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PROLONGED PRESENCE IN SPACE AND THE NEED FOR A

FUNCTIONAL DIET

The future of space missions and extended human presence in space requires the ability to provide
proper dietary intake for space travelers with minimal resupply from the Earth, as food and food
packaging currently represent a significant burden on space mission consumables (Perchonok
et al., 2012). This is critical for sustaining an optimal nutritional status for space travelers and
for mitigating stress effects from long-duration space travel, including weight loss, hematological
changes, and space radiation-induced oxidative cytotoxic stress, protein oxidation, increased
muscle proteolysis, impairment of eye health and changes in the central nervous system (Kennedy
et al., 2007; Vergari et al., 2010; Cohu et al., 2014). Such effects are further linked to emotional
volatility, psychological stress, and depression among the crew (Rabin et al., 2005). Prevention
of deleterious phenomena that accelerate tissue lethality must include targeted intake of whole
food-based antioxidants rather than supplements (Wan et al., 2006). These comprise fresh plant
sources produced aboard during mission, thereby providing emotional along with nutritional
support to space travelers.

For instance, the consumption of carotenoids through whole-food-based diet is a
recommendable protective measure since the human body is unable to produce any of the major
photoprotective carotenoids considered essential for human vision: β-carotene as precursor of
retinal constituent vitamin A, and zeaxanthin and lutein for protecting the eyes by absorbing
excess light intensity (Cohu et al., 2014). Production of bioactive and particularly carotenoid-rich
vegetables as part of Space Life Support Systems (SSLSs) remains a critical goal for future space
missions (Perchonok et al., 2012). Awareness of the importance of fresh functional food in
physically and mentally fortifying crews during missions has been growing among space mission
participants (Vergari et al., 2010). It is therefore critical to incorporate in SLSSs plant-based
fresh functional food production to support human presence during long-distance space travel or
extra-planetary habitation.

SPACE FARM ESSENTIALS AND CONSTRAINTS

Plant growth under space conditions is faced with important constraints unknown to Earth-based
farming systems and beyond our current understanding of plant physiological responses in
terrestrial environments. These include, among others, exposure to high levels of cosmic radiation,
lack of a unilateral gravity vector, growth adapted to limited chamber space, reduced nutrient
sustainability, and lack of convection (Vandenrbrink and Kiss, 2016). Space farming will be
conducted in controlled environment chambers that must infringe minimally on power, volume,
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and mass resources shared with crews and used for maintaining
spacecraft in stable orbit (Poulet et al., 2016). In bioregenerative
closed systems, plants are destined to produce food, regenerate
the air by removing CO2 and producing O2, and recycle
water through transpiration. A major challenge for adapting
Earth-based agricultural practices aboard spacecraft or in
planetary bases is reduced gravity (or microgravity) that impacts
fluid and gas distribution around the plants (Kuang et al., 2000).
Reduced mass transport and absence of buoyancy-dependent
convective transport are responsible for thick boundary layers
forming around plant organs, allowing the build-up of volatile
compounds deleterious for plant growth, such as ethylene,
and reducing oxygen bioavailability (Monje et al., 2003).
Power-assisted forced convection is required as reduced gravity-
mediated oxygen transport may result in hypoxic conditions
around plant organs whenever the rate of respiration exceeds the
rate of oxygen mass transfer to the respiring organs; moreover,
transpiration rates tend to increase under hypobaric conditions.
Low irradiance levels (≤300µmol m−2 s−1) is also among the
serious constraints imposed on space farming as supplemental
lighting is considered a highly energy demanding subsystem of
the space farm (Salisbury and Bugbee, 1988).

