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Peanut (Arachis hypogaea) consists of two subspecies, hypogaea and fastigiata, and

has been cultivated worldwide for hundreds of years. Here, 158 peanut accessions were

selected to dissect the molecular footprint of agronomic traits related to domestication

using specific-locus amplified fragment sequencing (SLAF-seq method). Then, a total of

17,338 high-quality single nucleotide polymorphisms (SNPs) in the whole peanut genome

were revealed. Eleven agronomic traits in 158 peanut accessions were subsequently

analyzed using genome-wide association studies (GWAS). Candidate genes responsible

for corresponding traits were then analyzed in genomic regions surrounding the peak

SNPs, and 1,429 genes were found within 200 kb windows centerd on GWAS-identified

peak SNPs related to domestication. Highly differentiated genomic regions were

observed between hypogaea and fastigiata accessions using FST values and sequence

diversity (π) ratios. Among the 1,429 genes, 662 were located on chromosome A3,

suggesting the presence of major selective sweeps caused by artificial selection during

long domestication. These findings provide a promising insight into the complicated

genetic architecture of domestication-related traits in peanut, and reveal whole-genome

SNP markers of beneficial candidate genes for marker-assisted selection (MAS) in future

breeding programs.

Keywords: peanut, domestication, genome-wide association studies, selective sweeps, single-nucleotide

polymorphisms (SNPs)

INTRODUCTION

Peanut, also known as groundnut (Arachis hypogaea L.), is one of the most important edible
oil crops in the world. Cultivated peanut is an allotetraploid (AABB, 2n = 40), harboring
homoeologous A and B genomes putatively derived from the natural hybridization of two wild
diploid species, A. duranensis (AA, 2n = 20) and A. ipaensis (BB, 2n = 20) (Seijo et al., 2007;
Moretzsohn et al., 2012). Based on the presence or absence of floral axes on the main stem,
cultivated peanut is classified into two subspecies: hypogaea and fastigiata. Subspecies hypogaea
is generally described as having a prostrate growth habit with no floral axes on the main stem, while
in subspecies fastigiata flowers arise on leaf axils on branches as well as the main stem (Krapovickas
and Gregory, 1994).

As the only cultivated species of Arachis, peanut has been grown for hundreds of years in
more than 100 countries worldwide (Huang et al., 2012). The evolution of Arachis is therefore
closely related to the domestication of cultivated peanut, with a vast number of morphological
forms having evolved under cultivation. For example, selection of a more upright growth habit
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and shorter branches, which allow easier harvesting and
increased seed size, has also resulted in a decrease in resistance
to a number of important pathogens (Stalker and Simpson, 1995;
Stalker et al., 2013). Domestication-related quantitative trait loci
(QTLs) associated with agronomic traits and resistance have
already been mapped; however, the utilization of potential alleles
has been relatively limited because of the lack of appropriate
molecular tools for analysis of these traits in cultivated peanut
(Burow et al., 2001; Chu et al., 2011; Ravi et al., 2011; Fonceka
et al., 2012; Tseng et al., 2016; Zhou et al., 2016).

With the development of high throughout sequencing
technologies, whole-genome sequencing (WGS) has become
much more straightforward, allowing analysis of the impact of
domestication on genomic variation. Specific-locus amplified
fragment sequencing (SLAF-seq) is an efficient method of
large-scale single nucleotide polymorphism (SNP) identification
and genotyping using high-throughput sequencing, with many
advantages such as lower costs and reduced genome complexity
(Mamanova et al., 2010; Sun et al., 2013). So far, this new method
has been successfully used to address fundamental questions
regarding soybean domestication (Han et al., 2016).

Genome-wide association studies (GWAS) have also been
used to determine the genetic basis of traits underlying
domestication in a wide range of organisms (Lin et al., 2014;
Han et al., 2016). However, information on peanut domestication
remains limited, largely due to the relatively large size (∼2.8 Gb)
and complexity of the tetraploid peanut genome (Bertioli et al.,
2014). However, in 2014, genomes of the two wild progenitors
of cultivated peanut were released by the International Peanut
Genome Initiative (IPGI), benefiting studies of agronomic traits
related to domestication (Bertioli et al., 2016).

