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Alternanthera philoxeroides is a notoriously invasive weed that can readily adapt to
different environmental conditions. Control of this weed is difficult, and it spreads easily
and causes damage to native habitats and agriculture. In this study, our goal was
to investigate the molecular mechanisms that lead to the ability of A. philoxeroides
to invade new habitats, to adapt to environmental stresses, and to cause damage.
We developed a simple and highly effective potato virus X-based virus-induced gene
silencing (VIGS) approach. The VIGS approach was first used to silence the phytoene
desaturase gene, which resulted in the expected photo-bleaching phenotype. Next,
the VIGS approach was used to silence two additional genes, drought-induced protein
gene 15 (ApDRI15) and salinity-induced protein gene 1 (ApSI1). When ApDRI15 was
knocked down, the plants were more sensitive to drought stress than the control plants,
with smaller leaves, shorter internodes, and lower biomass. The ApDRI15-silenced
plants had lower relative water content, lower free proline levels, and higher water loss
rates than the control. Silencing of ApSI1 significantly decreased tolerance to salinity,
and the ApSI1-silenced plants were withered and smaller. These results indicate that
the pgR107 VIGS approach is a simple and highly effective tool for dissecting gene
function in A. philoxeroides. Further experiments with the VIGS approach will enhance
our understanding of the molecular mechanisms of the adaptability and plasticity of
A. philoxeroides and improve our ability to combat the damage caused by this weed.

Keywords: Alternanthera philoxeroides, virus induced gene silencing (VIGS), drought stress, salinity stress,
pgR107 VIGS vector
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INTRODUCTION

Alternanthera philoxeroides (Max.), also called alligator weed, is a
notoriously invasive weed. It originated in the Parana river region
in southern America, but now has invaded the United States,
Australia, New Zealand, China, and India (Sainty et al., 1998).
This stoloniferous and amphibious weed grows in both terrestrial
and aquatic conditions. A. philoxeroides can adapt to different
habitats and to fluctuating environments (Wang et al., 2008, 2009;
Dong et al., 2012; Fan et al., 2013). For instance, in arid land,
its leaves are small, with short internodes and thin cavities, but
in water the leaves are large, with long internodes and wide
cavities (Wang et al., 2008; Dong et al., 2010). The plasticity
and adaptability of A. philoxeroides facilitates invasion into new
habitats, which damages agricultural production and ecological
balance (Ye et al., 2003; You et al., 2016). A. philoxeroides has
been become one of the most notoriously destructive weeds
worldwide, but there are no effective measures to control this
weed (Schooler et al., 2007). Therefore, there is a critical need
for exploration of the underlying mechanisms involved in the
plasticity and adaptability of A. philoxeroides.

Most of the major studies on A. philoxeroides have focused on
plant morphology, ecology, taxonomy, and weed management
(Sainty et al., 1998; Ye et al., 2003; Wang et al., 2005, 2008;
Dong et al., 2010; Wu et al., 2016a,b). However, the underlying
molecular mechanisms of invasion of this weed remain unclear,
primarily because of a shortage of analytical techniques. Virus-
induced gene silencing (VIGS) is a powerful approach in
molecular biology and genetics, widely used to dissect gene
function in plants. The modified VIGS vectors come from many
plant RNA and DNA viruses, which are used in diverse dicot
and monocot plants. For instance, there are VIGS vectors widely
used in dicot plants, including tobacco rattle virus-derived vector
(Ratcliff et al., 2001; Liu et al., 2002), bean pot mottle virus-
derived vector (Zhang and Ghabrial, 2006), cabbage leaf curl
virus-derived vector (Turnage et al., 2002), potato virus X vector
(later modified pgR106/107 VIGS vector) (Faivre-Rampant et al.,
2004), and tobacco mosaic rattle virus (George et al., 2010). In
monocot plants, there are also several VIGS systems for analyzing
the function of genes, such as barley stripe mosaic virus (Holzberg
et al., 2002), brome mosaic virus (Ding et al., 2006), and bamboo
mosaic virus (Liou et al., 2014). Very recently, cucumber mosaic
virus-based VIGS in maize (Wang et al., 2016) and foxtail mosaic
virus-based VIGS have been reported in barley, wheat, and foxtail
millet (Setaria italica) (Liu et al., 2016). Thus, our goal was
to develop a VIGS system for assessing gene function and for
controlling A. philoxeroides invasion and damage.