Gravity is not an absolute requirement for any step in the
plant life cycle as complete ontogenesis from seed to seed has
been demonstrated in microgravity conditions (Kuang et al.,
2000). Tomato seeds formed under simulated microgravity
were biologically and functionally complete (Colla et al.,
2007). However, seeds formed in space demonstrated retarded
deposition of reserves during development (Musgrave et al.,
2005), while reduced storage reserve mobilization and hypoxia-
induced changes in mitochondrial size and shape, and in starch
grain size and distribution was reported during Brassica early
seedling growth along (Musgrave, 2002). Seeds of Brassica rapa
L. produced in space were smaller, had lower dry weight,
were deficient in protein and presented differences in bioactive
phytochemicals, such as glucosinolates, compared to ground
control seeds (Musgrave et al., 2005). Moreover, morphological
and growth characteristics of dwarf tomato plants were modified
during microgravity simulation treatment, presenting spreading
growth, increased internode length, reduced fruit yield, fruit size,
leaf area, leaf dry weight, fruit dry weight, total dry weight, foliar
amounts of chlorophylls and carotenoids as well as reduced fruit
sugar and dry mater contents (Colla et al., 2007).

IDEAL CANDIDATES FOR THE

ASTRONAUT’S FUNCTIONAL SALAD

The choice of crops may partly hold the answer to several of the
challenges facing seed-to-seed production in microgravity. Crop
criteria established for plants grown in space include: the ratio of
edible mass to total biomass (harvest index), crop efficiency (per
unit area, time, and volume), potential yield (edible mass and O2

and H2O production), and the crop’s horticultural requirements
(planting, harvesting, pollination, processing needs; Berkovich
et al., 2004; Yamashita et al., 2009). Salad crops present the highest
harvest indices (≈90%) among candidate crops, and low water

uptake/transpiration ratio which translates into high humidity
input into the space flight environment that can be harnessed,
but they cannot be part of a closed system using recycled gray
water (Anderson et al., 2015); moreover, they are characterized
by low O2 production and CO2 consumption rates, i.e., low
biomass fixation. Salad crops are highly suitable for chamber
cultivation, they are easy to cultivate, they have short growth
cycles, they are low ethylene producers and can be picked and
eaten fresh, requiring minimal horticultural input from the crew
(Chunxiao and Hong, 2008). Moreover, growing salad crops is
easily adaptable to the needs of a diverse and renewed diet while
adding a palatable and bioactive aspect to it.

A new class of speciality salad crops valued for their
color and flavor enhancing properties but also for their rich
phytonutrient content are microgreens (Kyriacou et al., 2016;
Bulgari et al., 2017). Produced from the seeds of vegetables,
herbs, or grains, including wild or even ornamental species,
microgreens have a brief, species-dependent production cycle,
of 1–3 weeks from seed germination (Xiao et al., 2012).
They are harvested at soil level, when cotyledons are fully
expanded and the first pair of true leaves has emerged (Sun
et al., 2013). They have recently gained immense popularity as
culinary ingredients of novel gastronomic trends (Koppertcress,
2016). Candidate genotypes are expanding based on sensory
and health criteria, however, currently exploited are mostly
species from the Brassicaceae, Asteraceae, Chenopodiaceae,
Lamiaceae, Apiaceae, Amarillydaceae, Amaranthceae, and
Cucurbitaceae families (Ebert, 2012). Compared to their
mature-leaf counterparts, microgreens contain higher amounts
of important phytonutrients (ascorbic acid, β-carotene,
α-tocopherol, and phylloquinone) and minerals (Ca, Mg, Fe,
Mn, Zn, Se, and Mo) and lower nitrates (Xiao et al., 2012; Pinto
et al., 2015). Seeds are demanded in large quantity and high
quality, thus constitute a major cost of microgreens production
(Di Gioia et al., 2015). Although, foodborne outbreaks have
not been associated with the consumption of microgreens,
seeds should receive precautionary sanitary treatments for
eliminating pathogenic bacteria (Xiao et al., 2014, 2015). Ease
of germination varies among microgreens species, with slow
germinating species benefiting from brief pre-sowing treatments
that help standardize and shorten their production cycle (Lee
et al., 2004). Sowing rate depends on average seed weight,
estimated germinability and targeted crop density, ranging
from 1 seed/cm2 for large-seeded species (e.g., pea, chickpea,
sunflower), up to 4 seeds/cm2 for small-seeded species (e.g.,
arugula, watercress, mustard; Di Gioia and Santamaria, 2015).
Microgreens are ideal for space flight environments as they can
be harvested directly by crew members, ensuring freshness and
high quality. Their production can be implemented on static,
shallow substrates with little or no nutrient supplementation,
and this alleviates problems of poor crop performance associated
with low O2 and nutrient solubility in microgravity hydroponic
systems (Perchonok et al., 2012). Synthetic fibrous media
can be used and fortified to improve the nutritional value of
microgreens (Nyenhuis and Drelich, 2015), furthermore they
eliminate the need to prepare and administer complete nutrient
solutions and allows transpired water to be recycled to the
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root module. Bioactive content is usually pronounced in less
palatable microgreens species, such as red cabbage (Brassica
oleracea L. var. capitata), sorrel (Rumex acetosa L.), peppercress
(Lepidium bonariense L.), but also in some species of more
agreeable taste such as cilantro (Coriandrum sativum L.) and
amaranth (Amaranthus hypochondriacus L.; Xiao et al., 2012).

