., 2000; Pizzio et al.,
2015). Here we use computer modeling as a foundation
to provide clues to identify regulatory elements within
this protein that could impact trafficking and enzymatic
functions. These in silico results will guide future experimental
characterization of posttranslational modifications of the
H+-PPase.

RESULTS AND DISCUSSION

In Silico Prediction of Phosphorylation,
Sumoylation and Ubiquitination Target
Sites on AVP1
AVP1 appears to be localized at different membranes and
may have multiple functions (Paez-Valencia et al., 2011;
Gaxiola et al., 2012; Pizzio et al., 2015; Khadilkar et al.,
2016). Using the AVP1 interactome provides clues to address
how localization and activity are regulated. Using the on-line
BIOGRID tool1 (Stark et al., 2006) several AVP1 interactors
(Table 1) were identified including a putative protein kinase
(AT1G07860; Jones et al., 2014), poly-ubiquitin 3 (UBQ3:
AT5G3240; Manzano et al., 2008; Kim et al., 2013) and
ubiquitin-conjugating enzyme E2 34 (UBC34: AT1G17280; Jones
et al., 2014). Additionally, the SUMO-conjugating enzyme
(SCE1: AT3G57870; Elrouby and Coupland, 2010) was found
to interact with AVP1. These data imply that the H+-PPase
could be regulated by phosphorylation, ubiquitination and/or
sumoylation.

Protein phosphorylation is a fundamental mechanism
through which protein function is regulated in response
to extracellular stimuli (Champion et al., 2004). Using
PHOSPHAT4.02 (Durek et al., 2010), a specific protein
phosphorylation target predictor for Arabidopsis, 26
different phosphorylation targets along AVP1 were identified
(Figures 1A,B). Of particular note are residues Y170 and T576
(high score value), S48, T129, T176, and T690 (medium high
score value), and S47, Y61, Y130, Y252, and Y700 (medium
score value). Interestingly, two different AVP1-derived phospho-
peptides were experimentally found in different approaches
(Figures 1A,C). One of them (39-LTSDLGASSSGGANNGK-
55) has a phosphorylation in S46, S47, S48 and/or K55
(Sugiyama et al., 2008; Nakagami et al., 2010; Mayank et al.,
2012; Roitinger et al., 2015). A phosphorylation HOT-SPOT is
defined as one containing 4 phosphorylatable residues within 10
consecutive amino-acids (PHOSPHAT 4.0; Durek et al., 2010).
Furthermore, lysine (K55) may also act as a phosphate acceptor.
It is well known that lysine can be targeted for one or more
phosphoryl groups through a kinase phosphorylation or by a
poly-phosphorylation mechanism (reviewed in Azevedo and
Saiardi, 2016). Protein poly-phosphorylation at a lysine can be
indirectly controlled by inositol pyrophosphate (Lonetti et al.,
2011; Azevedo et al., 2015). In turn, inositol pyrophosphate
is also involved in the regulation of cellular ATP levels
(Szijgyarto et al., 2011; Wilson et al., 2013; Shears, 2015).
We posit that AVP1 PPi-ase/PPi-synthase activity could be
mediated by phosphorylation or poly-phosphorylation at
K55.

The second AVP1-derived phospho-peptide (615-
QFNTIPGLMEGTAKPDYATCVK-636) was experimentally
described with a phosphate group at T618 and T633
(Engelsberger and Schulze, 2012). The modification at T618 was

1http://thebiogrid.org/
2http://phosphat.uni-hohenheim.de/index.html
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TABLE 1 | AVP1 interactome.

Interactor AGI Description Experimental evidence Reference

UBQ3 AT5G03240 Polyubiquitin 3 Affinity Capture-MS Manzano et al., 2008; Kim et al., 2013

CSP3 AT2G17870 Cold shock domain protein 3 Two-hybrid Kim et al., 2013

SCE1 AT3G57870 SUMO-conjugating enzyme SCE1 Two-hybrid Elrouby and Coupland, 2010

NHL3 AT5G06320 NDR1/HIN1-Like protein 3

UBC34 AT1G17280 Ubiquitin-conjugating enzyme E2 34

HHP2 AT4G30850 Heptahelical transmembrane protein2

n.n. AT2G39805 Integral membrane Yip1 family protein

n.n. AT1G14020 O-fucosyltransferase family protein Protein-fragment complementation assay (PCA) Jones et al., 2014

n.n. AT1G07860 Putative protein kinase

n.n. AT1G47640 Hypothetical protein

n.n. AT3G66654 Cyclophilin-like peptidyl-prolyl
cis-trans isomerase family protein

n.n. AT1G34640 Peptidase

Data extracted from BIOGRID. n.n., no-name.

