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Ubiquitination-mediated protein degradation plays a crucial role in the turnover of
immune proteins through rapid alteration of protein levels. Specifically, the over-
accumulation of immune proteins and consequent activation of immune responses
in uninfected cells is prevented through degradation. Protein post-translational
modifications can influence and affect ubiquitination. There is accumulating evidence
that suggests sumoylation, phosphorylation, and acetylation differentially affect the
stability of immune-related proteins, so that control over the accumulation or
degradation of proteins is fine-tuned. In this paper, we review the function and
mechanism of sumoylation, phosphorylation, acetylation, and ubiquitination in plant
disease resistance responses, focusing on how ubiquitination reacts with sumoylation,
phosphorylation, and acetylation to regulate plant disease resistance signaling
pathways. Future research directions are suggested in order to provide ideas for
signaling pathway studies, and to advance the implementation of disease resistance
proteins in economically important crops.

Keywords: plant immunity, sumoylation, phosphorylation, acetylation, ubiquitination, ubiquitin, elongating
enzyme E4

INTRODUCTION

Plants mainly rely on two conceptual layers of immune systems to prevent infection and disease.
The first system, PTI (PAMP-triggered immunity), involves the detection of PAMPs (pathogen-
associated molecular patterns) through PRRs (pattern-recognition receptors). The second layer,
ETI (effector-triggered immunity), specifically recognizes effector proteins that pathogens secrete
to suppress PTI and achieve virulence. ETI involves the detection of effectors through R (resistance)
proteins that can induce a rapid and robust immune response (Jones and Dangl, 2006; Boller and
He, 2009).

Although plant immune receptors can confer resistance, their over-accumulation or constitutive
activity can impair plant growth and development and result in autoimmune phenotypes in
the absence of pathogens (van Wersch et al., 2016). For example, snc1-1 (suppressor of npr1-1,
constitutive 1), a gain-of-function mutant in an immune receptor-coding gene, exhibits constitutive
defense activation without pathogen attack, resulting in autoimmune phenotypes which
include dwarf stature, increased SNC1 protein stability, high defense marker gene expression,
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elevated defense hormone SA (salicylic acid) accumulation and
disease resistance (Zhang et al., 2003; Cheng et al., 2011).
Therefore, in order to balance appropriate plant immune
signaling with normal growth and development, the transient
levels of immune receptors in the cell must be tightly controlled.
However, the molecular mechanisms that regulate the abundance
of receptor proteins are still unclear (Li et al., 2015).

In eukaryotes, PTMs (protein post-translational
modifications), such as sumoylation, phosphorylation,
acetylation, and ubiquitination, can result in the generation
or adjustment of important molecular signals. There are several
examples in plant immunity where these modifications have been
reported to participate in the regulation of plant disease-resistant
immune signals (Cheng et al., 2011; Huang et al., 2014; Eiyama
and Okamoto, 2015; Mach, 2015; Saleh et al., 2015; Xu et al.,
2015; Zhou et al., 2015; Copeland et al., 2016; Gou et al., 2017).
In these modalities, ubiquitination is considered a hub for the
regulation of plant immune signals (Cheng and Li, 2012).

The ubiquitination process is an ATP-dependent conjugation
cascade involving a series of enzymes, including an ubiquitin
activating enzyme E1, an ubiquitin conjugating enzyme E2, and
an ubiquitin ligase E3. Usually, an E1 activates Ub (ubiquitin)
and transfers it to an E2. An E3 connects a substrate that it
specifically recognizes to the Ub molecule conjugated by the E2
(Sadanandom et al., 2012; Metzger et al., 2014). In addition, there
is an ubiquitin elongating enzyme E4 that contributes to poly-
ubiquitination (Liu et al., 2010; Huang et al., 2014; Ferreira et al.,
2015).

In the process of ubiquitination, the immune proteins are
specifically recognized by ubiquitin ligase E3s. However, a
number of studies have found that the specific recognition of
immune proteins is not solely determined by the corresponding
ubiquitin ligase E3s, and can require further substrate
modifications (Spoel et al., 2009; Lu et al., 2011; Xu et al.,
2015). The homeostatic regulation of immune protein
is more sophisticated and complex than current models
suggest. Upstream of ubiquitination, a variety of protein post-
translational modifications, serve as degrons for ubiquitination
and ubiquitin-dependent degradation (Yoo et al., 2008; Praefcke
et al., 2012; Xu et al., 2015). In this review, we summarize recent
advances in the regulation of plant immune protein turnover, and
propose an updated model on the control pathways of immune
receptors through sumoylation, phosphorylation, acetylation,
and ubiquitination.