In the present study, high quality SNPs distributed throughout
the peanut genome were mined using SLAF-seq of 158 peanut
accessions. GWAS was subsequently conducted to identify the
genetic architecture of 11 major agronomic traits related to
domestication. The results present the first comprehensive view
of genome-wide sequence variation in a diverse group of peanut
accessions. Moreover, the SNPs and candidate genes related
to major agronomic traits will help accelerate peanut breeding
programs.

MATERIALS AND METHODS

Plant Materials and Trait Analyses
A total of 158 peanut (A. hypogeae L.) accessions were examined
in the present study, including 36 hypogaea type (group I) with
no floral axes on the main stem, and 122 fastigiata type (group
II) with flowers growing on both branch and the main stem
(Table S1). These accessions were elite cultivars collected from
different provinces of China, and some of them were greatly
produced in special areas.

Seeds from a single plant of each of the 158 accessions
were grown in a randomized complete block design with three
replications. Four plants from each replicate were then selected
to investigate the following 11 agronomic traits: height of the
main stem, total number of branches, branch type, leaf color,

pod length, pod width, seed length, seed width, 10-pod weight,
10-seed weight and seed coat color.

SLAF Sample Preparation and Sequencing
Genomic DNA was isolated from fresh leaves of a single
plant per accession, and analyzed using SLAF-seq (Sun et al.,
2013). To obtain >200,000 SLAF tags per genome, evenly
distributed in unique genomic regions, different restriction
enzyme combinations were tested using in silico digestion
prediction. Two restriction enzymes (RsaI and HaeIII) were
selected based on uniqueness and uniformity of simulated
fragment alignments to the reference genome sequence of
two diploids, A. ipaensis (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/
GCA_000816755.1_Araip1.0, gene model is prefixed by Araip)
and A. duranensis (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA_
000817695.1_Aradu1.0, gene model is prefixed by Aradu).
Different length fragments of genomic DNA after digestion
were then simulated in silico. Oryza sativa indica (http://rapdb.
dna.affrc.go.jp/) was selected as the control genome to test the
accuracy of the restriction enzyme digestion protocol using
SOAP software (Li R. et al., 2009).

A total of 10-ug of genomic DNA from each accession was
used for the restriction reaction and subsequent restriction-
ligation reactions, including the addition of A to the 3′ end
and ligation with the Dual-index adapter. PCR was performed
with the restriction-ligation samples (diluted) then the PCR
products were purified with a Quick Spin column (Qiagen,
Hilden, Germany) and electrophoresed on 2% (w/v) agarose
gel. Fragments with expected lengths were isolated using a Gel
Extraction Kit (Qiagen) and diluted for sequencing. Fragments
of 314–344 bp were isolated for use as SLAF tags.

SNP Calling
All reads were processed for quality control and filtered using
Seqtk (https://github.com/lh3/seqtk). High quality paired-end
reads were mapped onto the reference genome (A. ipaensis and
A. duranensis) using the Burrows-Wheeler Aligner (BWA) (Li
andDurbin, 2009). Realigner Target Creator and InDel-Realigner
in GATK (McKenna et al., 2010) were used to realign InDels,
and Unified Genotyper was used to call genotypes across the
158 accessions using the default parameters. Sequencing depths
of each sample were calculated using the “Depth of Coverage”
module of GATK. Single SNP markers were confirmed using
GATK (McKenna et al., 2010) and SAMtools (Li H. et al.,
2009). Given the allotetraploid nature of the peanut genome,
the genotyping errors caused by partial homologous alignment
were resolved by comparing the sequencing depth first, then
filtered those SNPs with integrity (genotyped rate) and minor
allele frequencyand (MAF). The exceptionally high homologous
regions were not under special analyses, because there were not
too much SNPs were found in these regions.

Population Structure Analysis and
Phylogenetic Tree Construction
Population structure was calculated using ADMIXTURE
software (Alexander et al., 2009). The number of genetic clusters
(K) was predefined as 1–10 to explore the population structure
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of the tested accessions. This analysis provided maximum
likelihood estimates of the proportion of each sample derived
from each of the K populations. SNPs were then used to calculate
genetic distances among the 158 accessions, and phylogenetic
trees were constructed using the neighbor-joining method in
MEGA5 (Tamura et al., 2011). Principal component analysis
(PCA) was performed using GAPIT software (Lipka et al., 2012).