found when seedlings were grown under nitrogen starvation
while the T633 modification was present during both adequate
nutrition and nitrogen starvation conditions. A third AVP1-
derived peptide (170-YANARTTLEA-179) is a substrate of
the protein phosphatase HAB1 (AT1G7270; Vlad et al., 2009).
Moreover, inside this peptide 170-YANARTTLEA-179 two
residues (Y170 and T176) appear to be modified using the
model generated by PHOSPHAT 4.0. Interestingly, HAB1
is a protein phosphatase involved in ABA signaling, a key
hormone in abiotic stress response (Antoni et al., 2011).
HAB1 may modify AVP1 under normal and abiotic stress
conditions. These peptides (39-LTSDLGASSSGGANNGK-55,
615-QFNTIPGLMEGTAKPDYATCVK-636 and 170-
YANARTTLEA-179) are unambiguously derived from AVP1 as
they precisely match only this pump when BlastP was run against
the Arabidopsis proteome (data not shown).

AVP1 interacts with the putative kinase AT1G07860 (Jones
et al., 2014), and using NETPHOS 3.1 (Blom et al., 1999)3 others
putative AVP1 kinases were identified. Several phosphorylation
targets on AVP1 were predicted: S46, S47, S48, T176, Y252,
T576, T633 and Y700 (Supplementary Figure 1). These targets
were also predicted by PHOSPHAT (Figure 1). Arabidopsis
thaliana encodes kinases related to Casein Kinase 1 (CKI),
Cyclin-dependent Kinase 2 (cdc2), Protein Kinase C (PKC),
Mitogen-activated Protein Kinase (MAPK) and the trans-
membrane kinase Epidermal Growth Factor Receptor (EGFR)
that could be mediating AVP1 phosphorylation (Supplementary
Figure 1). These kinases are related with cell proliferation.
In plant mitotic tissues PPi is produced in excess as a by-
product of anabolism. It has been hypothesized that under
these physiological conditions, the removal of PPi by H+-
PPases favors both biosynthetic reactions and the energization
of small vacuoles (Shiratake et al., 1997). Moreover, AVP1
working as a PPi-ase in early developmental stages (active mitotic
tissues) is implicated in cytosolic PPi scavenging (Ferjani et al.,
2011). Could phosphorylation on AVP1 (S46, S47, S48, T176,

3http://www.cbs.dtu.dk/services/NetPhos/

Y252, T576, T633 and Y700) be required to induce its PPase
activity?

Ubiquitination regulates protein stability (Sadanandom et al.,
2012; Sahara et al., 2014). Furthermore, ubiquitination has
a role in protein localization, activation and protein–protein
interactions (Varshavsky, 2006). For instance, ubiquitination
regulates the protein dynamics of the plasma membrane-
localized Brassinosteroids Receptor 1 (BRI1). A modified lysine
residue impacts its internalization and tonoplast sorting (Martins
et al., 2015). UbPred4 (Radivojac et al., 2010) predicts five
ubiquitination targets on AVP1: K55, K77, K710, K715, and K721
(Figures 2A,B).

SUMOylation is able to modify proteins and is considered
to be a major posttranslational regulator in plants (reviewed
in Yates et al., 2016). For example, SUMOylation can regulate
protein stability or interfere in protein–protein interactions
(Wilkinson and Henley, 2010). The SUMOplot tool5 (ABGENT)
was used to identify six sumoylation targets present in AVP1:
K55, K185, K265, K545, K628 and K768 (Figures 2C,D).
The sumoylation target predicted on AVP1 at residue K768
is within a key C-terminal loop. This loop may act as a
H+ flux direction regulator throughout the transmembrane
channel (Lin et al., 2012). The C-terminal loop of H+-
PPases (a domain localized in the lumen of the vacuole)
forms a hydrophobic gate in the proton transport pathway.
In turn, this kind of gate could maintain unidirectional H+
translocation from the cytosol to the vacuolar lumen, avoiding
H+ refluxing. Lin et al. (2012) propose this narrow pathway
and its acid–base pairs as key regulators in the directionality
of proton pumping flux of H+-PPases. Sumoylation at K768
could ‘lock’ this gate in an open conformation, and thus
facilitate H+ refluxing and the PPi-synthase activity of the H+-
PPase.

