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Agrobacterium rhizogenes causes hairy root growth on a large number of plant species.

It does so by transferring specific DNA fragments (T-DNA) from its root-inducing plasmid

(pRi) into plant cells. Expression of T-DNA genes leads to abnormal root growth and

production of specific metabolites (opines) which are taken up by the bacterium and

used for its growth. Recent work has shown that several Nicotiana, Linaria, and Ipomoea

species contain T-DNA genes from A. rhizogenes in their genomes. Plants carrying such

T-DNAs (called cellular T-DNA or cT-DNA) can be considered as natural transformants.

In the Nicotiana genus, seven different T-DNAs are found originating from different

Agrobacterium strains, and in the Tomentosae section no <4 successive insertion events

took place. In several cases cT-DNA genes were found to be expressed. In some

Nicotiana tabacum cultivars the opine synthesis gene TB-mas2′ is expressed in the

roots. These cultivars were found to produce opines. Here we review what is known

about natural Agrobacterium transformants, develop a theoretical framework to analyze

this unusual phenomenon, and provide some outlines for further research.

Keywords: Agrobacterium rhizogenes, Nicotiana tabacum, hairy roots, natural transformation, T-DNA

INTRODUCTION

Agrobacterium is well-known for its capacity to transfer part of its DNA to plants during a natural
infection process leading to tumors (Crown galls) or abnormal roots (Hairy roots, HR) (Gelvin,
2012; Christie and Gordon, 2014; Kado, 2014). The genus Agrobacterium contains different species
such as A. tumefaciens, A. rhizogenes (Riker, 1930), A. vitis (Ophel and Kerr, 1990), and A. rubi
(Hildebrand, 1940). Another classification uses biotypes (Kerr and Panagopoulos, 1977). The
transferred DNA (T-DNA) is located on a large plasmid (tumor-inducing or Ti plasmid) or root-
inducing plasmid (pRi plasmid). Strains can carry one, two, or three T-DNAs on their pTi/pRi
plasmid (Canaday et al., 1992). T-DNAs are surrounded by direct repeats of about 25 nucleotides
(called borders). The transfer starts from the socalled right border and proceeds to the left border.
Often, the integrated T-DNAs are incomplete and truncated at the left part. They can occur as single
copies or as tandem or inverted repeats.

Genes located on the T-DNA are expressed in the plant cells and lead to growth changes (Binns
and Costantino, 1998) and opine synthesis. Sterile Crown gall and HR tissues contain opines
(Bielmann et al., 1960; Ménagé and Morel, 1964). They constitute different families of conjugated
structures, the nature of which depends on the inciting bacterium. Opines often accumulate to very
large quantities as they cannot be metabolized by the plant (Scott, 1979). Uptake and degradation
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of opines by Agrobacterium are encoded by specific genes located
on the pTi or pRi plasmid, outside the T-DNA region(s), and
agrobacteria can be attracted to opine sources by chemotaxis
(Kim and Farrand, 1998). pTi/pRi plasmids can be transferred to
other Agrobacterium strains by a conjugation process which can
be induced by opines. Much has already been learnt about the
way Agrobacterium transfers its T-DNA to plants (Gelvin, 2012;
Christie and Gordon, 2014; Kado, 2014).

In 1983 it was discovered by Southern blot analysis (White
et al., 1983) that N. glauca (Solanaceae family, Noctiflorae section
of the Nicotiana genus) carries A. rhizogenes-like sequences in
its nuclear genome. These sequences were called cellular T-
DNAs (cT-DNAs). A more extensive study (Furner et al., 1986)
involving other members of the Nicotiana genus revealed cT-
DNA sequences inN. tabacum,N. tomentosiformis,N. tomentosa,
andN. otophora (all belong to the Tomentosae section). Although
N. benavidesii (section Paniculatae) was also mentioned as
carrying a cT-DNA, there is no strong evidence for this.

A partial map of the N. glauca cT-DNA was obtained showing
two dissimilar T-DNA copies linked together as an inverted
repeat (called left and right arm). This map was later completed
(Suzuki et al., 2002). In the case of N. tabacum, a few cT-DNA
fragments were sequenced (Meyer et al., 1995; Fründt et al.,
1998a,b; Intrieri and Buiatti, 2001; Suzuki et al., 2002; Mohajjel-
Shoja et al., 2011). It has been reported that C. arvensis and
carrot contain T-DNA sequences (D. Tepfer, cited in Matveeva
and Lutova, 2014 and elsewhere), but this could not be confirmed
by others (Matveeva and Lutova, 2014).

In 2012, a large-scale survey led to the discovery of cT-DNA
sequences in Linaria vulgaris, a member of the Plantaginaceae
family (Matveeva et al., 2012). In 2014, deep sequencing revealed
four cT-DNAs (TA, TB, TC, and TD) in N. tomentosiformis and
their distribution was studied in related species of the section
Tomentosae. An additional type of cT-DNA sequence (TE) was
found in N. otophora (Chen et al., 2014). In 2015, cT-DNA
sequences were reported for Ipomoea batatas (Convolvulaceae
family), a common crop. This species contains two cT-DNAs,
IbT-DNA1 and IbT-DNA2. IbT-DNA1 was found in cultivated
sweet potatoes but not in wild relatives, whereas IbT-DNA2
was found in both (Kyndt et al., 2015). Thus, gene transfer
from agrobacteria to various plant species (natural genetic
transformation) had occurred under natural circumstances. This
led to genetically stable transformants, which we will call ≪
natural transformants≫.

Although the study of natural transformants is still in its
infancy, we would like to summarize recent observations and
develop several theoretical considerations that may be useful for
further investigations. We will start by having a close look at the
agent that introduced the cT-DNAs: A. rhizogenes.

AGROBACTERIUM RHIZOGENES

STRAINS AND THEIR VARIABILITY

Fründt et al. (1998a) speculated that cT-DNAs were initially
normal plant sequences that were later captured by agrobacteria
and employed for tumor and HR induction. We believe this

is very unlikely because of the following reasons: cT-DNAs are
absent from most plant species, their phylogenies do not match
plant phylogenies, and the cT-DNAs end at the classical pRi
T-DNA right borders as expected for transfer by Agrobacterium.
Thus, there is little doubt that plants with cT-DNAs were indeed
transformed by Agrobacterium.

The published cT-DNA structures all seem to be derived
from A. rhizogenes-like T-DNAs. We know relatively little about
A. rhizogenes strains, their Ri plasmids, and their T-DNA
structures. Only a few strains have been studied and classified
into mikimopine, cucumopine, agropine, and mannopine
strains (represented by strains MAFF03-01724, NCPPB2659,
ATCC15834, and NCIB8196 respectively) according to the
opines they induce in the transformed roots. Their host ranges
are very broad (De Cleene and De Ley, 1981).

The opine-based A. rhizogenes classification has no
phylogenetic value because opine genes can be exchanged
between different agrobacteria by horizontal gene transfer.
Frequent horizontal gene transfer makes the construction of
phylogenetic trees for T-DNA structures, pTi/pRi plasmids,
and whole genomes practically impossible. Even if thousands
of Agrobacterium genomes were available, it might still be
impossible to establish phylogenetic trees (Van Nuenen et al.,
1993). This was illustrated by a detailed analysis of A. vitis, the
only Agrobacterium species for which a large number of isolates
were compared. Three very different pTi types were found, but
no intermediate structures, making it impossible to construct a
tree. These studies suggested the selection of particular T-DNA
gene combinations, loss of intermediates, and expansion of
efficient strains into a few dominant groups (Burr and Otten,
1999).