GWAS of Agronomic Traits
High-integrity SNPs from the tested peanut accessions were used
in association analyses using the general linear model (GLM) and
compressed mixed linear model (MLM) with TASSEL software
(Bradbury et al., 2007). The following formula was used:

Y = Xa+Qb+ Ku+ e

where Q is the population structure derived from ADMIXTURE
software (Alexander et al., 2009), K is the relationship between
samples obtained from SPAGeDi (Hardy and Vekemans, 2002),
using Q in GLM and Q + K in MLM. X represents the genotype
and Y the phenotype, allowing associated values of each SNP
to be calculated. A value of <0.01 was used as the threshold
to determine the existence of a significant association. Gene
predictions were annotated according to the method used in
Zhang et al. (2015). Candidate genes associated with each trait
located within a 100-kb region upstream or downstream of
peak SNPs, because the size of the larger linkage disequilibrium
(LD) Block is mostly distributed around 200 kb when the whole
genome was analyzed for LD Block. The r2 value (Marker_Rsq,
is the marginal R-squared for the marker) was used to explain
the phenotypic variation of each marker. It was calculated as SS
Marker (after fitting all other model terms) / SS Total, where
SS stands for sum of squares (https://bitbucket.org/tasseladmin/
tassel-5-source/wiki/UserManual/GLM/GLM).

Population Differentiation (FST ) and
Putative Selective Sweeps
The divergence index, F-statistics (FST), is a measure of
population differentiation or genetic distance based on genetic
polymorphism data (Hudson et al., 1992). To determine
potentially differentiated regions, FST estimations and sequence
diversity (π) ratios were evaluated using a 100-kb sliding window
with 10-kb steps (Lam et al., 2010). Highly differentiated genomic
regions with a significant FST value (p= 5%) and the top 5% of π
ratios were defined as potential selective sweeps (Li et al., 2013).

RESULTS

Phenotypic Variation among Peanut
Accessions
Phenotypic evaluation revealed a broad range of variation among
the 158 peanut accessions (Figure 1, Table S1). The descriptive
statistics of phenotypic variation of eight traits were listed in
Table S2. Height of main stem ranged from 12 to 87.33 cm, with
an average of 38.35 cm. Total number of branches also varied with
an average of 12.8. All accessions showed continuous distribution
of the three pod-related and three seed-related traits, with a

coefficient of variation (CV) of 18.63% for seed length and 66.98%
for the total number of branches, suggesting a quantitative
inheritance pattern. The remaining three traits, branch type, leaf
color and seed coat color, were evaluated as quality variation.

SLAF-Tags and SNP Data
A total of 369,725 high quality SLAFs evenly distributed on 10A
and 10 B chromosomes were obtained from 397.19 M paired-
end reads after sequence alignment with the reference genome
(A. duranensis and A. ipaensis). Sequencing depths ranged from
32.42 to 4.94 X, with an average of 8.06 X. Polymorphic SLAFs
defined by both GATK and SAMtools were recorded as reliable
SNPs, resulting in a total of 268,889 SNP markers among the
158 accessions. After filtering SNPs located on scaffolds, 17,338
high quality SNPs with an MAF > 0.05 and integrity >0.5 were
selected for further analyses (Table 1, Figure S1).

The selected SNP markers were not evenly distributed across
the whole genome, with 7,538 and 9,800 markers on the A
and B subgenomes, respectively. Chromosome B03 harbored
the highest proportion of SNPs (8.23%; 1,427 of 17,338), while
chromosome A08, the shortest chromosome at 48.94 Mb,
contained the least (1.81%; 314 of 17,338). The average number
of SNPs/Mb was seven on both the A and B subgenomes, while
average genes/Mb were 35 and 31, respectively. Chromosome
B03 had the highest number of genes (5,188 of 77,617), while
its counterpart, chromosome A03, contained the second highest
(4,929 of 77,617).

LD was estimated as the r2 value, revealing uneven
distribution of SNPs on each chromosome. r2 values of the A
subgenome ranged from 0.071 on chromosome A03 to 0.356 on
chromosome A02, while those of the B subgenome ranged from
0.029 on chromosome B03 to 0.251 on chromosome B05. Average
r2 values of the A and B subgenomes were 0.177 and 0.137,
respectively, revealing differences in the level of LD between
different chromosomes and subgenomes.