AVP1-K55 is not only included in the phosphorylation HOT-
SPOT but also a possible phosphate acceptor and a putative target
for ubiquitination and sumoylation. As a “mulitple-” target,

4http://www.ubpred.org
5http://www.abgent.com/sumoplot/
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FIGURE 1 | Predicted phosphorylation sites within AVP1. (A) Output given by PhosPhAt 4.0 (Durek et al., 2010; http://phosphat.uni-hohenheim.de/index.html). The
residues in green are the phosphorylation targets. Phosphorylated peptides experimentally reported are highlighted and underlined in black. HAB1 target peptide is
underlined in red. (B) Table with score and confidence of each phosphorylation target predicted. In red targets with high score values (<1), in orange medium-high
score values (0.66 < score < 1), in yellow medium score values (0.33 < score < 0.66) and in white background medium-low score (0 < score < 0.33). (C) Peptides
and phosphorylated residues reported in literature. (D) HAB1 substrate peptide reported before.

AVP1-K55 could be an important residue that warrants further
analysis.

Structural Modeling of AVP1 and
Topological Analysis of the Putative
Posttranslational Modifications
To further refine the relevance of putative posttranslational
modifications in type I H+-PPases, protein modeling was
performed. Given the lack of structural data on AVP1, we

used the crystal structure of the homologous Vigna radiata
H+-PPase (VrH+-PPase; Lin et al., 2012). To delineate the
secondary structure of AVP1, alignment was performed between
VrH+-PPase (primary and secondary structure) and the primary
structure of AVP1 using EsPript6 (Figure 3). Given the
high degree of amino acid sequence identity between H+-
PPases (86–91% identity in land plants; Lin et al., 2012)
this alignment (VrH1-PPase vs. AVP1) displayed high quality

6http://espript.ibcp.fr/ESPript/ESPript/
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FIGURE 2 | Predicted ubiquitination and sumoylation sites in AVP1. (A) Output given by UbPred (Radivojac et al., 2010; http://www.ubpred.org/). In green the
predictions with low confidence and in blue medium confidence. Residues with gray have no confidence. (B) Score and confidence for each putative ubiquitination
target. (C) Output given by SUMOplot (ABGENT; http://www.abgent.com/sumoplot/). In red the motif with high sumoylation probability and in blue low probability
residues. (D) Table with the score assigned to each K sumoylation target prediction.

with protein identity at 88% and protein similarity at 94%.
The putative posttranslational modification targets are present
along the entire AVP1 sequence. Moreover, some of these
targets (Y252, K265, K545, T690, Y700) are close to key
AVP1 residues involved in PPi binding or H+ interactions
inside the hydrophilic trans-membrane channel (Figure 3).
The secondary structure predicted for AVP1 suggests all the
putative posttranslational modifications, with the exception of
K545 and T690 target amino-acids present in the cytoplasmic
or apoplasmic/vacuolar loops (Figure 4). This is relevant
because posttranslational modifications within trans-membrane
domains are likely of little relevance. The HOT-SPOT (including
S46, S47, S48 and K55) hits the unresolved region in the

crystal structure of VrH+-PPase (M1-M2 loop; see Figure 4).
Probably this region is not resolved in VrH+-PPase because
it is an intrinsically disordered protein region (IDPR) and
recalcitrant to crystallization (DeForte and Uversky, 2016). This
idea is supported by the local disorder prediction of AVP1
sequence (Figure 5; GeneSilico MetaDisorder tool7; Kozlowski
and Bujnicki, 2012) that predicts the amino-acid residues 40–63
of the M1-M2 loop are disordered. Interestingly, we found
other IDPR or potentially flexible loops in AVP1 that include
posttranslational targets: M5-M6 loop (including K265 and
close to Y252); M11-M12 loop (close to K545), M13-M14

7http://iimcb.genesilico.pl/metadisorder/metadisorder.html
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FIGURE 3 | Alignment of AVP1 and VrH+-PPase. ESPript was used to align the two pumps (Robert and Gouet, 2014; http://espript.ibcp.fr/ESPript/ESPript/). Red
arrows: phosphorylation targets; light green arrows: ubiquitination targets; dark green arrows: sumoylation targets. Black asterisk: key residues in the proton
transport pathway. Blue asterisk: residues involved in PPi interaction.