Horizontal gene transfer also leads to chimeric T-DNAs.
Examples are the pRi1724, pRiA4, and pRi2659 T-DNAs: their
central parts are very similar, but close to the right border
pRi1724 carries a mikimopine synthase (mis) gene, pRiA4 has an
ornithine cyclodeaminase gene (rolD, Trovato et al., 2001), and
pRi2659 a cucumopine synthase (cus) gene. These differences are
most likely due to recombinations between different Ti plasmids
(Otten and De Ruffray, 1994).

WHICH TYPES OF AGROBACTERIUM

STRAINS INTRODUCED THE cT-DNAS?

Because pRi plasmids can be exchanged between Agrobacterium
strains and are often chimeric, it is very difficult (if not
impossible) to attribute a cT-DNA to a particular type of
Agrobacterium strain. For example, the N. glauca cT-DNA
strongly resembles part of the pRi1724 T-DNA, but the bacterium
that introduced the cT-DNA is not necessarily derived from
a 1724-like A. rhizogenes strain, since the remaining genome
might be completely different. Unless natural transformation
can be directly observed to occur in nature (see below), it
will be impossible to identify the strain responsible for a
natural transformation event on the sole basis of a cT-DNA
sequence. In order to get a better idea of the pRi and T-
DNA gene repertoire of A. rhizogenes, more isolates will have
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to be investigated. The variation in A. rhizogenes T-DNA
structures is probably quite large, as shown by the new cT-
DNA sequences. In N. tomentosiformis, six previously unknown
T-DNA genes were found: two (in TA and TD) are distantly
related to orf14, one codes for a protein with weak similarity
to agrocinopine synthase (Acs, TB), another for a protein with
weak similarity to octopine synthase (Ocs, TC), one for a C-
like protein (c-like gene, TC), and one for a large, completely
unknown protein (Orf511, TD). It is noteworthy that octopine
synthase-like genes are normally only found in A. tumefaciens
or A. vitis. In N. otophora, vitopine synthase (vis)-like sequences
(distantly related to ocs) and 6b genes with low similarity to
their counterparts in A. tumefaciens and A. vitis were found
alongside typical A. rhizogenes T-DNA genes such as rolC, orf13,
and orf14 (Chen et al., 2014). IbT-DNA2 of I. batatas carries
typical A. rhizogenes genes (orf13, orf14, rolB, orf17n, orf18)
but with an unusual organization and an unusual rolB-like
gene. IbT-DNA1 carries iaaM, iaaH, C-protein, and acs genes
(Kyndt et al., 2015). The latter gene combination has been
found in A. tumefaciens strain C58 and in the A. vitis strain
Tm4 TB region (Otten et al., 1999), but not in A. rhizogenes.
These unusual T-DNA structures and genes were introduced by
unknown Agrobacterium strains which might possess unusual
root-inducing properties. However, if transformation happened
long ago, strains might have evolved toward other forms or
disappeared altogether.

In the next three sections we will discuss when the different
transformation events could have taken place and how they relate
to the evolutionary history of the recipient plants.

ACCUMULATION OF cT-DNAS BY
SUCCESSIVE TRANSFORMATIONS

When it was discovered that different Nicotiana species carry cT-
DNAs in their genomes (Furner et al., 1986), it was suggested
that this could result from the transformation of a common
ancestor species. In a later report, two possibilities were proposed
to explain the presence of T-DNA genes in N. glauca (Noctiflorae
section, but at that time considered part of the Paniculatae
section) and N. tomentosiformis (Tomentosae section). First, a
T-DNA was inserted in an ancestor of these sections (part
of the Nicotiana Cestroid ancestral complex) and inherited
by the descendants. Second, the two cT-DNAs were inserted
separately and independently, after the split between the two
sections (Meyer et al., 1995). When the genome sequences of
N. tomentosiformis (Chen et al., 2014), N. otophora, and three
cultivars of N. tabacum (Sierro et al., 2014) became available,
the situation turned out to be considerably more complex. The
N. tomentosiformis genome was found to contain four cT-DNAs,
each from a different Agrobacterium strain and different from
the N. glauca cT-DNA. A fifth cT-DNA (TE) was discovered
in N. otophora (Tomentosae section); its structure has not
yet been assembled. The unexpected presence of related genes
located on different cT-DNAs (such as the three orf14 genes
of TA, TB, and TD in N. tabacum) implied that phylogenetic
analysis of partial cT-DNA sequences from different species

FIGURE 1 | Phylogenetic tree of the Nicotiana Tomentosae section. The

Tomentosae ancestor (To ancestor) splits into different groups. Arrows: arrivals

of cT-DNA sequences (in the order TC > TB > TD > TA and TC > TE), here

shown at at the separation of the branches. Alternatively, cT-DNAs could have

arrived after the speciation events (indicated as an example for TC by dotted

line). sp1 and sp2 represent hypothetical species. Vertical scale: % divergence

between cT-DNA repeats. The Tomentosae tree based on cT-DNA insertions

corresponds to the tree proposed by Knapp et al. (2004). syl, sylvestris; tab,

tabacum; tof, tomentosiformis; kaw, kawakamii; toa, tomentosa; oto,

otophora; set, setchellii; ev, insertion event. Below each species: cT-DNA

content.

(Intrieri and Buiatti, 2001) can only be carried out after it has
been established whether they belong to the same cT-DNA or
not.

If one assumes that the four N. tomentosiformis inserts
were introduced by successive transformations (and did not
accumulate through crosses between different transformants),
five different types of plants can be expected (Figure 1). In the
Tomentosae section, the relative order of the insertion events
(ev1 to ev4) can be estimated from the divergence values of
the cT-DNA repeats (Chen et al., 2014, Table 1). Events 1, 2+3
(probably in the order TB > TD because of the differences in
the repeat divergence), and 4 correspond to the introduction
of TC, TB+TD, and TA. N. setchellii probably lacks a cT-DNA,
as shown by the fact that its transcriptome contains no cT-
DNA sequences (Long et al., 2016). N. otophora has two cT-
DNAs (TC and TE, the latter being specific for N. otophora
and introduced at event 5), N. tomentosa three (TC, TB, and
TD), N. kawakamii and N. tomentosiformis four (TC, TB, TD,
and TA). N. tabacum has three cT-DNAs, but its TC region
has been completely deleted (including 1 kb of flanking DNA
on each side, Chen et al., 2014). The remarkable loss of TC
in N. tabacum shows the importance of investigating cT-DNA
insertion sites (Chen et al., 2014; Chen, 2016). According to
Figure 1, two intermediate Nicotiana forms (sp1 and sp2) are
lacking in the Tomentosae section: one with TC, but without TE,
and one with TC and TB (Figure 1). Possibly, they do occur as
variants of existing species, as yet undetected species, or became
extinct.
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USE OF cT-DNA INSERTS AS MARKERS
TO RECONSTRUCT NICOTIANA

EVOLUTION

Transferred DNA (T-DNA) insertion events provide interesting
clues to reconstruct plant evolution. All species with a cT-DNA
at the same insertion site derive from a common ancestor in
which the original insertion took place. The divergence between
the repeats of such shared cT-DNAs should be consistent with the
overall genome divergence between the species, but this has still
to be tested.