SUMOYLATION

Sumoylation is a PTM that involves the attachment of SUMO
(small-ubiquitin-like modifier) proteins to specific lysine residues
on substrates. The process by which SUMO chains form and
the three-dimensional structure of SUMO proteins is similar
to ubiquitination. However, sumoylation seems to be involved
in different biological processes compared to ubiquitination,
such as genome stability, protein sorting and activation, signal
transduction, cell cycle, etc. (Baczyk et al., 2017; Nair et al., 2017;
Qiu et al., 2017; Wei et al., 2017). The functional study of SUMO

proteins in plants began in 1999 when a novel tomato SUMO
protein, with homology to human SUMO1, was found to inhibit
EIX-induced (ethylene-inducing xylanase) cell death (Hanania
et al., 1999). With the discovery and characterization of two
SUMO E3 coding genes SIZI (SAP and MIZ1) and MMS21/HPY2
(Methyl Methanesulfonate-sensitivity Protein 21/High Ploidy 2) in
Arabidopsis thaliana, as well two SUMO E4 coding genes PIAL1
and PIAL2 (Protein Inhibitor of Activated STAT Like1/2), the roles
of sumoylation in regulating plant processes are emerging (Miura
et al., 2005; Huang et al., 2009; Ishida et al., 2012; Tomanov et al.,
2014; Kwak et al., 2016). In plant immunity, SUMO modification
seems to play both positive and negative regulatory roles (Lee
et al., 2007; van den Burg and Takken, 2010; Bailey et al., 2016;
Cheng et al., 2017).

Current models suggest that there are three main relationships
between sumoylation and ubiquitination: antagonism, synergism
or feedback, and degron mediation. Firstly, sumoylation and
ubiquitination can antagonistically compete for the same lysine
residue of target substrates (Hoege et al., 2002; Ulrich, 2005).
In some cases antagonistic effects can also be observed between
sumoylation and ubiquitination when the modification site is
not the same (Desterro et al., 1998; Gostissa et al., 1999).
Secondly, ubiquitination and sumoylation can affect one another
positively in a feedback loop. For example, SUMO E3 SIZ1 can
enhance the transubiquitination activity of COP1 (constitutive
photomorphogenic 1), an ubiquitin E3 ligase, but its own
protein level and stability is modulated by COP1 (Lin et al.,
2016). Thirdly, sumoylation can function as a degron mediating
ubiquitin-dependent degradation by the proteasome (Miteva
et al., 2010; Manente et al., 2011; Praefcke et al., 2012). STUbLs
(SUMO-targeted ubiquitin ligases), identified in yeast, humans
and plants, regulate the level and stability of sumoylated proteins
and act downstream of sumoylation (Xie et al., 2007; Tatham
et al., 2008; Elrouby et al., 2013).

In plant immunity, there are two immunity-related studies
supporting that sumoylated residues act as degrons for
ubiquitous degradation in plants. Firstly, SIZ1 was found
to contribute to the turnover of SNC1 and play a role in
plant immunity. The loss-of-function mutant of SIZ1 exhibited
autoimmune phenotypes that are partly dependent on SNC1,
and over-expression of CPR1 (constitutive expressor of PR genes
1), an E3 ubiquitin ligase previously reported to target SNC1
for degradation, could restore the growth defects caused by siz1
(Gou et al., 2012, 2017). SIMs (SUMO-interaction motifs) are
sequences that can mediate the binding of proteins to sumoylated
substrates. For example, sumoylated PCNA (proliferating-cell
nuclear antigen) can be recognized by the SIM of the ubiquitin
ligase Rad18 (radiation-sensitive 18) in yeast (Parker and Ulrich,
2014). In SNC1, there are four sumoylation sites and five putative
SIMs (Gou et al., 2017). It would be interesting to determine
whether sumoylation enhances SNC1 turnover, increasing its
ubiquitination and proteasome-mediated degradation.