loop (including T618, K628 and T633) and M15-M16 loop
(including T690, Y700, K710, K715, and K721). IDPR are
associated with the domains’ ability to change its conformation
and concomitantly the protein’s function (DeForte and Uversky,

2016). The primary sequence of a proteins or protein region
encodes the ability to fold into an ordered functional unit
or to stay intrinsically disordered but functional. IDPRs exist
as dynamic structural ensembles and are involved in protein
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FIGURE 4 | Predicted membrane topology of AVP1. The six inner (cyan) and ten outer (blue) transmembrane helices (M1-16). Red circle: phosphorylation targets.
Light green circle: ubiquitination targets. Dark green circle: sumoylation targets. White asterisk: key residues in the proton transport pathway. Black asterisk: residues
involved in PPi interaction. Dashed arrows: H+ flux direction.

FIGURE 5 | Meta-disorder prediction of AVP1. Local prediction of Intrinsically Unstructured Protein Regions (protein disorder) from amino acid sequence of AVP1
(GeneSilico MetaDisorder tool; Kozlowski and Bujnicki, 2012). All residues whose disorder probability is over 0.5 are considered as disordered. Method:
MetaDisorderMD2 -CASP9 recommended by this tool as the most accurate disorder predictor method. Server:
http://iimcb.genesilico.pl/metadisorder/metadisorder.html.
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FIGURE 6 | Structural modeling of AVP1. (A) Structural alignment of chain A
VrH+-PPase (orange ribbons) and the putative structure of AVP1 (white
ribbons). In blue: chain B VrH+-PPase surface. (B) Structural alignment of
chain A VrH+-PPaseR1−100 (orange ribbons) and the predicted structure of
AVP1R1−100 (green ribbons). (C) Model of the AVP1 “flexible loop”
(42-LGASSSGGANNGKNGYGDYLIEEEEGVND-71). (D) Protein surface of the
H+-PPase homodimer: modeled AVP1 in white, AVP1 “flexible loop” in green
and chain B VrH+-PPase in blue. Cyt: cytoplasmic side. Vac/Apo: vacuolar
lumen and apoplasmic side.

activity regulation through allosteric effects or posttranslational
modifications that result in the masking and unmasking of
interaction sites. (Bhowmick et al., 2013). IDPs are also abundant
in protein degradation pathways. There are a number of E3
ubiquitin-protein ligases which have long stretches of disorder
that appear to mediate interactions with a variety of mostly
disordered substrates (Bhowmick et al., 2013; Erales and Coffino,
2014).

Phosphorylation, ubiquitination or sumoylation are likely
to occur at the protein surface in order to facilitate enzyme
accessibility. Using PYMOD 2.0 (a plug-in for PYMOL software)
with the crystal structure of A-VrH+-PPase as a template
(Lin et al., 2012), AVP1 three dimensional models could be
determined (Figures 6A,D and Supplementary Figure 2). AVP1
(white ribbons) and A-VrH+-PPase (orange ribbons) structural
alignment displayed a high degree of similarity (Figure 6A and