In this study, we firstly explored several types of VIGS
systems and successfully developed a pgR107 (PVX-based
vector) VIGS approach in A. philoxeroides. First, we isolated a
phytoene desaturase (PDS) gene from A. philoxeroides to use
as a marker gene in the development of the VIGS system.
Then, we employed this VIGS system to examine the role of
the A. philoxeroides drought-induced protein gene 15 (DRI15,
GenBank DQ985704.1) and the salinity-induced protein gene 1
(SI1, GenBank DQ489701) in response to stress from drought
and high salinity. The pgR107 VIGS system is a simple and

effective tool for analyzing A. philoxeroides gene function that will
facilitate control of weed invasion and damage.

MATERIALS AND METHODS

Plant Materials, Infiltration and Growth
Conditions
Alternanthera philoxeroides was collected from field in Sichuan
province in China, and cultured it in water supplemented with
hoagland’s solution in growth chamber for asexual propagation.
Then newly germinating internodes of branches were transferred
to a pot for a single clone culture with many branches. The 3–4
internodes cut from different branches were inserted into cultural
soil (two internodes above the ground) for propagation. When
the two new internodes grew, the two opposite leaves at top
internodes were used for VIGS infiltration. The new expanding
leaves of inoculation plants were used for RNA and proteins
extraction. All plants were grown in a growth chamber at 25◦C
with a 12-h light/12-h dark photoperiod cycle. The intensity of
light is 2000 lum/sqf.

PDS, DRI15, and SI1 cDNA Isolation and
Plasmid Construction
pgR107 vector (Jones et al., 1999; Lu et al., 2003) was kindly
given by Professor Zhendong Tian in Huazhong Agricultural
University of China, was firstly applied to the asexual propagation
plant of A. philoxeroides in this study. pgR107 vector is binary
vector based on pGreen0000 backbone, in which CP promoter
contains CalI-SmalI-SalI cloning sites.

The A. philoxeroides PDS gene was amplified by PCR using
DNA from A. philoxeroides leaves. The PCR primers were
designed to amplify sequences conserved in other species of
plants (Supplementary Table S1). The 936 base pair PDS fragment
was amplified by PCR (Supplementary Data Sheet S1), and a 300
base pair specific fragment (Figure 1A in box) was inserted in the
Sal I/Cla I sites of the pgR107 vector. The resulting vector was
named pgRPDS (Figure 1A).

The ApDRI15 and ApSI1 genes were first identified from a
database of sequenced cDNAs prepared from A. philoxeroides
leaves. After we blast two gene nucleotide sequences in NCBI,
the specific sequence fragments in A. philoxeroides were selected
for analyzing their functions. Then a special sequence fragment
of ApDRI15 (260 bp) or ApSI1 (290 bp) was PCR-amplified with
its specific primers (Supplementary Table S1). The ApDRI15 and
ApSI1 PCR fragments were inserted in the sense orientation into
the Sal I/Cla I sites of the pgR107 virus vector to create the
pgRDRI15 and pgRDSI1 vectors, respectively (Figures 2A, 4A in
box).

RNA Extraction and Analysis
Total RNA was extracted and purified from A. philoxeroides
leaves using Plant Total RNA Isolation Kits (Sangon, Shanghai,
China). One microgram of RNA was reverse-transcribed using
the BluePrint 1st strand cDNA Synthesis Kit (Takara, Dalian,
China) according to the manufacturer’s protocol.
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FIGURE 1 | Development of ApPDS-silenced plants. (A) T-DNA schematic structure of the pgRPDS virus vector. LB and RB indicate the left and right T-DNA border
sequences. 35S indicates the 35S promoter of cauliflower mosaic virus. RdRp indicates the potato virus X (PVX) 165K RNA-dependent RNA polymerase. 8K, 12K,
and 25K indicate the PVX triple gene block movement proteins. CP indicates the viral coat protein gene. Nos indicates the nopaline synthase transcriptional
terminator. The specific target sequence of the ApPDS gene is contained in the box. (B) The photo-bleaching phenotype. The control was plants agro-infiltrated with
the empty vector. SP indicates the ApPDS-silenced plants, exhibiting photo-bleaching. (C) The expression level of ApPDS. SP1 through SP5 are five replicate
ApPDS-silenced plants. (D) The total chlorophyll levels of new leaves from PDS-silenced plants. SP1 through SP5 are five ApPDS-silenced plants.