A second example involves the key SA receptor and
transcriptional activator, NPR1 (non-expressor of PR genes
1). Under normal conditions, NPR1 mainly exists in the
cytoplasm as an oligomer, but a small amount of NPR1
monomer can be sumoylated, transported to the nucleus, and
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degraded through ubiquitination-mediate pathways. This process
maintains NPR1-mediated basic immunity and restricts its
co-activator activity to prevent autoimmunity. In the presence of
pathogens, accumulation of SA triggers the reduction of NPR1
oligomers to monomers, the sumoylation of the monomers, and
finally the translocation of the monomers into the nucleus to
promote defense gene transcription. NPR1 contains a BTB/POZ
(for Broad Complex, Tramtrack and Bric-a-brac/Pox Virus and
Zinc Finger) domain, which functions as a substrate adapter
of SCF (Skp1-cullin1-F-box) -type ubiquitin ligase E3s (Rochon
et al., 2006). Interestingly, BTB-type proteins themselves may
also be substrates for SCF complexes (Boyle et al., 2009).
NPR1 can be phosphorylated at residues Ser11/Ser15 to facilitate
further sumoylation of NPR1 and promote its recruitment to
Cullin-based ubiquitin ligase E3 for degradation (Spoel et al.,
2009; Mach, 2015; Saleh et al., 2015). It is likely that the
ubiquitination of mission-capable NPR1 from the target gene
promoter promotes NPR1 in the cytoplasm to translocate to the
nucleus to launch a fresh transcription cycle.

PHOSPHORYLATION

Phosphorylation refers to the addition of a phosphoric acid
group to proteins or other functional molecules. Protein
phosphorylation is a reversible reaction that occurs mainly
on serine, threonine, and tyrosine residues. The main role of
serine and threonine phosphorylation is to alter the protein
activity state from inactive to active (Rahimi and Costello,
2015). Tyrosine phosphorylation, on the other hand, generally
provides a structural group to facilitate interactions with
other proteins, in order to form poly-protein complexes that
further promote protein phosphorylation in a phosphorylation
cascade (Kobayashi et al., 2014). The signal generated is
eventually transferred to the nucleus, leading to transcriptional
changes (Gao and He, 2013). There is emerging evidence that
phosphorylation plays a role upstream of ubiquitination in plant
innate immunity (Lu et al., 2011; Saleh et al., 2015; Swaney et al.,
2015).

Arabidopsis BIK1 (botrytis-induced kinase 1) is a cytosolic
kinase that phosphorylates and enhances the activity of BAK1
(BRI1-associated receptor kinase 1). A yeast two-hybrid screen
done using BAK1 as bait isolated PUB13 (plant U-box 13),
an ubiquitin ligase E3, which possesses an N-terminal U-box
domain. Further studies show that BAK1 phosphorylates PUB13
and its close homolog PUB12, and that this phosphorylation is
required in order for the E3s to associate with and ubiquitinate
FLS2 (flagellin sensitive 2), a plasma-membrane-localized PRR
protein (Gomez-Gomez and Boller, 2000; Lu et al., 2011; Zhou
et al., 2015). In this example, the FLS2-mediated immune
response is regulated by a phosphorylation cascade pathway,
which determines which proteins to degrade via ubiquitination
and which to maintain for sustained immune signaling.

Rice PRR protein Xa21 (Xanthomonas oryzae pv. Oryzae 21)
has many auto-phosphorylated sites in the JM (juxtamembrane)
domain, and can interact with a RING-type ubiquitin ligase XB3
(Xa21 binding protein 3), which maintains the stability of Xa21

(Wang et al., 2006; Xu et al., 2006). Recent studies found that
Thr-705 in the JM domain of Xa21 is essential for its auto-
phosphorylation and that mutation in Thr-705 abolished the
interaction between Xa21 with XB3, suggesting that Thr-705
plays an important biological function in Xa21-mediated defense.
Upon pathogen infection, Xa21 recognizes PAMPs and transfers
phosphate groups to XB3, leading to XB3 self-ubiquitination and
activation of MAPK (mitogen-activated protein kinase) cascades-
mediated resistance (Chen et al., 2010; Park et al., 2010; Huang
et al., 2013).

Furthermore, there are more sophisticated phosphorylation
mechanisms to regulate defense related proteins in multiple
layers. EIN3 (ethylene-insensitive 3), is a plant-specific nuclear
transcription factor that functions in MAPK cascades to initiate
downstream transcriptional cascades for ethylene responses.
EIN3 interacts with two F-box-type ubiquitin ligases, EBF1 (early
B-cell factor 1) and EBF2 and is ubiquitinated and degraded by
the 26S proteasome. There is a dual phosphorylation modulatory
mechanism for EIN3 stability: MKK9 (MAP kinase kinase 9)
phosphorylates T174 to promote EIN3 stability whereas CTR1
(copper transporter 1) phosphorylates T592 to facilitate EIN3
degradation (Binder et al., 2007; Yoo et al., 2008; Tacken et al.,
2012). Similarly, the phosphorylation sites at Ser11/Ser15 of
NPR1 promote its ubiquitin-mediated degradation; while the
sites at Ser55/Ser59 maintain NPR1 stability and inactivity (Spoel
et al., 2009; Saleh et al., 2015). It would be interesting to
investigate whether the phosphorylation sites of Xa21 also have
opposing functions.

