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The Chenopodium genus comprises ∼150 species, including Chenopodium quinoa

and Chenopodium album, two important crops with high nutritional value. To elucidate

the phylogenetic relationship between the two species, the complete chloroplast (cp)

genomes of these species were obtained by next generation sequencing. We performed

comparative analysis of the sequences and, using InDel markers, inferred phylogeny

and genetic diversity of the Chenopodium genus. The cp genome is 152,099 bp

(C. quinoa) and 152,167 bp (C. album) long. In total, 119 genes (78 protein-coding,

37 tRNA, and 4 rRNA) were identified. We found 14 (C. quinoa) and 15 (C. album)

tandem repeats (TRs); 14 TRs were present in both species and C. album and

C. quinoa each had one species-specific TR. The trnI-GAU intron sequences contained

one (C. quinoa) or two (C. album) copies of TRs (66 bp); the InDel marker was

designed based on the copy number variation in TRs. Using the InDel markers, we

detected this variation in the TR copy number in four species, Chenopodium hybridum,

Chenopodium pumilio, Chenopodium ficifolium, and Chenopodium koraiense, but not

in Chenopodium glaucum. A comparison of coding and non-coding regions between

C. quinoa and C. album revealed divergent sites. Nucleotide diversity >0.025 was found

in 17 regions—14 were located in the large single copy region (LSC), one in the inverted

repeats, and two in the small single copy region (SSC). A phylogenetic analysis based

on 59 protein-coding genes from 25 taxa resolved Chenopodioideae monophyletic and

sister to Betoideae. The complete plastid genome sequences and molecular markers

based on divergence hotspot regions in the two Chenopodium taxa will help to resolve

the phylogenetic relationships of Chenopodium.

Keywords: Chenopodioideae, chloroplast genome, phylogenetic tree, InDel, tandem repeats

INTRODUCTION

Chloroplast (cp) is a plant organelle involved in photosynthesis that has originated from
an ancestral endosymbiotic cyanobacteria (Cho et al., 2015). This organelle plays a role in
photosynthetic carbon fixation, providing essential energy to plants (Raven and Allen, 2003).
In angiosperms, the chloroplast genome consists of a circular DNA molecule with quadripartite
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structure comprised of a pair of inverted repeats (IRs), one
large single copy region (LSC), and one small single copy region
(SSC; Chaney et al., 2016; Cho et al., 2016; Fu et al., 2016). In
addition to a quadripartite structure, the chloroplast genome
contains about 100–130 genes with highly conserved order and
sequences among most land plants (Smith, 2015). Due to its
highly conserved sequence, compact size, lack of recombination,
and maternal inheritance, the cp genome has been used for
generating genetic markers for phylogenetic classification (Choi
et al., 2016; Hu et al., 2016), divergence dating (Krak et al.,
2016), and DNA barcoding system for molecular identification
(Dong et al., 2012). Especially, low evolutionary rate of the cp
genome in taxa that are not very young makes it an ideal system
for assessing plant phylogeny (Smith, 2015). Sequencing of the
complete cp DNA genome began in 1991 (Taberlet et al., 1991)
and until present days, the cp genomes from 1,200 species of algae
and plants have been sequenced (http://www.ncbi.nlm.nih.gov/
genome/organelle/).

Chenopodium sensu lato belongs to the subfamily
Chenopodioideae (Amaranthaceae, Caryophyllales), and
it is the second largest and taxonomically complex genus
(Rahiminejad and Gornall, 2004). The traditional family
Chenopodiaceae comprised about 100 genera and 1,700
species, mainly distributed in temperate and subtropical
regions. However, at present, based on molecular evidence, the
family is recognized as the subfamily Chenopodioideae within
Amaranthaceae and many of its genera are classified within
separate subfamilies of the amaranth family (The Angiosperm
Phylogeny Group, 2016). Although Chenopodium is considered
monophyletic within Chenopodioideae, some researchers
reported the genus polyphyletic (Fuentes-Bazan et al., 2012a,b).
In addition, taxonomic identification of Chenopodium has been
controversial because of the highly polymorphic leaf shape, floral
structure, and seed morphology (La Duke and Crawford, 1979;
Kurashige and Agrawal, 2005).