Population Structure and Genome-Wide
Divergence in Peanut
To examine divergence of the 158 accessions during evolution,
analysis of population structure, phylogenetic relationships and
PCA were carried out using the 17,338 selected SNPs. According
to the K genetic clusters, the most likely number of inferred
members was 2 with 1K = 0.47 (Figure 2C). Nevertheless,
accessions were classified into three major clusters in the NJ
phylogenetic tree, with hypogaea accessions (group I) forming
a separate cluster, and fastigiata accessions (group II) forming
another large cluster (Figure 2B). PCA was conducted using the
first two principal components (Figure 2A), PC1 (with variance
explain 8.16%) and PC2 (with variance explain 5.23%), revealing
that the accessions probably divided into two groups, with
different degrees of introgression between the two subspecies
during cultivation.

GWAS of Loci Underlying Domestication
Traits in Peanut
Eleven traits were selected for identification of underlying genetic
loci and regions. In total, 51 SNP peaks associated with six
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FIGURE 1 | Phenotypic variation of eight traits among 158 peanut accessions.

TABLE 1 | Distribution of 17,338 SNPs in 20 chromosomes identified in 158 peanut accessions.

Chr Chr length(Mb) Number of SNPs Number of genes Average number of SNPs per Mb Average number of genes per Mb r2 of chr LD

A01 106.02 725 3493 7 33 0.177

A02 92.63 1059 3129 11 34 0.356

A03 133.14 970 4929 7 37 0.071

A04 121.18 749 3833 6 32 0.185

A05 108.28 793 3868 7 36 0.166

A06 110.73 862 3712 8 34 0.149

A07 77.95 482 2850 6 37 0.161

A08 48.94 314 2940 6 60 0.151

A09 119.00 887 3694 7 31 0.173

A10 107.26 697 3488 6 33 0.186

B01 136.91 1073 3791 8 28 0.084

B02 108.64 710 3580 7 33 0.217

B03 135.60 1427 5133 11 38 0.029

B04 133.21 1047 4276 8 32 0.159

B05 149.44 1011 4433 7 30 0.251

B06 136.72 876 4372 6 32 0.094

B07 125.99 1093 3813 9 30 0.032

B08 129.15 962 3710 7 29 0.074

B09 146.50 654 4409 4 30 0.196

B10 135.81 947 4164 7 31 0.238

A 1025.12 7538 35936 7 35 0.177

B 1337.96 9800 41681 7 31 0.137

AB 2363.08 17338 77617 7 33 0.157

Chr, Chromosome; r2 of chr LD, average LD between all SNPs on a chromosome.
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FIGURE 2 | Principal component analysis (PCA), phylogenetic tree construction and population structure analysis of the 158 peanut accessions. (A) Scatter plots of

the first two principal components. The horizontal and vertical coordinates represent PC1 (with variance explain 8.16%) and PC2 (with variance explain 5.23%). Each

dot represents an accession. (B) Phylogenetic tree constructed with 17,338 high quality SNPs. (C) Population structure dividing the accessions into two groups (1K

value was 0.47): subsp. hypogaea (group I) and subsp. fastigiata (group II).

traits reached the corrected P value according to the Bonferroni
method (P < 5.76e−07 at a = 0.01 or −log10(P) = 6.238)
(Figure 3, Table S3). A 100-kb genomic region on each side
of the peak SNP associated with the corresponding traits was
subsequently analyzed for identification of candidate genes
(Table 2).

As a result, a total of 13 significant SNPs were associated
with height of the main stem, with the peak SNP A03-26481539
explaining 27.55% of the phenotypic variation. The Aradu 52T5J
gene was located ∼32 kb from this SNP, and is known to
encode a malate dehydrogenase, which is thought to be related
to biomass and plant height in maize (Carrari et al., 2005).
Peak SNP A10-90376017 for the total number of branches
explained 26.64% of the phenotypic variation, and was located
only ∼8 kb from the nearest gene, Aradu J85DC, which encodes
a cytochrome P450 superfamily protein reportedly involved
in the strigolactone synthetic pathway in rice (Gomez-Roldan
et al., 2008) and soybean. The peak SNP A03-6992035 explained
15.52 and 19.99% of the phenotypic variation of seed length
and 10-seed weight, respectively. A candidate gene encoding
a bHLH transcription factor was located ∼57 kb from this
peak, and is thought to be a pleiotropic gene involved in seed
development (Kondou et al., 2008). Aradu PZ2UH was located
∼42 kb from A03-119879303, another peak SNP related to
10-seed weight (explaining 18.69% phenotypic variation) on
chromosome A03, and encodes an auxin response factor (ARF)
involved in plant growth and seed development (Okushima et al.,
2005; Attia et al., 2009). A peak SNP explaining 26.32% of the
phenotypic variation in pod width was located on chromosome
A05. One candidate gene, Aradu CVC5Q, was located ∼32
kb away, and encodes a microtubule-associated protein (MAP)