ACETYLATION

It has been well-established that histone acetylation plays a key
role in DNA transcription, and that acetylation of non-histones
plays an important role in cellular events (Spange et al., 2009;
Graff and Tsai, 2013). Recently, more studies have revealed that
N-terminal (Nt) acetylation can serve as signals for ubiquitin-
mediated protein degradation (Hwang et al., 2010; Gibbs, 2015;
Xu et al., 2015). Pathogen effectors can also acetylate immune
receptors to promote infection (Song and Walley, 2016).

Akin to the dual roles of phosphorylation in PTI,
Nt-acetylation serves two functions in SNC1-mediated immunity
(Xu et al., 2015). The Nt-acetylation of SNC1 was first identified
in muse6 (mutant, snc1-enhancing 6), a mutant derived
from mos4 (modifier of snc1 4) snc1 background with strong
autoimmunity phenotypes. Sequence homology analysis revealed
that Arabidopsis MUSE6 is an ortholog of Yeast Naa15 [N
(alpha)-acetyltransferase 15], the subsidiary subunit of NatA
(N-terminal acetyltransferase complex A), suggesting that
Nt-acetylation contributes to SNC1 degradation. Interestingly,
SNC1 seemed to have distinct N-terminal isoforms as detected by
MS analysis, which may have been generated through alternative
initiation and Nt-acetylation. Affinity purification and in vitro
enzymatic assays proved that its first Met is acetylated by NatA
serving as a degron for ubiquitination, while the second Met is
acetylated by NatB, stabilizing SNC1. The turnover of RPM1
was also linked with NatA, but not NatB (Van Damme et al.,
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FIGURE 1 | Model on how ubiquitination reacts with sumoylation,
phosphorylation, and acetylation to fine-tune the turnover of plant immune
components. (A) Under normal conditions, sumoylated positive regulators
further go through phosphorylation or acetylation on the site1 (e.g., NPR1:
Ser11/15 and SNC1: Met1, respectively), which serves as degron, leading to
protein degradation through the UPS. Or protein sumoylation alone (e.g.,
SNC1: Lys129/271/588/1048) may promote its degradation through the UPS.
(B) Under abnormal conditions, positive regulators or sumoylated positive
regulators go through phosphorylation or acetylation on the site2 (e.g., NPR1:
Ser55/59 and SNC1: Met2, respectively), which prevents protein degradation
through the UPS, leading to protein accumulation. In the model, dash arrows
stand for uncertain events.

2012; Eiyama and Okamoto, 2015; Xu et al., 2015). Interestingly,
the antagonistic function of NatA and NatB is also observed in
flowering time (Kapos et al., 2015).

Many N-terminally acetylated amino acids which are targeted
by NatA act as degrons in yeast and are recognized by the
ubiquitin E3 Doa10 (degradation of Alpha2 10) for degradation
(Hwang et al., 2010; Zattas et al., 2013). Thus, it is hypothesized
that a single immune protein can be Nt-acetylated in different
ways by different Nats, and the acetylation can be differentially
recognized by different ubiquitin ligase E3s, providing regulation
through two antagonistic downstream routes. However, it has
not been confirmed whether acetylation changes the charge
state or the spatial structure of SNC1 to expose its ubiquitin
recognition site to be recognized by E3; or whether the ubiquitin
ligase E3 directly recognizes the acetylated site. Therefore, unlike
the diverse mechanisms of interaction between sumoylation
and ubiquitination, the relationship between acetylation and
ubiquitination or sumoylation remains to be explored in detail.
Structural studies of the E3 recognition site will contribute
a better understanding to the synergistic mechanisms of
acetylation, ubiquitination, and sumoylation.

UBIQUITINATION

Ubiquitination plays a significant role in regulating plant
immunity. For example, ubiquitin ligase E3s prevent
overproduction of immune proteins (Cheng and Li, 2012;
Duplan and Rivas, 2014). One example is Arabidopsis ubiquitin
ligase CPR1, an F-box protein that regulates the resistance
pathways mediated by R proteins such as SNC1 and RPS2. The
autoimmune phenotypes of cpr1 are SNC1-dependent, and CPR1
can decrease SNC1 level via ubiquitin-mediated degradation
(Cheng et al., 2011; Gou and Hua, 2012).