Gemini viruses such as Geminivirus-Related DNA sequence
(GRD, Murad et al., 2004) or retrotransposons such as the
TS retrotransposons in tobacco (Wenke et al., 2011) can also
provide clues for plant evolution. In the case of the Tomentosae
section, it may be possible to date the different insertion events,
since Nicotiana evolutionary trees have been calibrated, with
an estimated DNA divergence of about 28% per 5 Mio years
(Clarkson et al., 2005). The most diverged Nicotiana cT-DNA
(TC) shows 5.8% divergence between the repeats which leads to
an estimated age of 1 Mio years.

cT-DNAS AND EVOLUTION OF IPOMOEA

AND LINARIA

In the case of Ipomoea, orf13 sequences (from IbT-DNA2) were
detected in I. batatas and in I. trifida (Kyndt et al., 2015).
This suggests that as in Nicotiana, cT-DNAs were introduced
in an ancestor species and transmitted across speciation events.
However, IbT-DNA2 could have been transferred by interspecific
hybridization, known to occur between I. batatas and I. trifida
(Rouillier et al., 2013). Whether IbT-DNA1 and IbT-DNA2 were
introduced by one or two transformation events is not clear,
because both could be derived from a single Agrobacterium
strain. The origin of the cultivated hexaploid (6x) species I.
batatas is much debated. Two independent origins have been
proposed which led to the socalled Northern and Southern
lineages. The 6x genome has probably arisen in two steps, from
2x to 3x or 4x, and then to 6x. Possibly, I. trifida contributed
to I. batatas, but it has also been proposed that I. batatas is
derived from wild polyploid I. batatas plants (Rouillier et al.,
2013). The distribution of cT-DNAs within I. batatas (both
cultivated and wild forms) and I. trifida could shed new light
on these questions. For Linaria, a calculation has been made on
the basis of sequence divergence between orf14-mis sequences
of L. vulgaris, L. dalmatica, and L. acutiloba. Assuming that the
orf14-mis sequences are located on the same cT-DNA insert, the
insert was estimated to be 1 Mio years old (Kovacova et al.,
2014).

In none of the known cases, cT-DNA repeat divergence
is more than 10% (see Table 1). This may indicate that cT-
DNA insertions did not occur earlier than 1.5 Mio years ago.
Alternatively, it may be that within this time span, the statistical
probability of a complete cT-DNA deletion became sufficiently
high, so that more diverged structures had little chance to
survive.

TABLE 1 | Sequence divergence between repeats within different cT-DNA

structures.

cT-DNA Accession %

Divergence

References

N. tomentosiformis TA KJ599826 1.2 Chen et al., 2014

TB KJ599827 2.6 Chen et al., 2014

TC KJ599828 5.8 Chen et al., 2014

TD KJ599829 1.7 Chen et al., 2014

N. glauca Ng AB071334.1

AB071335.1

3 Suzuki et al., 2002

Ipomoea batatas IbT-DNA1 KM052616.1

KM113766.1

0.9 Kyndt et al., 2015

IbT-DNA2 KM052617.1 0.7 Kyndt et al., 2015

Linaria vulgaris T-DNA EU735069 8.5 Matveeva et al., 2012

COULD cT-DNA INSERTIONS LEAD TO
PLANT SPECIATION ?

It has been proposed that cT-DNA insertionsmay have led to new
species (Martin-Tanguy et al., 1996; Fründt et al., 1998a; Chen
et al., 2014). In the case of the Nicotiana Tomentosae section
different cT-DNA combinations were found in different species,
and the order of cT-DNA entry corresponds to the proposed
branching order of the species (Knapp et al., 2004; Chen et al.,
2014, Figure 1). This pattern is consistent with the idea of
speciation by transformation. Speciation could be favored by the
strong effects of A. rhizogenes T-DNA genes on development
(for example by changing flower morphology or flowering
time), but this has not been investigated for natural or artificial
HR transformants. The speciation hypothesis can be tested by
comparing normal plants with their HR transformants obtained
from A. rhizogenes infection under laboratory conditions. If
indeed HR plants no longer hybridize with the ancestor and
therefore have become new species, further studies could
be carried out to identify the T-DNA genes responsible for
introducing the change that leads to the reproductive barrier.
Alternatively, cT-DNA sequences of natural transformants may
be removed by CRISPR and the resulting plants compared with
the unmodified natural transformant. However, the function of
those genes that led to a reproductive barrier at an early stage
might have been lost in later steps.

In the next section we will investigate in more detail what is
known about the structures of cT-DNAs and their evolution.

STRUCTURAL ORGANIZATION OF
cT-DNAS

In 8 out of 9 cases, cT-DNA structures are partial inverted
repeats, inserted in a single site. The Linaria cT-DNA is an
exception, being a partial direct repeat (Matveeva et al., 2012).
In Figures 2A–D the four N. tomentosiformis cT-DNAs (TA, TB,
TC, and TD) are shown with the original contigs constructed
from small reads obtained by deep sequencing. Highly similar
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FIGURE 2 | Maps of the four cT-DNAs from N. tomentosiformis. (A–D): TA, TB, TC, and TD. Inverted repeats are indicated by colored arrows. Renumbered contigs

from N. tomentosiformis (AWOL series, Sierro et al., 2014) are mapped on the final cT-DNA maps. The large numbers of contigs are due to difficulties in automatic

assembly for these closely related inverted repeats. Various: repeated plant sequences, only part of these contigs are shown. (E) An example of a cT-DNA, the TC

region from N. tomentosiformis. The figure shows the similarity between the rpeated part of TC and part of the A. rhizogenes A4 region with its T-DNA genes (A, B, C:

rolA, rolB, rolC). Boxed in red are sequences (ocl: octopine synthase-like, and gene c) that have so far only been found in A. tumefaciens or A. vitis. Thus, the A.

rhizogenes strain that inserted the TC-region belongs to a new type of strain that combines features of A. rhizogenes and A. tumefaciens or A. vitis.

repeats can cause problems for the assembly of reads into
contigs. This leads to many small contigs which must be linked
by PCR amplification and sequencing. In Figures 2A–D the
published N. tomentosiformis contigs (Sierro et al., 2014, AWOL
series, renumbered) are shown aligned with the four assembled
cT-DNA sequences. The TC region is shown in more detail
(Figure 2E). The inverted repeat of TC partially aligns with TL
from A. rhizogenes strain A4. At both ends of the repeat unique
regions are found with an ocl gene on the left and a protein-C
gene on the right. The T-DNA that gave rise to the TC region is
unknown, and it is unclear how the inverted repeat and the single
copy fragments were assembled. Further progress may require
identification of A. rhizogenes strains with the relevant T-DNA
genes.

All cT-DNAs seem to be truncated. In experimental infections
with present-day Agrobacterium strains, T-DNA insertions can
occur in different ways: in single sites (with a complete or
truncated T-DNA, with direct or inverted repeats, with complete
or incomplete repeats) or in multiple sites (with combinations
of different structures). Some strains carry two different T-DNAs
on their Ti/Ri plasmid, such as the TL and TR regions of
A. rhizogenes strain A4 (Bouchez and Tourneur, 1991) and
can introduce them separately or combined as a single insert.
Potentially, this leads to a large variety of cT-DNA structures.