Chenopodium species are cultivated worldwide not only
as pseudocereals but also as leafy vegetables. Among them,
Chenopodium quinoa and Chenopodium album are most
important species grown as grain and vegetable crops,
respectively. C. album is an important source of vitamins
and micronutrients in India (Bhargava et al., 2007), but also one
of the worst weeds. Quinoa is an annual plant that originated
from the Andean region and whose worldwide cultivation
has been increasing rapidly (Jacobsen et al., 2003). Quinoa is
recognized as a crop of great value for its high abiotic stress
tolerance and high nutritious content (Repo-Carrasco et al.,
2003; Choukr-Allah et al., 2016; Filho et al., 2017).

Several recent studies have attempted to elucidate the origin
and polyploidization of the genome inC. album, an allohexaploid
formed by hybridization between diploid and tetraploid taxa
(Krak et al., 2016). The complete nuclear genome sequence
of the tetraploid C. quinoa (2n = 4x = 36) was reported at
1.39 gigabases with chromosome specific scale reference genome
sequences (Jarvis et al., 2017). In contrast, the chloroplast genome

Abbreviations:CDS, coding sequences; cp, chloroplast; IRs, inverted repeats; LSC,

large single copy region; SSRs, simple sequence repeats.

sequence in Chenopodium has remained incomplete until now
since only a few reports provide information about chloroplast
genes such as the non-coding rpl32-trnL region (Krak et al.,
2016) and the rbcL (Kadereit et al., 2003) and matK/trnK genes
(Fuentes-Bazan et al., 2012b).

In the present study, we report a high quality complete
chloroplast genome sequences of the two important agronomic
Chenopodium species, C. album and C. quinoa, obtained
with the next generation sequencing technology. In addition,
we conducted a comparative genomic analysis using tandem
repeats, InDels, simple sequence repeats (SSRs) polymorphism,
and genetic diversity to identify valuable markers for DNA
barcoding and phylogenetic analysis. Additionally, we developed
and applied InDel markers based on the variation in tandem
repeats (TRs) copy number in trnI-GAU intron sequence as a
possible DNA marker in other species of Chenopodioideae for
phylogenetic analysis.

MATERIALS AND METHODS

Plant Material
Genetic resources of Chenopodium quinoa (8 accessions) were
obtained from the National Agrobiodiversity Center of the
Rural Development Administration (http://genebank.rda.go.kr),
Korea, and cultivated and harvested in the Highland Agriculture
Research Institute (800m above sea level), Pyeongchang, Korea
(Table S1). Leaves of C. album and five other Chenopodium
species were collected from the specimens deposited at the
Kangwon National University Herbarium (KWNU; Table S1).

Chloroplast Genome Sequence Assembly
Total genomic DNA was extracted from ∼100 mg of fresh or
dry leaves removed from a single plant using a NucleoSpin Plant
II kit (Macherey-Nagel, GmbH, Düren, Germany) following
manufacturer’s instructions. Paired-end libraries ofC. quinoa and
C. album were constructed with an Illumina Paired-End DNA
library Kit (San Diego, CA, USA) according to manufacturer’s
protocol and sequenced using the Illumina genome analyzer
(Hiseq200) platform at Macrogen (http://www.macrogen.com/
ko/). The chloroplast (cp) genome assembly was conducted
by the de novo assembly protocol (Cho et al., 2015) via the
Phyzen bioinformatics pipeline (http://phyzen.com). Briefly, a
500-bp paired-end library (approximate insert size 350–450 bp)
generated 9,086,336 reads from C. quinoa and 6,991,000 reads
form C. album. Low quality sequences (Phred score < 20)
were trimmed using CLC Genomics Workbench (version 6.04;
CLC Inc., Arhus Denmark). After trimming, the libraries for
C. quinoa and C. album included 8,121,007 and 6,433,359 reads,
respectively. Then, the de novo assembly was implemented using
the CLC Genome Assembler (http://www.clcbio.com/products/
clc-assembly-cell). A total of 1,190,359 and 383,862 reads were
aligned and selected using nucmer tool in MUMmer (Delcher
et al., 2003) and Spinacia oleracea sequence (NC_002202) as
a reference. The draft cp genome contigs were merged into a
single contig by joining overlapping terminal sequences of each
contig. The extracted cp genomes of C. quinoa and C. album
were 152,099 and 152,167 bp, with a mean coverage of 1,840
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X and 645 X, respectively. The complete cp genome sequence
was annotated using DOGMA (Wyman et al., 2004) and manual
editing through comparison with the reported cp genomes of
the reference species S. oleracea (NC_002202). Circular maps of
the cp genome were generated using OGDraw v1.2 (Lohse et al.,
2013).