that reportedly influences seed shape by regulating microtubule
growth (Deng et al., 2012). The candidate gene for seed coat
color, located ∼12 kb from the peak SNP B03-22076736,
which explained 21.94% of the phenotypic variation), also
represented a bHLH transcription factor previously found
to influence seed coat color in rice (Sweeney et al., 2006).
These results suggest that GWAS was effective in clarifying
candidate genes related to major domestication-related traits in
peanut.

Genomic Changes and Target Regions
Associated with Selection
Genomic changes related to selective processes during
domestication can be determined using genotypic data. In
this study, a total of 1,429 genes were defined in 335 highly
differentiated genomic regions in the two groups using an
FST threshold of 0.261 (determined by the 5% right tails of
the FST distribution) and a π I / π II ratio threshold of 2.03
(Figures 4B,C). The gene distribution of the resulting sweeps
was subsequently determined (Table S4). A03 contained the
most number of genes (662 genes, 45.94%), and presented
stronger selective sweep signals in group I than group II. A
total of 186 and 158 genes were found on chromosomes B03
and B08, respectively, corresponding to 12.91 and 11.06%,
respectively, and ranking them second and third during peanut
artificial selection. No selective sweep signals were detected on
chromosomes B01 or B10.

A total of 15 SNPs were found in the 200-kb selective sweep
regions of major peak SNP A03-6992035 (Figure 4A), which is
related to seed length and seed weight. Three SNPs were also
found in the two gene models, Aradu D69CU and Aradu T1PSR,
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FIGURE 3 | Genome-wide association studies (GWAS) of traits associated with peanut domestication. Manhattan plots with corresponding small QQ plots are shown

in each figure of each trait. Associated significant SNPs are marked by arrows with reported candidate genes. The Bonferroni multiple test threshold is shown by a

dotted blue line. MD: Malate dehydrogenase; P450: Cytochrome P450 superfamily protein; bHLH: bHLH transcription factor; ARF: Auxin response factor;

MAP: Microtubule-associated protein.

TABLE 2 | Six significant SNPs and predicted candidate genes associated with major agronomic traits in 158 peanut accessions.

Trait SNP location (bp) Gene model Distance to SNP (kb) Functional annotation

HMS A03-26481539 Aradu 52T5J 32 (26,514,081–26,516,597) Malate dehydrogenase

TNB A10-90376017 Aradu J85DC 8 (90,384,547–90,391,660) Cytochrome P450 superfamily protein

Seed length
A03-6992035 Aradu T1PSR 57 (7,049,674–7,051,562) bHLH transcription factor

Seed weight

Seed weight A03-119879303 Aradu PZ2UH 42 (1,19,921,885–1,19,926,789) Auxin response factor

Pod weight A05-32373760 Aradu CVC5Q 32 (32,341,000–32,343,951) Microtubule-associated protein

Seed coat color B03-22076736 Araip P4GTD 12 (22,064,568–22,066,022) bHLH transcription factor

HMS, Height of main stem; TNB, Total number of branches.

respectively, both of which encode a bHLH transcription factor.
In total, 21 genes were found in this region, and only nine showed
annotation. In addition to the two bHLH genes mentioned

above, three major intrinsic protein (MIP) genes involved in
carbohydrate transport and metabolism, and one F-box gene
and one proline-rich protein (PRP) gene both involved in
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FIGURE 4 | Selective sweeps and population differentiation analyses of subsp. hypogaea (group I) and subsp. fastigiata (group II). (A) Regional plot of 15 SNPs in the

200-kb selective sweep region on chromosome A03. The bottom panel indicates the extent of LD in the region based on pairwise r2-values which are shown in the LD

triangles. (B) Distributions of selective sweeps in subsp. hypogaea (group I) and subsp. fastigiata (group II). (C) Manhattan plots of FST values of peanut chromosome.

plant growth and stress response, were also identified in this
region.