The fact that most natural transgenic plants carry a single insert
consisting of a partial inverted cT-DNA repeat is therefore
probably not coincidental. No simple hypothesis can be proposed
why this is so, but the following factors might be considered.
cT-DNA inserts in multiple sites will segregate during sexual
propagation, favoring single inserts. Repeat structures are more
tolerant to mutations, thus facilitating preservation of important
genes. Because T-DNA transfer starts at the right border and
proceeds to the left, incomplete T-DNA structures will tend to
have intact right borders and break off on the left. Studies on
experimentally obtained regenerants or with additional natural
transformants may show whether some structures are indeed
preferred and what could be the underlying reasons.

In the next section we will discuss cT-DNA evolution and
variability.

EVOLUTION OF cT-DNAS

After stable integration, cT-DNAs will evolve through point
mutations, insertions, and deletions, in the same way as normal
plant DNA. Many cT-DNA genes in natural transgenic plants are
interrupted by stop codons or are partially deleted (Table 2, see
also below). NgrolB of N. glauca is inactive but was converted
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TABLE 2 | cT-DNA genes in different natural transformants.

Species cT-DNA cT-DNA genes Intact Expr. Biol. activity References

Nicotiana glauca T-DNA rolB − + + (after restoration) Aoki and Syono, 1999c

rolC + + + Aoki and Syono, 1999c

orf13 + + + Aoki and Syono, 1999b

orf14 + + + Aoki and Syono, 1999b

mis + + + (in E. coli) Suzuki et al., 2002

N. tomentosiformis and N. tabacum (tob) TA orf8 − nt nt Chen et al., 2014

rolA − nt nt Chen et al., 2014

rolB − nt nt Chen et al., 2014

rolC + + + (tob) Mohajjel-Shoja et al., 2011

orf13 + + + (tob) Fründt et al., 1998b

orf14-like − + nt Chen et al., 2014

mis − nt nt Chen et al., 2014

TB orf14 + nt nt Chen et al., 2014

mis − nt nt Chen et al., 2014

ags − nt nt Chen et al., 2014

mas1’ − nt nt Chen et al., 2014

mas2′ + + + (tob) Chen et al., 2016

TC ocs-like + nt − Chen et al., 2014

2 − nt nt Chen et al., 2014

3 − nt nt Chen et al., 2014

8 − nt nt Chen et al., 2014

rolA − nt nt Chen et al., 2014

rolB − nt nt Chen et al., 2014

Gene c − nt nt Chen et al., 2014

TD orf18 − nt nt Chen et al., 2014

orf14-like + nt nt Chen et al., 2014

orf15 + nt nt Chen et al., 2014

orf511 ? nt nt Chen et al., 2014

TE vis ? nt nt Chen et al., 2014

6b ? nt nt Chen et al., 2014

mas1’ ? nt nt Chen et al., 2014

mas2′ ? nt nt Chen et al., 2014

rolB ? nt nt Chen et al., 2014

rolC ? nt nt Chen et al., 2014

orf13 ? nt nt Chen et al., 2014

orf14 ? nt nt Chen et al., 2014

iaaH ? nt nt Chen et al., 2014

iaaM ? nt nt Chen et al., 2014

acs ? nt nt Chen et al., 2014

Linaria vulgaris T-DNA acs − nt nt Matveeva et al., 2012

orf2 − nt nt Matveeva et al., 2012

orf3 − nt nt Matveeva et al., 2012

orf8 − nt nt Matveeva et al., 2012

rolA − nt nt Matveeva et al., 2012

rolB − − nt Matveeva et al., 2012

rolC + − nt Matveeva et al., 2012

orf13 − − nt Matveeva et al., 2012

orf14 − − nt Matveeva et al., 2012

mis − nt nt Matveeva et al., 2012

(Continued)
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TABLE 2 | Continued

Species cT-DNA cT-DNA genes Intact Expr. Biol. activity References

L. dalmatica T-DNA rolC + nt nt Matveeva and Lutova, 2014

Ipomoea batatas IbT-DNA1 acs + + nt Kyndt et al., 2015

Gene c + + nt Kyndt et al., 2015

iaaH + + nt Kyndt et al., 2015

iaaM + + nt Kyndt et al., 2015

IbT-DNA2 orf14 − nt nt Kyndt et al., 2015

orf17n − nt nt Kyndt et al., 2015

rolB-like + + nt Kyndt et al., 2015

orf13 + + nt Kyndt et al., 2015

orf18/orf17n + nt nt Kyndt et al., 2015

Ipomoea trifida IbT-DNA2 orf13 + nt nt Kyndt et al., 2015

Adapted from Matveeva and Lutova (2014) No distinction is made between copies on repeats of the same cT-DNA. Since the orf511 gene from the TD region has no equivalent in the

databases, it is unknown whether it is intact. As N. otophora contigs and reads have not yet been assembled, it is still unknown whether there are intact cT-DNA gene copies or not in

this species. nt, not tested.

to an active form by removal of two stop codons (Aoki,
2004). However, it is not clear whether the active form really
corresponds to the original rolB gene. As expected, cT-DNA
sequence variation can also occur within the same species. In
early Southern blot experiments, cT-DNA variants were reported
for N. glauca (Furner et al., 1986). Among N. tabacum cultivars,
three TA variants occur (Chen et al., 2014).

cT-DNA evolution in Ipomoea, Linaria, and Nicotiana might
be influenced by interspecific hybridization. I. batatas hybridizes
with I. trifida (its closest natural relative) under natural
conditions, although probably with low efficiency (Rouillier et al.,
2013). The IbT-DNA2 genes of I. batatas and I. trifida (Kyndt
et al., 2015) could have been transferred by interspecific crosses.
This could also apply to L. vulgaris and L. dalmatica, both of
which contain cT-DNA sequences (Matveeva and Lutova, 2014)
and are known to hybridize (Ward et al., 2009).

Interspecific crosses can have other consequences for cT-
DNAs. N. tabacum results from an interspecific cross between
N. sylvestris and N. tomentosiformis accompanied by massive
genome reorganization (Lim et al., 2004). Whether this
reorganization follows certain rules and reproducibly leads to the
loss of the TC region, might be investigated with artificial hybrids.

When trying to understand cT-DNA evolution, one needs to
reconstruct the original structures. This might be attempted by
comparing the sequences of the cT-DNA repeats, both within
the same species and between related species, favoring variants
which correspond to intact open reading frames, are expressed
and show biological activity.