Comparative Analysis and Divergence
Hotspot Identification
mVISTA was used to compare similarities between two
Chenopodium species (Mayor et al., 2000). Nucleotide and amino
acids diversity was analyzed by BLASTN and BLASTP, and
TRs were analyzed using Tandem Repeat Finder (Benson, 1999)
with advanced parameters. The alignment parameters, match,
mismatch, indels, were set to 2, 7, 7, respectively; the minimum
alignment score to report repeats was 50; the minimum length
was 6 bp; and the motif identity percent was 100%. The simple
sequence repeats were detected using IMEx (www.mcr.org.in/
IMEX; Mudunuri and Nagarajaram, 2007) with minimal repeat
numbers of 10, 5, 4, 3, 3, and 3 for mono-, di-, tri-, tetra-,
penta-, and hexa-nucleotides, respectively. The substitution rates
Ks and Ka were calculated with PAL2NAL (Suyama et al., 2006).
Chloroplast genome sequences of two Chenopodium species
(C. quinoa and C. album) were aligned using MAFFT (Katoh
et al., 2002), and nucleotide diversity (Pi) and the total number
of mutations (Eta) were determined using DnaSP (Librado and
Rozas, 2009).

Phylogenetic Analysis
For phylogenetic analyses, two datasets were created. One
dataset comprised sequences of 59 protein-coding genes from
25 Caryophyllales plants; the ingroup included 1 Aizoaceae,
1 Cactaceae, 11 Caryophyllaceae, and 11 Amaranthaceae,
and Fagopyrum tataricum (Polygonaceae) was used as the
outgroup (Table S2). The second dataset comprised the trnI-
GAU intron sequences of seven Chenopodium species and one
outgroup (S. oleracea). The sequences in both data matrices
were compiled and aligned with MAFFT (Katoh et al., 2002).
The maximum likelihood analyses of both data matrices were
performed using RAxML v7.4.2 with 1,000 bootstrap replicates
and the GTR+I+G model (Stamatakis, 2006). This substitution
model was chosen under Akaike information criterion (AIC)
and Akaike information criterion with correction (AICc) in
jModeltest v. 2.1.10 (Darriba et al., 2012).

PCR Amplification Using InDel Markers
The total genomic DNA was used for PCR amplification with
InDel specific primers (Table S6). The PCR reactions (20µL)
included 10 ng of genomic DNA and the AccuPower PCR
PreMix (Bioneer, Daejeon, Korea) consisting of 0.2 U/µL TOP
DNA polymerase, 1.5mM Mg2+, and 250µM of dNTP mixture
with 5 pMol of each primer. The PCR amplification was
performed in a thermocycler (ProFlex PCR System, Applied
Biosystems, Foster City, CA, USA) using the following cycling
parameters: initial denaturation at 94◦C for 4 min, followed
by 25 cycles of 94◦C for 30 s, 65◦C for 30 s, and 72◦C for
1 min, and a final extension at 72◦C for 7 min. The PCR

products were analyzed by electrophoresis on 1.8% agarose gels
and sequenced by direct sequencing at Bioneer Co. (Daejeon,
Korea).

RESULTS

Complete Chloroplast Genome Sequences
The complete cp genome of C. quinoa and C. album consisted of
a single circular molecule with quadripartite structure (Figure 1).
The size of the C. quinoa and C. album cp genomes was 152,099
bp and 152,167 bp, respectively. They consisted of a pair of
IRs (IRa and IRb) 25,205 and 25,193 bp long, respectively,
separated by the LSC (83,582 and 83,676 bp), and one SSC
(18,107 and 18,105 bp) region (Table 1). The genomes contained
78 coding genes, accounting for 79,115 and 78,930 bp of the
C. quinoa and C. album cp genome, respectively; of those, 62,
5, and 11 genes were located in the LSC, IR, and SSC region,
respectively (Table S3). The total length of coding sequences
(CDS) was 79,115 bp (the average CDS length was 849 bp) in
C. quinoa and 78,930 bp (the average CDS length of 847 bp)
in C. album. The total number of RNA bases was 11,906 (in
C. quinoa) and 11,835 (in C. album), and the overall GC-content
was similar in both species, about 37.2%. A sequence inversion
was detected in the rbcL-trnV region (about 3.1 kb) compared to
the S. oleracea cp genome (Figure S1). The complete cp genomes
of C. quinoa and C. album are deposited in the GenBank under
the accession numbers KY419706 and KY419707, respectively
(Table S2).