Since poly-ubiquitination is the most suitable form of
ubiquitination for protein degradation, and since the integrated
activities of E1s, E2s, and E3s are rarely effective in adding more
than three ubiquitin molecules to substrates, there must be a
ubiquitin extension factor involved in the poly-ubiquitination
of proteins which is named E4 (Ohki et al., 2009; Ordureau
et al., 2014). Yeast Ufd2 (ubiquitin fusion degradation protein 2),
the first discovered and best characterized E4 factor, has a
C-terminal U-box domain, which promotes the assembly of poly-
ubiquitin chain cooperating with E1s, E2s, and E3s (Hanzelmann
et al., 2010). Yeast Cdc48 (cell division cycle 48), a conserved
ATPase among eukaryotes, interacts with Ufd2 and may play
an important role in transporting ubiquitous targets to the
proteasome (Baek et al., 2011).

At present, many Ufd2 orthologs have been functionally
studied: the mouse E4B (also known as Ufd2a), the human GP78
(glycoprotein of Mr 7800) and MUSE3 from Arabidopsis (Susaki
et al., 2010; Huang et al., 2014; Wang et al., 2014). MUSE3, the
only E4 factor in Arabidopsis identified from a forward genetic
screen in the background of mos4 snc1, affects SNC1 and RPS2
protein levels and relies on CPR1 through the UPS (ubiquitin
proteasome system) pathway. Co-IP experiments revealed that
MUSE3 appears to directly interact with SNC1, but not with
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RPS2, indicating that the association between MUSE3 and RPS2
may need an unknown intermediary agent (Huang et al., 2014).
There is also an ATPase MUSE8 that interacts with MUSE3 to
negatively regulate plant immunity (Copeland et al., 2016).

At present, it is hypothesized that E4s functions in E3-E4
or E4-substrate complexes to assist the transfer of ubiquitin
molecules from E2s to the targets, or to add ubiquitin molecules
to the targets after E3s’ function (Huang et al., 2014; Ferreira et al.,
2015). There are more than 1000 genes coding ubiquitin ligase
E3s in the Arabidopsis genome, with the biological function of
most genes uncharacterized. Therefore, further investigation will
be necessary to identify other E3s, E4s and their targets, thus to
understand the homeostatic regulatory mechanism of immune
proteins.

CONCLUSION AND PERSPECTIVES

Over the past 10 years, ubiquitination has emerged to be a
vital regulatory mechanism in plant biology that is controlled
at multiple levels, even in a single signal response pathway.
Moreover, ubiquitin molecules can complete the correct assembly
and folding of some proteins through the combination of
E1s, E2s, and E3s and participate in the regulation of
some protein activity. Therefore, the destruction, modification,
or recombination of components in UPS can directly or
indirectly affect plant hormonal signaling pathways, gene
transcription, morphogenesis, resistance to harsh environments,
and competition between plants and pathogens. Although recent
research has provided us with a basic understanding of the
function of UPS pathways in plant immunity, the biochemical
mechanisms and physiological functions of ubiquitination are far
from being fully understood.

The existence of a variety of PTMs that work together with
ubiquitination is thought to provide flexibility for regulation
of target protein involved in plant immunity under dynamic
cellular conditions (Figure 1). Similar mechanisms may be
particularly important during growth and development, stress
responses, flowering, etc. to ensure an appropriate concentration
of regulatory proteins is reached in a timely manner.

There are still many problems that remain unsolved. One of
the biggest challenges is to identify the targets of the E3s that
participate in plant immunity. Furthermore, how do E3s identify
their substrates? What are the characteristics of these substrates?
How is the activity of ubiquitous enzymes itself regulated?
What is the relationship between different E3s and E4s? Finally,
how are ubiquitination and other PTMs such as sumoylation,
phosphorylation, and acetylation related? The questions above
remained to be resolved through in-depth cooperative and multi-
disciplinary studies on plant immunity. Approaches, such as
targeted reverse genetics as well as carefully designed novel
forward genetic screens and global protein stability profiling, will
enable us to reveal these mysteries.

Future research in this area can uncover the intricate
interactions among different PTMs, but can also increase the
understanding of the function of the UPS. Moreover, exploring
the mechanism of plant defense against pathogen infection
through the immune system could lead to ideas that eventually
become varities of disease resistance that could be implemented
in economically important crops.
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