In the next section we will investigate the important question
of cT-DNA gene expression and regulation.

cT-DNA EXPRESSION AND REGULATION

Although some studies have described cT-DNA gene expression
and regulation, this field is still at its beginning and much
remains to be done. Table 2 contains a list of expressed cT-DNA
genes. Expression patterns depend on the insertion site and on

the regulatory properties of the promoters. Promoter properties
can be measured in different ways, either directly by mRNA
analysis, or by using reporter genes. In reporter gene constructs
promoters are linked to genes for visible markers, such as β-
glucuronidase (GUS, Jefferson, 1987). Although much research
has been carried out on T-DNA gene promoters (Maurel et al.,
1990; Capone et al., 1991, 1994; Leung et al., 1991; Yokoyama
et al., 1994; Di Cola et al., 1997; Hansen et al., 1997; Handayani
et al., 2005), these studies should be extended in order to get a
more detailed description of tissue-specificity, and to identify the
corresponding plant transcription factors. Since T-DNA genes
of Ri plasmids are expressed in hairy roots, it can be expected
that cT-DNA genes are also expressed in roots. However, the
properties of their promoters could have evolved, especially if
expression in other plant parts would provide some selective
advantage. Expression studies show that several cT-DNA genes
have maintained their expression patterns in natural transgenic
plants (Table 2). How and why T-DNA/cT-DNA genes are
regulated the way they are, will need more research on T-
DNA/cT-DNA function in hairy roots and natural transformants.
It will be important to study those promoter properties in the
right context. A. rhizogenes T-DNA reporter genes have rarely
been studied in hairy roots. Likewise, cT-DNA promoters should
be studied in the corresponding natural transformants. However,
there is a danger that promoter constructs interfere with the
expression of the genes from which they are derived, either by
gene silencing or by competing for transcription factors.

The expression of N. glauca cT-DNA genes have received
special attention because of their possible role in tumor
formation. Interspecific hybridization between N. glauca
and N. langsdorffii leads to socalled GGLL plants that
spontaneously form tumors. It has been proposed that
the N. glauca cT-DNA genes play a role in the abnormal
growth of these tumors. Expression of Ngorf13 and Ngorf14
(Aoki et al., 1994; Udagawa et al., 2004), and NgrolB and
NgrolC (Nagata et al., 1995, 1996) is enhanced in tumor
tissues, possibly by a kind of inverted gene dosage effect
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(Martin-Tanguy et al., 1996). Up to now it has not been
demonstrated that N. glauca T-DNA genes are indeed required
for tumourous growth. For this they will need to be silenced or
removed.

Another cT-DNA gene regulation study involved the TB-
mas2′ gene of N. tomentosiformis and N. tabacum. Most tobacco
cultivars and their paternal ancestor N. tomentosiformis have low
TB-mas2′ expression levels (LE cultivars), but a few show high
expression levels (HE cultivars). HE cultivars do indeed produce
the expected mas2′ product desoxyfructosylglutamine (DFG)
and are the only known cases so far of natural transformants
which synthesize opines (Chen et al., 2016). The TB-mas2′

promoter sequences from HE and LE cultivars are identical, and
Pmas2′-GUS constructs are highly expressed in N. benthamiana
roots, suggesting that TB-mas2′ can be silenced and re-activated.
Silenced tobacco lines carrying artificially introduced mas genes
could be re-activated by 5-azacytidine (Van Slogteren et al., 1984),
but this was not the case for TB-mas2′ in LE cultivars (Chen et al.,
2016). Mendelian inheritance of the LE/HE phenotype (Chen
et al., 2016) suggested that activation and silencing of TB-mas2′

are due to a cis element linked to the TB insert.
Once it is established that cT-DNA genes are actively

transcribed in natural transformants it will be necessary to
investigate their influence on plant growth and metabolism.

ROLE AND ACTIVITY OF
GROWTH-MODIFYING GENES IN
NATURAL TRANSFORMANTS

The most interesting question concerning natural Agrobacterium
transformants is undoubtedly whether they are mere accidents
of evolution (by-products of hairy roots as it were, without any
selective advantage), or whether cT-DNA integration led to new
plant types with particular advantages compared to the non-
transformed ancestors (Tepfer, 1983; Meyer et al., 1995). Since
at least some natural transformants produce opines, they could
also be of advantage to agrobacteria, without special advantages
to the plants (sse below).

At the moment of writing, no direct evidence exists for a
particular role for any of the cT-DNA genes within their normal
context. However, some indirect arguments clearly indicate that
they could influence the growth of natural transformants. The
T-DNAs from A. rhizogenes carry genes known to induce hairy
roots and these roots can be regenerated into plants with
characteristic phenotypes, called the hairy root or HR phenotype.
HR plants generally have a short stature with short internodes
and wrinkled leaves (Tepfer, 1990; Christey, 2001; Lütken et al.,
2012). Enhanced root growth could possibly improve survival
under dry conditions. Among theA. rhizogenesT-DNA genes, the
≪ root locus ≫ (rol) genes rolA, rolB, rolC, and rolD influence
hairy root induction on Kalanchoe daigremontiana leaves (White
et al., 1985), and rolA, rolB, and rolC are sufficient to induce
roots on several species. The rolB and rolC genes belong to
the plast gene family, a large family of mostly T-DNA-located
genes which includes orf13, orf14, 6a, and 6b (Levesque et al.,

1988; Studholme et al., 2005). rolB has a more general meristem-
inducing activity (Altamura et al., 1994; Koltunow et al., 2001).
In addition, rolB induces necrosis in tobacco leaves (Schmülling
et al., 1988; Mohajjel-Shoja, 2010). orf13 has been considered
to be non-essential for root induction although capable of
stimulating HR induction by rolABC genes (Cardarelli et al.,
1987; Capone et al., 1989; Aoki and Syono, 1999a). However,
orf13 expression in tobacco (Hansen et al., 1993; Lemcke and
Schmülling, 1998), tomato (Stieger et al., 2004), and Arabidopsis
(Kodahl et al., 2016) led to various growth changes up to extreme
dwarfism in Arabidopsis (Kodahl et al., 2016). The rolA gene has
strong morphogenetic effects (Dehio and Schell, 1993; Guivarc’h
et al., 1996). Thus, expression of rol genes and orf13 in natural
transformants can be expected to influence their growth.

Linaria, Ipomoea, and N. otophora contain iaaH and iaaM
genes. Together these encode indole acetic acid synthesis and
could have been active in early stages of transformation. It is
noteworthy that the iaaM and orf8 (Lemcke et al., 2000) T-DNA
genes carry a rolB-like part at the 5′ end and a bacterial iaaM
part at the 3′ end (Levesque et al., 1988). Both can be separated
and retain their function (Otten and Helfer, 2001; Umber et al.,
2002, 2005). Thus, an intact rolB part in an otherwise mutated
orf8 or iaaM gene might still influence the growth of natural
transformants.

Ngorf13, NgrolC, trolC, and torf13 are expressed in the
corresponding Nicotiana species. When overexpressed in
tobacco, Ngorf13 leads to dark-green rounded leaves (Aoki
and Syono, 1999b), NgrolC (Aoki and Syono, 1999c), and trolC
(Mohajjel-Shoja et al., 2011) to a dwarf phenotype and lanceolate,
pale leaves, whereas torf13 induces green callus on carrot disks
(Fründt et al., 1998b). In natural transformants, rolC, orf13, orf14
are frequently intact (Table 2).

It is generally assumed that each type of T-DNA/cT-DNA gene
has a specific effect, so that a cT-DNA-located rolC gene will
have the same activity as a T-DNA-located rolC gene. However,
variants of a given gene type can encode different biological
activities. The rolB genes from 1,855 and 2,659 are less dependent
on auxin for root induction on carrot disks as rolB from A4
(Schmülling et al., 1993; Serino et al., 1994). Six different 6b genes
from A. tumefaciens and A. vitis differ in their capacity to induce
tumors (Helfer et al., 2002). Thus, functional differences between
a cT-DNA gene and a related T-DNA gene (as noted by Aoki and
Syono, 2000) might result from differences between the model
strain and the strain that introduced the cT-DNA, rather than
from divergent evolution after transfer to the plant.