Nucleotide-binding leucine-rich repeat (NB-LRR)-encoding
genes are of particular interest because they confer resistance
against pests and disease. Possible resistant genes in the highly
differentiated genomic regions were therefore analyzed. Ten
and 25 genes containing the NB-LRR domains were identified
on the A and B subgenomes, respectively. Of the 10 NB-
LRR-encoding genes on the A subgenome, eight were located
on chromosome A03, and of the 25 on the B subgenome,
18 were located in two genomic regions of chromosome B07.
One region was located within 282 kb of chromosome B07
(between 1714315 and 1996823) and harbored 15 NB-LRR-
encoding genes (Table S5), suggested that this area contains
a resistance gene family. The second region was located
between 4775007 and 4820955 on chromosome B07, and
included three NB-LRR-encoding genes. Interestingly, five NB-
LRR-encoding genes were found in a major selective sweep
on chromosome B03. This region covered 6.89 Mb and
contained 107 selective genes, including one gene encoding a

Gibberellin-related protein and three genes related to flavonoid
biogenesis and regulation. These findings suggest that this region
plays important roles in both resistance and plant-type-related
traits.

DISCUSSION

Species in the genus Arachis are widely distributed across
tropical, subtropical and warm temperate zones, but only the
cultivated peanut (A. hypogaea) is an important food crop.
Peanut evolved morphologically during domestication, allowing
it to adapt to various agroecological environments (Stalker and
Simpson, 1995). Subsp. fastigiata has more advanced traits than
subsp. hypogaea in terms of plant habit and pod morphology,
and in this study, represented a larger portion (77.2%) of the
selected accessions (Figure 1 and Table S1). In line with this,
Krapovickas (1969) postulated that hypogaea (subsp. hypogaea)
represents the most ancient variety due to its runner habit,
lack of floral spikes and branching patterns, which are similar
to the characteristics of wild Arachis species. In this study,
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analysis of phylogenic relationships, population structure and
PCA among 158 peanut accessions revealed that accessions in
subsp. fastigiata contain unique genomic regions that differ from
those in hypogaea (Figure 2). Four wild diploid accessions were
previously sequenced and removed due to ploidy difference
(data not shown). Interestingly, some accessions were not
clearly distinguishable, possibly because they underwent differing
degrees of genetic introgression during manual selection.

Cultivated peanut has a narrow genetic base, possibly resulting
from a single polyploidization event (Kochert et al., 1996),
and can therefore be improved using introgression genes for
disease resistance and other important agronomic traits from
wild species (Dwivedi et al., 2007; Holbrook et al., 2008; Isleib
et al., 2011). Molecular markers for economically significant
traits have been widely used to improve the speed and efficiency
of MAS breeding in peanut (Selvaraj et al., 2009; Chu et al.,
2011). SNP markers, the most abundant molecular marker, are a
cost-effective method of high-throughput molecular genotyping,
but have limited use in peanut because of the homeologous A
and B subgenomes. In this study, the two diploid genome (A.
ipaensis and A. duranensis) were used as the reference genomes.
In order to accurately allocate marker tags to the correct genome,
sequencing depth was combined with integrity and MAF to filter
SNPs. There are not too much SNPs found in exceptionally high
homologous regions, which would not influence the following
GWAS results. Finally, a total of 17,338 high quality SNPs were
identified across the whole genome by reduced representation
sequencing technology (the SLAF-seq method) (Table 1 and
Figure S1). The average sequencing depth was 8.06-fold, and the
average number of SNPs / Mb was seven in both the A and B
subgenomes, suggesting a reasonable density of markers given
the relatively low cost of the genotyping method (He et al., 2011;
Li et al., 2013; Morris et al., 2013).