The quantitative real-time PCR (qPCR) assay was conducted
using the SYBR Premix Ex Taq kit (Takara) according to
the manufacturer’s guidelines. All PCRs were run on an
IQ5 multicolor detection system (Bio-Rad, Hercules, CA,
United States). Gene expression was quantified using the 11Ct
algorithm. To normalize gene expression, the universal actin gene
was used as an internal standard. The gene-specific primers are
listed in Supplementary Table S1. The experiment was repeated
using three biological replicates.

Agrobacterium Infiltration
The pgRPDS, pgRDRI15, and pgRSI vectors were introduced
into Agrobacterium tumefaciens strain GV3101 with helper
plasmid pJICSa_Rep (carries tetracycline as selection mark
(5 µg/ml) was needed for replicating) by electroporation.
Agrobacterial cells were grown, collected, and resuspended in
MMA solution [10 mM MES (2-(N-Morpholino) ethanesulfonic
acid), 10 mM MgCl2, 200 µM acetosyringone] to a final OD600
of 1.2. The A. philoxeroides shoots with 3–4 internodes (6–
8 leaves) were used. The undersides of two fully expanded
leaves were inoculated with Agrobacterium cells using a 1-mL
needleless syringe. When another new 3–4 internodes grew after
inoculation, they were cut and inserted a new pot with two
internodes underground, which was regarded as silenced plants
for salinity and drought treatment. Forty-five plants for each
gene were repeated at least. Infiltrated plants were grown in a

growth chamber at 25◦C with a 12-h light/12-h dark photoperiod
cycle.

Transpirational Water Loss Assay
Transpirational water loss assay of detached leaves was conducted
according to previous reports (Duan et al., 2012). Leaves of
ApDRI15-silenced and control plants were detached and placed
on an electronic balance for continuously weighting under room
temperature condition. The reduction in fresh weight of the
samples was presumed to be the result of water loss. This
experiment was repeated three times.

Relative Water Content
The relative water content of leaves was measured using the
method of Parida et al. (2007). Fully expanded leaves were cut
from the plants, and the fresh weight was recorded immediately.
Then, the fresh portions were immersed in distilled water for 4 h
and the turgid weight was recorded. Finally, the dry weight was
recorded after drying for 48 h at 80◦C in an oven. The relative
water content was calculated according to the following formula:

Relative water content (%) = (Fresh weight − Dry
weight)/(Turgid weight− Dry weight)× 100.

Chlorophyll Content Assay
Chlorophyll content was measured using the method of Arnon
(1949). Extracts were obtained from 0.1 g (fresh weight) leaf
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FIGURE 2 | Sensitivity of ApDRI15-silenced plants to drought stress. (A) T-DNA schematic structure of pgRDRI15 virus vector. LB and RB indicate the left and right
T-DNA border sequences. 35S indicates the 35S promoter of cauliflower mosaic virus. RdRp indicates the PVX 165K RNA-dependent RNA polymerase. 8K, 12K,
and 25K indicate the PVX triple gene block movement proteins. CP indicates the viral coat protein gene. Nos indicates the nopaline synthase transcriptional
terminator. The specific target sequence of the ApDRI15 gene is displayed in the box. (B) The expression level of ApDRI15. The control is the plants agro-infiltrated
with the empty vector. SD1 through SD5 are five replicate ApDRI15-silenced plants. Expression in the silenced plants was normalized to the expression in the control
plant. (C) Drought-sensitive phenotype of the ApDRI15-silenced plants. SD is the ApDRI15-silenced plant. (D) The leaf area of the ApDRI15-silenced plants and the
control. (E) The internode length of the ApDRI15-silenced plants and the control. (F) The shoot biomass of the ApDRI15-silenced plants and the control. Error bars
represent the standard derivation of three biological replicated [n = 36 in (D,E), n = 24 in (F)]. Double asterisks indicate statistically significant differences compared
to the control, as determined using the Student’s t-test (p < 0.01).

samples and were homogenized in 1 mL of 80% acetone
to quantify the chlorophyll content via spectrophotometric
analysis.

Biomass Accumulation and
Determination of Proline Content
Similar size of plants was used for each treatment. The total
above-ground fresh weight biomass (including shoot and leaves)
was measured immediately after harvesting after 15 days stress
treatment and then the average biomass plant−1. The free proline
content was measured using the method described by Bates et al.
(1973). Leaf segments were homogenized in 3% sulfosalicylic
acid, and the homogenates were centrifuged at 3000 × g for
20 min. Mixtures containing 2 mL of sample supernatant, 2 mL of
acetic acid, and 2 mL of 2.5% acid ninhydrin solution were boiled
for 30 min, and the absorbance at 520 nm (A520) was measured.