The oldest cT-DNA (from Linaria) has lost all open reading
frames except LvrolC, suggesting positive selection of this gene.
Inactivation of the rolC, orf13, and orf14 genes in various natural
transformants are obvious targets for the future.

It is possible that some (or even most) cT-DNA genes only
played a role in the initial transformation/regeneration event, by
allowing HR regeneration and the establishment of a new species
(see above). After that, they could have lost their function either
because of detrimental effects (like dwarfing by rolA or orf13, or
necrosis by rolB) or because they were selectively neutral. In that
case cT-DNA gene inactivation would show no effects and could
lead to the wrong conclusion that these genes had no function
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in the evolution of the natural transformants. If cT-DNA genes
induce significant morphological changes in other plants upon
strong and constitutive expression, their expression in natural
transgenics will probably also lead to changes, although these
might be more restricted.

In the case of the widely cultivated tobacco and sweet potato,
cT-DNA structures and expression patterns could have been
subjected to selection during domestication. This hypothesis can
be tested by careful comparison between certain cultivars and
their isogenic cT-DNA mutants.

ROLE OF OPINE SYNTHESIS GENES IN
NATURAL TRANSFORMANTS

T-DNA/cT-DNA regions generally contain opine genes. Opines
are conjugation products of common metabolites such as amino
acids, α-keto acids, and sugars, and cannot be metabolized
by plants. Often, opine enzymes use multiple substrates (as
in the case of lysopine dehydrogenase, Otten et al., 1977)
thereby potentially sequestering a large amount of metabolites
which might affect plant growth. Thus, it is important to
know where T-DNA/cT-DNA opine genes are expressed, and to
what extent they are regulated. The rolD gene strongly inhibits
growth of transgenic carrot (Limami et al., 1998). In tomato,
it does not affect morphology (the reason for the difference
with carrot is unknown), but flowering occurs earlier with
increased numbers of flowers and fruits (Bettini et al., 2003).
Opines in crown galls and hairy roots are assumed to be
secreted, in order to make them available to the agrobacteria,
but this important process has not been studied in detail.
It is unknown whether there are specific mechanisms for
opine secretion, and whether T-DNA/cT-DNA genes play a
role in this. It has been proposed that the A. tumefaciens
6a gene (a member of the plast gene family) stimulates
secretion of octopine and nopaline (Messens et al., 1985),
but unfortunately this interesting study has not been followed
up.

Additional genes such as gene c and orf511 (coding for a large,
511 amino acid protein) also remain to be studied. Gene c from
A. tumefaciens strain C58 has shoot-inducing properties (Otten
et al., 1999). Interestingly, it is also found in organisms other than
plants (see below).

The morphological effects of various cT-DNA genes
(expressed to different extents in different tissues) add up in
complex ways. For example, rolA and rolB gene are antagonistic
in tomato (Van Altvorst et al., 1992). rolA, rolB, and rolC
(Spena et al., 1987), and rolB, rolC, orf13, and orf14 act
synergistically (Nilsson and Olsson, 1997; Aoki and Syono,
1999b). It will therefore be a particularly challenging task to
establish the contribution of each gene in the context of their
combined expression in natural transformants. In addition,
two Agrobacterium T-DNA genes which are also found in
natural transformants, can produce growth effects at a distance:
orf13 (Hansen et al., 1993) and 6b (Helfer et al., 2003). This
means that their effects might extend beyond their domains of
expression.

Apart from changing plant growth, cT-DNA gene expression
may confer immunity to Agrobacterium by silencing incoming
T-DNA (for an experimental example of such T-DNA silencing,
see Escobar et al., 2001). However, in the Tomentosae section
agrobacteria were able to re-infect already transformed species,
arguing against this possibility.

We will now investigate the question whether cT-DNA gene
expression in natural transformants could influence the growth
and evolution of Agrobacterium.

DOES AGROBACTERIUM BENEFIT FROM
NATURAL TRANSGENIC PLANTS ?

Natural transformants which synthesize opines could influence
the growth and evolution of Agrobacterium (Chen et al., 2016).
In HE tobacco cultivars (see above) TB-mas2′ is expressed at
high levels in root tips, and leads to production of significant
amounts of DFG, a well-known opine (Chen et al., 2016).
DFG can be used by agrobacteria and other microbes (Moore
et al., 1997; Baek et al., 2005), but it has not yet been tested
whether the DFG of HE cultivars is secreted and whether
is might accumulate in the rhizosphere. Studies on artifical
symbiosis based on opine utilization (Guyon et al., 1993;
Dessaux et al., 1998; Savka et al., 2002; Mondy et al., 2014)
provide experimental models to test this idea. Controlled
inoculation of HE cultivars and isogenic CRISPR mutants
with DFG-metabolizing and non-metabolizing Agrobacterium
mutants could show whether DFG production by HE cultivars
confers a selective advantage on DFG-using bacteria. If so,
this could have some interesting implications. It has been
postulated that the genetic modification of plant cells allows
Agrobacterium to take control of its host, by re-directing
its growth and metabolism to its own benefit. This process
has been called ≪ genetic colonization ≫ (Schell et al.,
1979). If it could be shown that opine production by HE
plants favors Agrobacterium growth it would take the genetic
colonization theory one step further. In that case the role
of the pRi plasmid is not only (or even not at all) to
induce hairy roots, but to create transgenic plants. Such plants
could provide a genetically stable and much increased opine
production, as compared to opine synthesis by relatively small
numbers of non-permanent hairy roots growing from infected
plants. If Agrobacterium benefits from opine production by
natural transformants, hairy roots might be considered as mere
intermediates on the way to transgenic plants. Opine production
might be detrimental to plant growth, but reproductive
isolation of the initial transformants could ensure their survival.
Subsequently, cT-DNA functions might be selected against and
growth might revert to normal. Thus, natural transformants
could be transient plant species with various levels of genetic
stability.

So far, it is not known how much A. rhizogenes benefits
from opines produced in hairy roots growing in nature. Opine
sources can attract Agrobacteria (Kim and Farrand, 1998)
in vitro, but do agrobacteria also accumulate and multiply on
hairy roots or on roots of natural transformants? What are
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the dynamics of these interactions? Do the bacteria concentrate
around areas of highest production? Are opines stable in
soil and do they accumulate over time? Do the modified
growth properties of hairy roots increase opine production or
secretion (for example by stimulating lateral root formation)?
Experimental HR induction is generally done by infecting stems
in the greenhouse or leaf disks in vitro, and the hairy roots
develop in agar or in air. It would be interesting to know how
hairy roots grow in soil and whether their growth is favored
over that of normal roots. All these questions merit attention
when one considers the effects of opine-producing plants on
agrobacteria.

Apart from TB-mas2′, other opine synthesis enzymes
(encoded by acs, vis, ocl, mis, rolD) should be investigated for
their opine synthesis properties. Different forms with different
substrate preferences may exist, as in the case of octopine
dehydrogenase (Ocs, Otten and Szegedi, 1985).