Gene Contents and Hotspot Region in cp
Genomes
The complete cp genomes of C. quinoa and C. album were
compared and analyzed. The gene content, order, and orientation
in the cp genomes of the two species were similar (Figure 1).
The coding regions in both species were highly conserved, except
for matK gene with 98.2% homology at the amino acid level
(Figure S2; Table S3). The overall identity of nucleotides and
amino acid sequences of coding genes was 99.8 and 99.7%,
respectively, with the IR region having the lowest identity
(Table S3). In general, the IR region is known to be more
conservative than the LSC and SSC regions. However, this is
a trend when comparing the entire IR region to the entire
LSC or SSC regions. In addition, nucleotide diversity of some
genes or IGS in the IR region can be higher than that of
the LSC or SSC regions (Yang et al., 2016; Park et al., 2017;
Song et al., 2017). Due to highly conserved coding regions,
the Ka/Ks ratio was very low, approaching zero. However, the
Ka/Ks values for some genes, including matK, rps16, rpoC2,
ycf1, and ycf 2, were higher (Table S3). The IR/LSC and
IR/SSC junction regions were compared to identify the IR
expansion or contraction. The rps19, ndhF, ycf1, rpl2, and trnH
genes were located in the junctions of the LSC/IRa, IRa/SSC,
SSC/IRb, and IRb/LSC regions, respectively; the border position
in C. quinoa was the same as that in C. album, which implied
no IR expansion or contraction (Figure 2). The coding regions,
introns, and intergenic spacer were compared between the
two Chenopodium species. The sequence divergence between
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FIGURE 1 | The chloroplast genome map of Chenopodium quinoa and C. album. Genes shown inside the circle are transcribed clockwise, and those outside the

circle are transcribed counterclockwise.

C. quinoa and C. album ranged from 0 to 0.07865. The IR
region was much more conserved compared to the LSC and
SSC regions. Seventeen regions, psbK-psbI, psbI-trnS, ycf3-trnS,
trnS-rps4, rps4-trnT, trnT-trnL, trnM-trnV, cemA-petA, psbJ-
psbL, trnW-trnP, psaJ-rpl33, petD-rpoA, rpl16-rps3, rpl22-rps19,
rrn23-rrn4.5, ccsA-ndhD, and rpl32-trnL, showed high levels of
sequence variation (exceeding 0.025). Of those, 14 regions were
located in the LSC, one in the IR, and two in the SSC (Figure 3;

Table S4).

Tandem Repeats, InDels, and SSR
Characteristics
The number, length, and repeat unit of TRs were similar and
highly conserved in both species, except for the copy number
variation. A total of 14 and 15 TRs, 938 bp and 1,066 bp in
length, were identified in the cp genomes of C. quinoa and
C. album, respectively (Table 1). The average TR length was 71 bp
in C. album, 4 bp longer than that of TRs in C. quinoa. Among
TRs, nine TRs were located in the IR, four within the LSC, and
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TABLE 1 | Comparison of the complete chloroplast genome between

Chenopodium quinoa and C. album.

Features C. quinoa (GQ9) C. album (KWNU-15)

Total Sequence Length (bp) 152,099 152,167

Large Single Copy (bp) 83,582 83,676

Inverted Repeat Region (bp) 50,410 50,386

Small Single Copy (bp) 18,107 18,105

GC Content (%) 37.24 37.25

Protein-Coding Genes 78 78

Total CDSa Bases (bp) 79,115 78,930

Average CDS Length (bp) 849.45 847.54

Total RNA Bases (bp) 11,906 11,835

Total Tandem Repeat Length (bp) 938 1,066

Total Simple Sequence Repeat (bp) 486 586

Average Tandem Repeat Length (bp) 67.00 71.06

Average Intergenic Distance (bp) 206.08 207.18

aCDS, coding sequences.

three in the SSC region (Table 2) in C. album. One specific TR
(24 bp) detected in intergenic sequences between rps12 and petB
of the LSC region in C. album was absent in C. quinoa; the
two species shared 14 TRs in their cp genomes; one TR (64 bp)
was only found in C. quinoa between rrn4.5 and rrn5 intergenic
sequences (Table S5). We identified one more copy number in
three TRs (TR2, TR8, and TR10) in the C. album cp genome
compared to that of C. quinoa (Table 2).