GWAS is considered an efficient method for genetic analysis
of complex trait variation (Han et al., 2016; Fahrenkrog et al.,
2017). Based on the markers developed in this study, 51
association SNP peaks were identified in this study, along
with candidate genes or loci corresponding to domestication-
related traits (Figure 3 and Table S3). A total of 13 association
peaks for height of the main stem were found on eight
chromosomes, while 18 peaks representing seed weight were
found on six chromosomes, suggesting that there is a group of
QTLs responsible for these traits. The basic transcription factor,
bHLH family, is involved in plant growth and developmental
processes as well as stress responses and secondary metabolism
(Heim et al., 2003), and in this study, was linked with seed
shape and seed coat color (Table 2). The Aradu PBR53 gene
located ∼37 kb from SNP A05-32373760 for pod weight, which
was predicted to encode formin protein, a newly revealed
regulatory factor of cell skeleton assembly (Guo and Ren, 2006).
In Arabidopsis thaliana, it was found to play a role in cell division
and cell polarity (Zhang et al., 2016), but studies in peanut are
limited, making it a good focal point for future research. Using
the SNPs identified in this study, further analysis of agronomic
traits will be possible, allowing rapid identification of candidate
genes for future peanut breeding programs.

Similar to other important crop plants, peanut has undergone
continuous selection through domestication and intensive
breeding events. Domestication from a wild to a cultivated
species is largely associated with genome-wide duplications,
mutations, selection and genetic drift (Kim et al., 2010; Li
et al., 2013). Many traits thought to be involved in peanut
domestication were previously clustered in three genomic
regions on chromosomes A07, B02, and B05 (Fonceka et al.,
2012), suggesting that several linked genes are responsible for the
phenotypic variation in 158 peanut accessions collected from all
growing regions of China. In this study, selective sweeps in the
two peanut groups were measured using FST values and sequence
diversity (π) ratios. The existence of major selective sweeps on
chromosome A03 indicated that this chromosome was subjected
to primary selection pressure (Figure 4). This finding was similar
to the results of GWAS, whereby several important genes related
to domestication traits were located on chromosome A03. SNPs
in these regions are therefore likely to be valuable for MAS
breeding.

There are several major diseases, like early leaf spot(caused by
Cercospora arachidicola), late leaf spot (caused byCercosporidium
personatum), and Tomato spotted wilt virus (TSWV, spread by
thrips), may cause significant yield loss in peanut production
(Nigam et al., 2012). Breeding of resistance cultivars is the most
cost-effective method of reducing disease damage in peanuts.
The role of NB-LRR proteins in plant defense against pathogens
has been extensively studied (DeYoung and Innes, 2006; Nagy
and Bennetzen, 2008). In this study, genes encoding NB-LRR
protein were mainly distributed on chromosomes A03 and
B07, especially in a 280 kb region on B07, which contained
15 promising candidate genes (Table S5). Wang et al. (2013)
constructed two genetic maps to identify QTLs for thrips, TSWV
and leaf spot (LS) in peanut. One QTL for TSWV, qF2TSWV3,
was identified in the same marker interval (seq5D5-GM2744)
on linkage group AhII with one QTL for LS, qF2LS1. Another
QTL, qF5LS10 for LS, was identified between GM1254 and
seq15C10 on linkage LGT17. The two linkage groups, AhII
and LGT17, were colinearized with B07 of reference consensus
genetic map (the three QTLs mentioned above covered 24 cM),
suggested that there is a cluster of resistance QTLs on B07.
Pandey et al. (2017) found that of the total 42 QTLs linked to
diseases resistance in peanut, 34 were mapped on the A sub-
genome and eight mapped on the B sub-genome, suggesting
that the A sub-genome harbors more resistance genes than
the B sub-genome, which is in agreement with Bertioli et al.
(2016), who reported that there are more NB-LRR-encoding
disease resistance-like genes in the “A” genome (397 genes
in A. duranensis) than in the “B” genome (345 genes in A.
ipaensis). Though function of these genes needs to be further
validated, these findings suggest that SNPs located in these
major selective sweeps will facilitate future breeding of resistant
cultivars in peanut. The major selective sweep on chromosome
B03 harbored a number of genes related to both resistance and
plant-type-related traits, similar to a recent study (Zhou et al.,
2016), suggesting that this genetic region is worthy of further
investigation.
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CONCLUSION

In summary, this study provides the first insight into the complex
genetic relationship between agronomic traits and domestication
processes in peanut. Chromosomes A03 and B03 harbored
major genes related to peanut domestication, while chromosome
B07 contained a cluster of NB-LRR-encoding genes. Further
studies are now needed to understand the genetic mechanisms
underlying yield- and seed-related traits and identify potential
resistant genes for future peanut breeding programs.
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