Unusual growth characteristics of hairy roots and HR-
derived plants could stimulate growth of agrobacteria
independently from opines, for example if some T-
DNA genes favor secretion of common root metabolites.
When exploring the structure, expression and biological
function of cT-DNA genes, it should be realized
that some of these genes could have played a role
in the first steps of the transformation/regeneration
processes and that these events are still unknown.
In the next section we will therefore look at a
possible scenario for the evolutionary origin of natural
transformants.

A SCENARIO FOR THE ORIGIN OF
NATURAL TRANSFORMANTS

The details of the origin of natural transformants are still unclear.
Different types of Agrobacterium strains with different T-DNAs
were involved, as mentioned above. These could have induced
different types of hairy roots, depending on their cT-DNA genes.
In general, it is assumed that individual hairy roots represent
clones growing from a single transformed cell (Tepfer, 1984;
McKnight et al., 1987). A particular A. rhizogenes strain may
induce hairy roots with different T-DNA structures (complete
or incomplete) and different gene expression levels depending
on the insertion sites, which probably leads to different types
of roots. It is often assumed that hairy roots represent a single,
well-defined type of roots, but this seems highly unlikely in
view of the many combinations of T-DNA genes and expression
levels expected to occur in individual hairy root clones. The
occurrence of different agrobacteria strains, each with their
own combination of T-DNA genes, increases the problem of
HR variability. A. rhizogenes-induced roots have not yet been
systematically investigated in terms of growth rate, cell division,
elongation, differentiation, and root branching patterns. Plants
regenerated from HR have not only modified roots, but also
aberrant, wrinkled leaves and stunted growth. The conspicuously
wrinkled leaves of HR plants have not yet been analyzed at
the developmental level. Possibly they result from changes in

vascular development. We suspect that a whole gradient of HR
phenotypes may exist and that the expression ≪ hairy root
phenotype ≫ is an oversimplification. Detailed cellular analysis
of HR plants carrying T-DNA genes with inducible promoters
will be of great use to understand how T-DNA genes affect
growth (for an example using the 6b gene, see Pasternak et al.,
2017).

In the case of the natural transformants, there could have
been a selection for HR types with T-DNA gene combinations
that allowed plant regeneration. Some genes could be detrimental
to regeneration (possibly rolA: inhibition of flowering, Martin-
Tanguy et al., 1996; and rolB: necrosis, Schmülling et al., 1988),
whereas others might favor this process.

In the case of the Tomentosae section, plants carrying the
first cT-DNA (TC, carrying rolA and rolB genes) may have
acquired a better regeneration capacity compared to the non-
transformed ancestor. Thus, when TC-carrying plants were
infected with another A. rhizogenes strain, the resulting hairy
roots (carrying TC and TB) could more easily regenerate
into plants, and the process could repeat itself several
times. Tobacco plants transformed by A. rhizogenes A4
spontaneously formed shoots from roots when grown in
pots, contrary to normal tobacco (Tepfer, 1984). We need
more research on the shoot regeneration properties of hairy
roots in different species, the role of the different T-
DNA genes in this process, and the underlying molecular
mechanisms.

When considering the origin of natural transformants, it
is worth noting that A. tumefaciens nopaline strains T37
and C58 (Yang and Simpson, 1981) or 82.139 (Drevet et al.,
1994) can induce abnormal shoots (called shooty teratomas,
Figures 3c,d). These are due to expression of the T-DNA-located
isopentenyltransferase (ipt) gene, but shoot growth is probably
also influenced by other T-DNA genes. It would be worth
investigating whether teratomas could lead to rooting plants
under natural conditions and eventually give rise to natural
transformants.

Some plant species may have special regeneration abilities,
so that hairy roots induced on such plants could easily produce
fertile plants. Linaria carries buds on its roots, which may greatly
facilitate plant regeneration from hairy roots (Figures 3a,b).
L. vulgaris (but not L. maroccana) internode fragments easily
form shoots and callus in vitro, even on hormone-free medium
(Matveeva et al., 2012). It remains to be shown whether this is
an intrinsic property of some Linaria species or due to cT-DNA
genes. I. batatas shoot fragments (called slips) easily form roots,
whereas root pieces carry dormant buds which easily produce
plants (George et al., 2011). Re-transformation events may be
favored if opine-producing plants attract agrobacteria. These
could then introduce additional cT-DNAs (Chen et al., 2014).

In order to definitely establish themselves, the new
transgenic plants had to transmit their cT-DNA to their
progeny and reproduce successfully in the same environment
as the ancestors. It is questionable whether a presumably
very rare natural transgenic plant could have survived
without reproductive isolation (sympatric speciation, see
below). Later, the need for reproductive isolation might have
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FIGURE 3 | Regeneration of buds from Linaria vulgaris roots and of shoots

from Kalanchoe daigremontiana tumors. (a) L. vulgaris, overview. Scale: 2 cm.

(b) Detail buds. Scale 5 mm. (c) Normal K. daigremontiana plantlet. Scale: 3

cm. (d) Teratoma formation on K. daigremontiana stems infected with

A. tumefaciens strain Tm4. The Kalanchoe teratoma structures are abnormal,

but structured. Scale: 1 cm.

disappeared, when sufficient differences had accumulated
to prevent hybridization with the ancestral species. This
could have led to the counterselection of cT-DNA genes
that were important for speciation, especially if they reduced
growth and reproduction. Selection to reduce negative cT-
DNA effects could also have occurred elsewhere in the plant
genome.

It is often assumed that natural transformants are
homozygous for cT-DNA sequences, but it is possible that
different cT-DNA gene alleles occur in natural populations (for
intraspecific cT-DNA variants, see above). Selectively neutral
genes would gradually be eroded and finally disappear. In
extreme cases, the complete insert could be lost, as observed for
the N. tabacum TC-DNA. TB-mas2′ seems to have been silenced
in N. tomentosiformis and subsequently re-activated in some
N. tabacum cultivars (Chen et al., 2016) which might constitute a
case of evolutionary≪ reversion≫.

Thus, to ensure the transition from a hairy root clone
to the many successful populations of present-day natural
transformants such as Nicotiana glauca or Linaria vulgaris, many
steps might have been necessary. For a summary of these steps,
see Figure 4A. The following section suggests some experiments
to investigate this scheme (summarized in Figure 4B).

EXPERIMENTAL EVIDENCE FOR
EVOLUTIONARY SCENARIOS

What kind of experimental evidence could lend support to
theoretical evolutionary scenarios as described above? It seems
impossible to reconstruct the exact transformation events
and the subsequent evolution leading to present-day natural
transformants. However, if similar events still occur in nature,
one might learn more about them. In the case of the natural
Nicotiana transformants, it could be investigated whether
Nicotiana species from the Tomentosae or Noctiflorae section
are infected by A. rhizogenes in their natural South-American
environment, and one could try to isolate and characterize
A. rhizogenes strains from their rhizosphere.