Most of the InDels were found in the IR region; two InDels
(both longer than 60 bp) in the two species were located in the
coding sequences of ycf2 and trnI-GAU and were 90 and 66 bp
long, respectively (Table S6). We detected quite an interesting
variation in the copy number of the trnI-GAU intron sequence
between exon 1 and exon 2. Namely, C. quinoa and C. album had
the same copies of TR11, both 95 bp long, whereas C. album had
two copies of TR10 within the trnI-GAU intron compared to only
one copy in C. quinoa, which accounted for the 66 bp long InDel
designated InDel_QA_02 (Figure 4). We designed InDel specific
primers to confirm the InDel in the trnI-GAU intron sequence by
PCR amplification in both species (Table S6). The size variation of
the resulting amplicons showed an exact 66 bp difference between
the two species (Figure 4) and dot-plot analysis of the aligned
sequences of InDel_QA_02 confirmed a 66 bp InDel in trnI-GAU
intron sequences (Figure S3).

We identified 44 and 53 SSRs in the cp genome of C. quinoa
and C. album, respectively (Table S7). The most abundant SSRs
motifs were mononucleotides, accounting for about 62 and 66%
of the SSRs motifs in C. quinoa and C. album, respectively, and
the majority repeat sequence was A/T. A total of 28 SSRs were
shared by both species and they were mostly detected in the LSC
region, inter-genic sequences, and mononucleotides (Figure 5).

trnI-GAU Intron Sequence Variation in
Chenopodioideae
The copy number variation of TRs in trnI-GAU intron sequences
among Chenopodioideae was also investigated (Figure 6). The

total length of the trnI-GAU intron in eight species, seven
Chenopodium species and one outgroup, ranged from 805
bp (S. oleracea) to 1,109 bp (C. album and Chenopodium
koraiense); the length of aligned sequences was 996 bp (Table S8;
Figure S4). C. album and C. koraiense possessed two copies
of TR10 (66 bp), four species (C. quinoa, Chenopodium
hybridum, Chenopodium pumilio, Chenopodium ficifolium) had
one copy, and Chenopodium glaucum had no TR10 in the
trnI-GAU sequences. All Chenopodium species, except for
C. glaucum, contained two copies of TR11 (95 bp) in the trnI-
GAU sequences (Table 3). The maximum likelihood analysis
resolvedChenopodiummonophyletic.C. glaucumwas the earliest
diverging lineage and sister to other species. C. album and
C. koraiense formed a clade that was sister to the C. pumilio and
C. ficifolium clade. C. quinoa clustered together with C. hybridum
in a strongly supported clade (boostrap support= 100; Figure 7).

Phylogenetic Relationship of 59
Protein-Coding Genes in the cp Genome
The maximum likelihood analysis was conducted based on 59
protein-coding genes from 25 taxa (Figure 8). The length of
aligned protein-coding gene sequences was 48,361 bp. In the
phylogenetic tree, the Core Caryophyllales were monophyletic
and formed four clades. Aizoaceae (Mesembryanthemum
crystallinum) occupied the most basal position, followed
by Cactaceae (Carnegiea gigantea). In the Caryophyllaceae
clade, Alsinoideae (Colobanthus quitensis) were a sister to
Caryophylleae. Amaranthaceae formed three subclades:
Amaranthoideae (Amaranthus hypochondriacus) were the
most basal and sister to the remaining five subfamilies;
Salicornioideae, Suaedoideae, and Salsoloideae formed a clade;
and Betoideae (Beta vulgaris) was sister to Chenopodioideae.
Within Chenopodioideae, the sister relationship between S.
oleracea and Chenopodium (C. quinoa and C. album) was highly
supported (bootstrap support= 100).

DISCUSSION

Comparative Analysis of the Chenopodium

Chloroplast Genome
The complete cp genome sequences provide valuable information
in plant phylogenies due to their highly conserved genome
structure and higher evolutionary rate as compared to that of the
mitochondrial genome (Chaney et al., 2016). Although, the cp
genome has a nearly collinear gene order in most land plants, the
changes in the genome such as sequence inversion (Cho et al.,
2015), gene loss (Fu et al., 2016), and expansion at the borders
of the LSC, SSC, and IR regions (Choi et al., 2016) occur in the
course of evolution. We found a 3.1 kb inversion in the rbcL to
trnV region of the Chenopodium cp genome when its sequences
were compared to the sequences of S. oleracea; this inversion
may have been facilitated by tRNA activity (Walker et al., 2014)
or by high G + C content (Fullerton et al., 2001). The flanking
region of the inversion contained a tRNA gene, including intron
sequences with similar G + C content (37.98%), indicating that
the 3.1 kb inversion may be promoted by the presence of the
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FIGURE 2 | Comparison of the borders of the large single copy (LSC), small single copy (SSC), and inverted repeat (IR) regions of the chloroplast genome between

two Chenopodium species. a, Chenopodium album; b, C. quinoa.