RESULTS

Photo-Bleaching Phenotype in
ApPDS-Silenced Plants
The PDS gene is widely used as a marker gene in many plant
VIGS assays because the photo-bleaching phenotype is easy to
visualize (Liu et al., 2002). Therefore, our first step was to isolate
the A. philoxeroides PDS gene. Several nucleotide sequences of
the PDS gene from diverse plants in the NCBI database were

aligned (Supplementary Figure S1). We then designed PCR
primers in highly conserved regions, as shown in Supplementary
Table S1 and Figure S1. A 936 base-pair PDS fragment was
obtained (Supplementary Data Sheet S1). A 300 base-pair
specific fragment of the PDS gene (Figure 1A in box) was selected
for gene silencing. The new leaves of A. philoxeroides plants were
infiltrated with Agrobacterium cells containing pgRPDS or empty
vector with a 1-mL syringe. Fourteen days after injection, the
emerging leaves and internodes were photo-bleached in PDS-
silenced plants presenting lighter green, while no changes were
observed in plants infiltrated with empty vector (Figure 1B). The
other pictures showing the similar lighter green phenotype were
shown as Supplementary Figure S2. Additionally, the virus did
not damage either these plants or the untreated plants. These data
indicate that the pgR107 VIGS system can be used effectively and
safely to dissect gene function in A. philoxeroides.

To analyze the effect of PDS silencing, qPCR was used
to monitor the expression level of the gene in the agro-
infiltrated plants. As shown Figure 1C, the PDS expression
level was reduced in the new emerging leaves from five PDS-
silenced plants. PDS was expressed at only 15–25% of the level
expressed in plants injected with empty vector (the control). The
chlorophyll contents of these treated plant leaves were tested to
further confirm effective PDS knockdown. The total chlorophyll
levels of new leaves from PDS-silenced plants were significantly
lower than in leaves from the control (Figure 1D). The mean
concentration of chlorophyll in PDS-silenced plants was only
35% of the control concentrations. The successful knockdown of
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FIGURE 3 | Effect of ApDRI15 knockdown on survival and physiology of plants under drought stress. (A) Recovery of ApDRI15-silenced plants and control plants
after re-watering. Control plants are plants agro-infiltrated with the empty vector. SD indicates ApDRI15-silenced plants. (B) Recovery rates of ApDRI15 and control
plants. (C) Water loss rates of detached leaves from ApDRI15-silenced plants and control plants. (D) Relative water contents of leaves of ApDRI15-silenced plants
and control plants. (E) Free proline concentrations of ApDRI15-silenced plants and control plants. Error bars represent the standard derivation of three biological
replicates [n = 92 in (B), n = 30 in (C,D), n = 15 in (E)]. Double asterisks indicate statistically significant differences compared to the control, as determined using the
Student’s t-test (p < 0.01).

the PDS gene indicates that the pgR107 VIGS system works well
for dissection of A. philoxeroides gene function.

VIGS Knockdown of ApDRI15 Increased
A. philoxeroides Susceptibility to
Drought Stress
Alternanthera philoxeroides adapts readily to various abiotic
stresses including drought and salinity. We isolated a drought
response-related gene, named ApDRI15, which was submitted
to the NCBI database. A sequence fragment of ApDRI15 was
inserted into the pgR107 virus vector to create the pgRDRI15
vector (Figure 2A). The ApDRI15-silenced plants were created
by agro-infiltration with GV3101 containing pgRDRI15. The
normal plant inoculating with pgR107 VIGS vector (empty
vector) served as control. As shown in Figure 2B, the ApDRI15
expression level in the five ApDRI15-silenced plants was only
15–40% of the expression level in the control leaves. The
silenced plants with <25% of the control expression level
were selected for further analysis with the drought-response
assay.

The ApDRI15-silenced plants and the control plants were
grown in a greenhouse without watering. After 15 days
(Figure 2C), the silenced plants were noticeably different from
the controls. The silenced plants had significantly smaller
leaves, shorter internodes, and less biomass than the controls
(Figures 2D–F). After 21 days of drought, the silenced
plants had wilted shoots and withered old leaves, evidence
of greater drought sensitivity compared to the controls. Ten
days after re-watering, 92% of control plants had recovered
but only 42% of ApDRI15-silenced plants had recovered
(Figures 3A,B).