Supplementary Figure 2). The AVP1 structure was delineated
with PYMOD/MODELLER by “Homology Based Modeling”
using as a template VrH+-PPase (PDB: 4A01, resolved at 2.5 A◦).
AVP1 and the template VrH+-Pase are homologous proteins.
They share more than 88% identity and 94% of similarity and
for this reason the structural model is trustworthy (Baker and
Sali, 2001; Zhang, 2009; Leman et al., 2015). Model assessment
with DOPE local score (DOPE: Discrete Optimized Protein
Energy; Shen and Sali, 2006; Webb and Sali, 2014) given by
PYMOD/MODELLER showed high correlation between the
AVP1 model (green line) and the VrH+-PPase crystal structure
(blue line; Supplementary Figure 3A). The gap in VrH+-Pase
DOPE score corresponded with the structural indel (protein
internal deletion) defined as a “flexible loop” and is not resolved
in the crystal structure. Ramachandran plot analysis that
facilitates a visualization of energetically allowed regions for
backbone dihedral angles ψ against ϕ of amino acid residues
in protein structure (Ramachandran et al., 1963; Richardson,
1981) demonstrated the absence of any amino acid residue
in outlying regions (Supplementary Figure 3B). Moreover,
global quality Z-scores (QMEAN6 Z-score: −2.41, All atom:
−1.73, Cbeta: −2.18, Solvation: 1.59, Torsion: −2.71, SS Agree:
−1.56 and ACC Agree: −0.13) suggest the AVP1 structural
model is reliable (Supplementary Figure 3C; SWISS-MODEL
QMEAN tool; Studer et al., 2014). QMEAN “local” quality
score shows almost all amino acid residues had a high score
(near to 1). As expected, residues present in the “flexible
loop” demonstrated a poor local quality score (Supplementary
Figure 3D). To delineate the structure of this flexible loop (41-
VRDASPNAAAKNGYNDYLIEEEEGIND-67 in VrH+-PPase
and 42-LGASSSGGANNGKNGYGDYLIEEEEGVND-71 in
AVP1) a partial AVP1 modeling (residues 1–100) was done
using PHYRE2 (Protein Fold Recognition Server8; Kelley
et al., 2015). Multi-template “Homology Based” and “AB
initio” modeling where applied by PHYRE2. VrH+-PPase
(PDB: 4A01) as the main template and used to model AVP1-
residues 1–100 (70% modeled at > 90% confidence). AVP1
helix M1 and M2 (see Figure 5) appear to anchor the flexible
loop’s extremities. In particular, the flexible loop N-terminal
fragment (LGASSSGGANN) was modeled by AB initio and
the C-terminal fragment (GKNGYGDYLIEEEEGVND) was
delineated by homology base modeling: using a fragment of
PDB-2N0Y as a partial secondary template (with 39% identity
respect to AVP1). A Ramachandran plot of the flexible loop
demonstrated only one amino acid residue in an outlying region
(Supplementary Figure 4A). Moreover, global quality Z-scores
(QMEAN6: −2.16, All atom: −1.63, Cbeta: −3.13, Solvation:
−1.10, Torsion: −1.76, SS Agree: −0.90 and ACC: −0.11) again
suggest that our model of the AVP1 flexible loop is dependable
(Supplementary Figure 4B). Flexible loop modeling indicated
a new alpha-helix (Figures 6B,C). The structural alignment of
AVP1-residues 1–100 (green ribbons) and the A-VrH+-PPase
chain (orange ribbons) displayed little variation (Figure 6B).
A structural alignment of both protein fragments, AVP1 and
the flexible loop, facilitates a model of the whole AVP1 surface

8http://www.sbg.bio.ic.ac.uk/~phyre/
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FIGURE 7 | Predicted membrane topology and posttranslational modifications in AVP1. (A–F) Different views (protein surface) of the H+-PPase homodimer:
modeled AVP1 in white, AVP1 “flexible loop” in green and chain B VrH+-PPase in blue. Phosphorylation targets in red. Ubiquitination targets in orange. Sumoylation
targets in purple. Triple target in pink. Cyt: cytoplasmic side. Vac/Apo: vacuolar lumen and apoplasmic side.

(Figure 6D; as white surface AVP1 and as green surface the
flexible loop).

A topological analysis of AVP1 structure shows that the
phosphorylation targets S46, S47, S48, K55, Y61, T129, Y130,
Y170, T576, T618, T633, and Y700, the ubiquitination targets
K55, K77, K710, K715, and K721, and the sumoylation
targets K55, K185, K265, K628, K768, are all on the protein
surface (Figures 7A–F and Supplementary Figure 5). Thus,

this topological analysis reinforces the potential relevance of
these sites. Meanwhile, the phosphorylation sites T176, Y252
and T690, and the ubiquitination site K545 are buried inside
the protein (Supplementary Figure 5), making these sites less
likely to be important in protein regulation. Alternatively,
the structure of this protein may be in dynamic flux
with conformational changes being regulated by different
modifications.
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Conclusions
AVP1 has been widely used in agbiotechnology to increase crop
yield. Future basic science should be undertaken to guide AVP1
mediated engineering approaches. Our results suggest work can
now be directed at understand the relevance of residues: S46,
S47, S48, K55, Y61 because this is a phosphorylation HOT-SPOT;
K55 could in turn also be ubiquitinated or sumoylated; Moreover,
Y170 can be investigated as a target for the phosphatase
HAB1. K265/T690/Y700 are proximal to putative active sites
in the protein and may help regulate functional plasticity.
Other work can examine if T618 is involved in regulation
under nitrogen starvation. Lastly, K768 is of particular interest
since it could regulate the directionality of H+ flux. This basic
biology will shed light on AVP1 intracellular localization and
activity allowing more rationale strategies to improve crop
performance.