A major constraint of food production in SLSSs is the
high demand for power which antagonizes other space shuttle
subsystems (Perchonok et al., 2012). Providing efficient and
optimal, in terms of intensity and spectral quality, lighting
for crops in spaceflight environments has been increasingly
feasible through the introduction of light-emitting diode (LED)
technology (Wheeler, 2004; Bourget, 2008). Using LEDs instead
of metal halide, fluorescent, incandescent, and high-pressure
sodium lamps can reduce power demand per unit of growing
area by up to one order of magnitude (Poulet et al., 2014,
2016). Microgreens have a lower demand for photon flux
compared to long-cycle crops, thus are ideally adapted to
chamber environments. Moreover, modulating the photon flux,
photoperiod and especially the wavelength can be an effective
means of achieving compound-specific improvements in the
functional quality of microgreens and decrease in the levels of
anti-nutrients (Kyriacou et al., 2016). For example, supplemental
green light improved carotenoid content (β-carotene and
lutein/zeaxanthin ratio) in mustard microgreens, while standard
blue/red/far red LED illumination increased the levels of
carotenoids in red pak and tatsoi (Brazaityté et al., 2015). Even
brief (3 d) preharvest application of supplementary red LED
was efficacious in improving the antioxidant profiles of several
microgreens species (Samuolienė et al., 2012). Red and blue
lights, or their mixture, were found more effective than white
and yellow in reducing undesirable nitrates in several species
(Ohashi-Kaneko et al., 2007; Qi et al., 2007). However, the
exact mechanisms behind spectral quality-induced changes on
bioactive compounds are far from elucidated and deserve further
attention.

CHALLENGES AHEAD

In the near future, space exploration will inevitably expand
and its food supply system must also continue to evolve. In

this perspective, microgreens could be considered a resilient
phytochemical factory for the dietary and psychological needs
of crew members in orbital flights and platforms. However, as
components of bioregenerative life support systems, plants must
provide food to the astronauts as well as sufficient photosynthetic
CO2 fixation, O2 regeneration and transpirational filtering,
and recycling of water. Despite their high harvest index,
microgreens are characterized by low biomass fixation and
consequently low O2 generation. To a certain extent, this
can be maximized by growing microgreens in multi-tiered
systems, thereby also increasing space efficiency and water
transpiration. Moreover, the need for higher O2 generation can
be met by growing microgreens along with larger edible crops
characterized by higher biomass fixation but, usually, lower
harvest index. Microgreens also provide an easy platform for

widening space crop genetic diversity since the diverse cultural
needs of long-cycle crops are avoided. Such broad genetic basis
is desirable both from a nutritional and sensorial standpoint
but also as a means of fending off SLS systems from potential
plant disease outbreaks. Although, growing microgreens on
artificial media is usually problem-free, food safety, and healthy
crop stand necessitate appropriate precautionary measures
such as using only high quality certified seed produced and
handled under conditions thatminimize potential contamination
with pathogenic organisms, sanitary maintenance of facilities
employed for growing microgreens, pre-sowing treatment of
seed with appropriate sanitizers such as calcium hypochlorite,
testing, and effective disinfection of irrigation water. Finally,
an important factor that warrants further research is the effect
of space radiation on seed germinability. Although, this is a
horizontal factor influencing both seed-to-seed and short-cycle
crops, ensuring seed viability and germinability is even more
critical for high seed rate crops such as microgreens.
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