We measured physiological parameters in order to evaluate
the function of ApDRI15 in the drought stress response. The
detached leaf transpiration rate in the silenced plants was
significantly higher than that in the controls (Figure 3C). The
average leaf weight in the ApDRI15-silenced plants decreased
by 70% after 8 h, whereas in the control plants the decrease
was only 25%. The relative water content in leaves of silenced
plants (48%) was lower than in leaves of control plants
(62%) (Figure 3D). In addition, we monitored the level of
free proline, an osmoprotective molecule that accumulates
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FIGURE 4 | Sensitivity of ApSI1-silenced plants to salinity stress. (A) T-DNA schematic structure of pgRDSI1 virus vector. LB and RB indicate the left and right
T-DNA border sequences. 35S indicates the 35S promoter of cauliflower mosaic virus. RdRp indicates the PVX 165K RNA-dependent RNA polymerase. 8K, 12K,
and 25K indicate the PVX triple gene block movement proteins. CP indicates the viral coat protein gene. Nos indicates the nopaline synthase transcriptional
terminator. The specific target sequence of ApSI1 gene is displayed in the box. (B) The expression level of ApsI1. The control was plants agro-infiltrated with the
empty vector. SS1 through SS5 are five replicate ApSI1-silenced plants. Expression in the ApSI1-silenced plants was normalized to the control. (C) Salinity-sensitive
phenotype of ApSI1-silenced plants. SS indicates ApSI1-silenced plants. (D) Total chlorophyll contents of the ApSI1-silenced plants and control plants. (E) Shoot
biomass of ApSI1-silenced plants and control plants. Error bars represent the standard derivation of three biological replicates (n = 24). Double asterisks indicate
statistically significant differences between ApSI1-silenced and control plants, as determined using the Student’s t-test (p < 0.01).

under drought stress, which has been reported as standard
maker for plant drought resistance (Li et al., 2017). The
average proline content of the ApDRI15-silenced plants was
significantly lower than in the control plants (Figure 3E). These
results suggested that the role of ApDRI15 in drought stress
resistance can be dissected using a pgR107 VIGS approach in
A. philoxeroides.

Knockdown of ApSI1 Attenuated the
Resistance of Plants to Salinity Stress
We isolated another salinity inducible gene, ApSI1, that was
deposited in NCBI database, and characterized its function with
the pgR107 VIGS approach. As described above, the special
fragment of ApSI1 was cloned, and the resulting vector pgRSI
was generated (Figure 4A). ApSI1-silenced plants and control
plants were generated following agro-infiltration. The ApSI1
expression levels in the silenced plants were significantly reduced,
averaging only 22% of the control levels (Figure 4B). The ApSI1-
silenced plants with low ApSI1 expression levels (less than 22%
of the control levels) were used to perform a salinity stress
analysis. When silenced plants and control plants were treated
with 300 µM sodium chloride, the ApSI1-silenced plant leaves
were a paler shade of green than the control leaves. After 20 days
of sodium chloride treatment, the ApSI1-silenced plants were
withering, yet the control plants grew a bit yellowish under
sodium chloride (Figure 4C). To evaluate the role of ApSI1 in
growth under salinity stress, we measured the total chlorophyll
and the biomass of the silenced plants and the control plants

15 days after sodium chloride treatment. The average total
chlorophyll level of ApSI1-silenced plant leaves was significantly
lower than that of control leaves (Figure 4D). The fresh biomass
of the silenced plants averaged 3.9 g per silenced plant shoot, but
for the controls the value was 5.5 g (Figure 4E). The dissection of
the role of ApSI1 in salinity tolerance further demonstrates that
the pgR107 VIGS approach is an effective tool for analysis of gene
function in A. philoxeroides.

DISCUSSION

Alternanthera philoxeroides is a notoriously invasive weed, and
is difficult to prevent from its damages (Sainty et al., 1998; Pan
et al., 2006; Fan et al., 2013). To date, the researches in the
underlying molecular mechanisms of A. philoxeroides, exclude
taxonomy and ecology and the integrated management is only
limited to analyses of genome-wide DNA methylation and gene
expression (Gao et al., 2010, 2015), due to insufficient molecular
approaches. In this study, we successfully developed a simple and
highly effective method in A. philoxeroides, the pgR107 VIGS
system, using the ApPDS marker gene. We also used this VIGS
approach to determine the roles of the ApDRI15 and ApSI1 genes
in the A. philoxeroides response to drought and salinity stresses,
respectively.