The next question concerns the capacity of hairy roots
to spontaneously produce transgenic plants under natural
conditions. This may be studied by challenging different plant
species with different A. rhizogenes strains under controlled
conditions, preferably using plants growing in soil. Regeneration
of plants from hairy roots under laboratory conditions has been
reported for 53 plant species (Christey, 2001). However, nothing
is known about conditions that favor regeneration in nature,
such as climate, humidity, age of the plant, type of soil, type of
wounding, or site of infection. Starting with a system of robust
HR induction on plants growing in soil, it might be possible to
study plant regeneration from such roots. Several ornamental
plants have been transformed with natural A. rhizogenes strains
in order to obtain dwarfed forms, a desirable trait in horticulture
(Lütken et al., 2012). Such applied HR research could address
several of the questions raised above (HR types, effects of
cT-DNA genes, regeneration capacity, reproductive isolation).
A significant potential exists for plant improvement using A.

Frontiers in Plant Science | www.frontiersin.org 11 September 2017 | Volume 8 | Article 1600

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Chen and Otten Natural Agrobacterium Transformants, Results and Theory

FIGURE 4 | Theoretical steps in the origin of natural transformants. (A) Questions on the origin and evolution of natural transformants. (B) Experimental apporaches to

study the questions raised in A.

rhizogenes T-DNA genes (Christey, 2001; Casanova et al., 2005;
Guillon et al., 2006) which probably also applies to cT-DNA
genes.

In order to study possible ancestor phenotypes, cT-DNA genes
might be silenced or removed by CRISPR. Compared to the
CRISPR approach, silencing may have an interesting advantage:
placed under control of an inducible promoter, a silencing
construct could reduce expression of a target gene to different
levels and in a spatially and temporally controlled way.

Naturally transformed plants have so far been found in the
genus Nicotiana, Linaria, and Ipomoea. In the next part we will
discuss how to search for additional transformants.

SEARCH FOR ADDITIONAL NATURAL
TRANSFORMANTS

In order to search for natural transformants, three approaches
can be used. First, deep sequencing of many plant species is
yielding vast numbers of DNA sequences, both from genomic
DNA and from transcriptomes. These sequences can be regularly
analyzed for T-DNA-like sequences by automatic search robots.
The cT-DNAs of the Nicotiana group have revealed the presence
of genes that were thought to be specific for A. tumefaciens
or A. vitis (6b, ocl, vis, Chen et al., 2014). Therefore, query
sequences should not only include all known A. rhizogenes T-
DNA sequences, but A. tumefaciens and A. vitis T-DNAs as
well. In order to increase the chance of finding sequences with
weak homology to model sequences, nucleotide data bases can
be interrogated with protein query sequences (NCBI, tblastn
search).

Second, plant species with close affinity to natural
transformants or different accessions of the same species
should be investigated, in order to define the distribution limits
of the cT-DNA sequences within a group of species, and to
explore their structural and functional variability.

Third, species that easily form plants from root fragments,
have wrinkled leaves or other HR characteristics, might be
candidates and could be tested by PCR experiments or deep
sequencing.

We believe that the search for cT-DNA sequences should
not be limited to plants. The capacity of Agrobacterium to
introduce T-DNA genes into fungi under laboratory conditions
has been well documented (de Groot et al., 1998; Michielse
et al., 2008). It seems possible that this also occurs in nature,
especially in the mycosphere (Zhang et al., 2014). Regeneration
of transformed cells might be easy in such organisms, since
single cells can be transformed. No bona fide cT-DNA sequences
have yet been found outside the plant world. However, protein
searches led to the discovery of several T-DNA-like protein
sequences in fungi (Mohajjel-Shoja et al., 2011; Chen et al.,
2014). Among these, opine enzyme-like sequences were found
in Nectria hematococca (Acs), Aspergillus nidulans (Ocl), and
Sus-like proteins are relatively widespread in various fungi. Plast
proteins were detected in Laccaria bicolor. Protein C sequences
were found in Melampsora larici-populina and Pestalotiopsis
fici (Chen et al., 2014). These fungal T-DNA-like sequences
are more divergent with respect to known T-DNA sequences
than the plant cT-DNA plast sequences (Table 3) and could be
derived from other types of Agrobacterium strains. Their patchy
distribution among fungi argues in favor of horizontal gene
transfer. Some fungi (such as Pestatoliopsis and Melampsora)
contain several T-DNA-like genes. If such genes are grouped
(as expected in the case of T-DNA transfer), this would provide
a argument for ancient T-DNA transfer. Further investigations
should concentrate on the chromosomal sequences around these
genes and their comparison with relatives lacking such genes.
Finally, it will be important to investigate their expression and
function.

CONCLUSIONS

Natural Agrobacterium transformants represent special cases of
horizontal gene transfer, as they result from a highly adapted
process aimed at the transfer and insertion of functional genes in
plants. The bacteria responsible for the insertion of the cT-DNAs
were probably related to A. rhizogenes. The natural variability of
this bacterium and the capacity of various A. rhizogenes types
to induce hairy roots in nature (and not only under laboratory
conditions), both on aerial parts and in soil, is still largely
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TABLE 3 | T-DNA-like protein sequences in fungi.

Protein category Organism Accession

number

Closest T-DNA relative Accession number of

closest relative

% Identity

Opine enzymes Nectria haematococca,

Fusarium oxysporum

XP_003047010.1

XP_018252422.1

ChsA (not on T-DNA), Ags AAK08601.1

P27875.1

60

42

Aspergillus niger and

many others

EHA20957.1 TC-Ocl XP_009611266 40

Melampsora

larici-populina

EGG11641.1 TC-Ocl XP_009611266 34

Plast proteins Laccaria bicolor XP_001884962 Protein 5 (Tm4) AAB41873 21

Laccaria bicolor XP_001884963 Protein 5 (Tm4) AAB41873 20

Laccaria bicolor XP_001884964

(409aa, first part)

Protein 5 (Tm4) AAB41873 19

Laccaria bicolor XP_001884861

(451aa, last part)

Protein 5 (Tm4) AAB41873 22

Laccaria bicolor XP_001881215

(491 aa)

C’ protein NP_053417.1 19

C protein Melampsora

larici-populina

EGG11381.1 C (C58) AAD30491.1 30

Pestalotiopsis fici XP_007840635.1

(540aa)

C (C58) AAD30491.1 32

unexplored. Spontaneous regeneration of natural hairy roots may
depend on the properties of the non-transformed hosts, but
probably also involves cT-DNA genes. More studies are required
on the function and molecular mechanism of the T-DNA
genes, in order to explain how and why natural transformants
differ from their ancestors, and how they managed to establish
themselves. An important direction for future research will be the
removal or silencing of cT-DNA genes. The plast genes, opine
genes, rolA, gene c, and orf511 all require detailed analysis by
themselves. Opine synthesis by natural transformants and its
potential to favor Agrobacterium growth should be investigated
under natural conditions, and should include studies on the
influence of opine synthesis on plant metabolism, and on the
mechanisms and specificities of opine secretion. The plast genes
constitute an especially challenging subject as 30 years of research
have not been able to convincingly reveal their basic function.
They seem to be involved in the transport of plant metabolites
and in the induction of abnormal growth. Studies on cell division

and differentiation of various types of hairy roots and HR
plants will be essential to understand how T-DNA/cT-DNA genes
redirect the growth of roots and other plant organs. In view
of their strong morphogenetic activities, both T-DNA and cT-
DNA genes may be used for applications in horticulture and
agriculture. Such research would undoubtedly benefit from a
better understanding of their functions.
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