IN SILICO TOOLS AND SOFTWARE

BioGRID
Biological General Repository for Interaction Datasets (Stark
et al., 2006). BioGRID is an interaction repository with data
compiled through comprehensive curation efforts. Server at:
http://thebiogrid.org/

PHOSPHAT 4.0
Phosphorylation site database and predictor specific for
Arabidopsis (Durek et al., 2010). Server at: http://phosphat.uni-
hohenheim.de/index.html.

BlastP
The Basic Local Alignment Search Tool for proteins (Johnson
et al., 2008). Programs search protein databases using a protein
query Server at: https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=
Proteins.

NetPhos 3.1
Predicts serine, threonine or tyrosine phosphorylation sites in
eukaryotic proteins using ensembles of neural networks (Blom
et al., 1999). Both generic and kinase specific predictions are
performed. Predictions are made for the following 17 kinases:
ATM, CKI, CKII, CaM-II, DNAPK, EGFR, GSK3, INSR, PKA,
PKB, PKC, PKG, RSK, SRC, cdc2, cdk5 and p38MAPK. Server at:
http://www.cbs.dtu.dk/services/NetPhos/.

UbPred
Predictor of protein ubiquitination sites (Radivojac et al., 2010).
Server at: http://www.ubpred.org/. UbPred is a random forest-
based predictor of potential ubiquitination sites in proteins. It was
trained on a combined set of 266 non-redundant experimentally
verified ubiquitination sites.

SUMOplot
Predicts and scores sumoylation sites in a protein (ABGENT).
Server at: http://www.abgent.com/sumoplot/.

EsPript 3.0
Easy Sequencing in PostScript (Robert and Gouet, 2014). Server
at: http://espript.ibcp.fr/ESPript/ESPript/. EsPript is a program
which renders sequence similarities and secondary structure
information from aligned sequences for analysis and publication
purpose.

GeneSilico MetaDisorder
Local prediction of Intrinsically Unstructured Protein Regions
(protein disorder) from amino acid sequences (Kozlowski and
Bujnicki, 2012). Method: MetaDisorderMD2. Server at: http://
iimcb.genesilico.pl/metadisorder/metadisorder.html.

PyMol 1.6 Software
The PyMOL Molecular Graphics System, Version 1.6
Schrödinger, LLC9.

PyMod 2.0 Software
PyMod 2.0 is a PyMOL plugin (Janson et al., 2016). PyMod was
designed to act as simple and intuitive interface between PyMOL
and several bioinformatics tools (i.e., PSI-BLAST, Clustal Omega,
MUSCLE, CAMPO, PSIPRED, and MODELLER). DOPE score,
or Discrete Optimized Protein Energy, is a statistical potential
used to assess homology models in protein structure prediction.
DOPE is based on an improved reference state that corresponds
to non-interacting atoms in a homogeneous sphere with the
radius dependent on a sample native structure; it thus accounts
for the finite and spherical shape of the native structures.
Alternatively, DOPE can also generate a residue-by-residue
energy profile for the input model, making it possible for the user
to spot the problematic region in the structure model. (Shen and
Sali, 2006; Webb and Sali, 2014).

Phyre2
Protein Fold Recognition Server (Kelley et al., 2015). Server at:
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index. The
Phyre2 is a web portal for protein modeling, prediction and
analysis.

RAMPAGE
Ramachandran plot analysis tool (Lovell et al., 2003). Tool
for visualization of energetically allowed regions for backbone
dihedral angles ψ against ϕ of amino acid residues in protein
structure (Ramachandran et al., 1963; Richardson, 1981). Server
at: http://mordred.bioc.cam.ac.uk/~rapper/rampage.php.

SWISS-MODEL QMEANbrane
QMEAN is a composite scoring function based on different
geometrical properties and provide a global absolute quality
estimates on the basis of one single model. QMEANbrane is a
QMEAN function specific for membrane proteins. The QMEAN
Z-score provides an estimate of the ‘degree of nativeness’ of
the structural features observed in the model. Higher QMEAN
Z-scores indicate better model structure (Studer et al., 2014).
Server at: https://swissmodel.expasy.org/qmean/.

9http://pymol.org/
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