The disease symptoms of plants injected with the PVX vector
are mild, which aids in the analysis of gene function (Faivre-
Rampant et al., 2004; Jada et al., 2013; Ramanna et al., 2013). We
used the pgR107 virus vector to silence A. philoxeroides genes,
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without obvious disease symptoms. Our results demonstrate that
the PVX VIGS system (pgR107 vector) is extremely useful for
dissecting gene function inA. philoxeroides, as demonstrated with
the ApPDS, ApDRI15, and ApSI1 genes. Additionally, because the
A. philoxeroides line used in this study was developed through
internode reproduction in a greenhouse for 2 years, further
analysis of gene function in A. philoxeroides from other habitats
is warranted because of the strong phenotypic plasticity of the
species.

Virus-induced gene silencing is a valuable tool that can
effectively silence individual genes or families of genes critical
for plant development or resistance to biotic and abiotic
stresses (George et al., 2015). This tool is a simple and rapid
method for assessing gene function (Burch-Smith et al., 2004;
Robertson, 2004; Becker and Lange, 2010; Cakir et al., 2010).
A. philoxeroides can readily adapt to terrestrial and aquatic
habitats. Moreover, the vegetative regeneration clones can exploit
extremely diverse habitats, including dry lands, lakes, and high-
salt areas, exhibiting notable morphological differences (Huai
et al., 2003; Pan et al., 2006; Geng et al., 2007; Gao et al., 2010).
Thus, this weed is able to colonize a wide range of habitats
(Geng et al., 2006, 2007; Li and Ye, 2006; Pan et al., 2006;
Wu et al., 2016a,b). In this study, we dissected the function
of the drought-related gene ApDRI15 and the salinity-related
gene ApSI1 using the VIGS method. ApDRI15 knockdown
significantly increased susceptibility of A. philoxeroides plants
to drought stresses, resulting in lower biomass, smaller leaves,
shorter internodes, higher water loss rates, lower relative water
content, and lower proline level compared to the control plants.
When the ApSI1 gene was silenced in plants, the silenced plants
withered, grew pale, and had lower biomass compared to the
control plants. Therefore, the PVX VIGS system can be used
to silence A. philoxeroides genes to determine their function,
thereby elucidating the molecular mechanisms of invasion and
colonization.

In this study, A. philoxeroides DRI15 were isolated for
analyzing its function against drought stress. In NCBI database,
A. philoxeroides DRI15 gene had been previously submitted,
and annotated as drought-induced gene. We also further
confirmed that the DRI15 expression was response to drought
stress by qPCR analysis (Supplementary Figure S3). However,
DRI15 has not been identified in other plants. The structural
ortholog of A. philoxeroides DRI15 putative protein is highly
similar with ribosomal protein s3a and s1-a (identification of
93.1 and 91.8% at protein level, respectively, Supplementary
Data Sheet S2). The ribosomal protein served as a multi-
functional protein interacted with p53, which was associated
with cellular stress in human (Goodin and Rutherford, 2002;
Zhan, 2005; Yadavilli et al., 2009). Thereby, the function of
DRI15 in plants should be extensively explored in drought-
tolerance.

We selected a salt-induced gene of A. philoxeroides, SI1, for
evaluating its function by VIGS method. Up-to-now, there were
many researches involved in salt-induced genes. For instance,
Salicornia brachiata SI-1 and SI-2 genes were overexpressed in
tobacco, conferring salinity tolerance (Yadav et al., 2014; Kumari
et al., 2017). A salt-responsive gene in wheat, TaDi19A, was

identified to play a vital role in the plant salt-tolerance (Li et al.,
2010). In the present study, ApSI1 played important roles in
A. philoxeroides plant salt-tolerance according to the results of
silenced plants under salt treatment.

CONCLUSION

We have successfully developed a pgR107 VIGS approach
in A. philoxeroides. By dissecting the role of the ApDRI15
and ApSI1 genes in the response of plants to the stress of
drought and salinity, we have demonstrated that the PVX VIGS
system is a simple and rapid method for assessing the role
of individual genes and gene families in A. philoxeroides. This
tool will be invaluable for revealing the potential molecular
mechanisms of A. philoxeroides invasion and colonization
and for developing measures to check weed invasion, control
damage to agriculture, and protect ecological balance in invaded
habits.
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