FIGURE 3 | Comparison of the nucleotide diversity (Pi) values between Chenopodium quinoa and C. album.

tRNA. The border regions between two IR regions and the SSC
region have contributed to genome size variation by expansion
or contraction among land plants (Cho and Park, 2016; Hu et al.,
2016; Ni et al., 2016). Although, the genome size differs between
C. album and C. quinoa, the results of the present study revealed
that the junction areas were highly conserved.

Repeat sequences such as TRs and SSRs play an important
role in the rearrangement and stabilization of cp genome
sequences (Vieira et al., 2014) and the copy number variation
in different species, even in the same species (Kim et al., 2015),
which characteristics render them suitable molecular markers for
authentication (Cho et al., 2015, 2016) and phylogenetic analysis
(Yang et al., 2013; Williams et al., 2016). The occurrence of the
repeats is more prevalent in the intergenic sequence than it is
in the CDS, which was also confirmed in this study (Table 2;

Table S7). TRs and SSRs are possibly related to cp genome size
variation and divergence because of the recombination (Ogihara
et al., 1988; Marshall et al., 2001). In this study, the SSRs
and TRs were prevalent in the LSC region and contributed
to 68 bp longer genome of C. album compared to that of
C. quinoa.

Divergence Region of the Chenopodium

Chloroplast Genome
In previous molecular phylogenetic studies, Chenopodium
formed a polyphyletic group and phylogenetic relationships of
some of the taxa were unclear (Kadereit et al., 2003, 2010;
Fuentes-Bazan et al., 2012b). These studies were based on the
ITS sequences of the nuclear ribosomal DNA and trnL-trnF,
matK-trnK, atpB, atpB-rbcL, and rbcL sequences of the cp
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TABLE 2 | Variations in tandem repeat number of chloroplast genome sequences between Chenopodium quinoa and C. album.

Tandem

repeat

Positionz Repeat unit

length (bp)

Repeat units sequences Repeat numbers of

C. quinoa/C. album

Regiony Remark

TR1 IGS (atpH-atpI) 13 ATAGAATATCTTG 4/4 LSC

TR2 IGS (trnE-trnT ) 18 ATTAATAATTAATCGAAT 3/4 LSC

TR3 IGS (rps12-petB) 12 TTTTTATCCCCT 0/2 LSC

TR4 IGS (petB-petD) 17 AATTTTATATTTAGTTA 2/2 LSC

TR5 IGS (rpl2-trnI) 24 AGTTCGAGTTTCAATAAGAATGCT 2/2 IR

TR6 IGS (rpl2-trnI) 51 ATGAGTTCGAGTTTCAATAAGAATGCTAGTTCTTACTGTTCATA

TGTTATG

2/2 IR

TR7 G (ycf2) 21 TTTGTCCAAGTCACTTCTCTT 4/4 IR

TR8 G (ycf2) 18 TATTGATGCTAGTGACGA 4/5 IR

TR9 IGS (rps12-trnV ) 18 TTTTCTATTAGATTAGTA 2/2 IR

TR10 G (trnI-GAU) 66 GCAATTTTGCAAAAGGATCTTCAAATTCTTTCTGGAGGAC

TGCAAATCCTTTCTTAGGAAGAACTT

1/2 IR Indel_QA_02

TR11 G (trnI-GAU) 95 AAATTCTTTCTGGAGGACTGAAAATCCTTTCTTAGGAAGAACTT

GCAATTTTTTCTCTAGACTCGAAATGGGAGCAAGTTTGAAA

AAGGATCTTC

2/2 IR

TR12 IGS (rrn4.5-rrn5) 32 CATTGGTCAACTCTTTGACAACACGAAAAAAC 2/2 IR

TR13 IGS (rrn5-rrn23) 32 TGGTTTTTTCATGTTGTCAAAGAATTGAACAA 2/0 IR

TR14 G (ndhF ) 21 AATAAAAACCTAAAATCTCCT 2/2 SSC

TR15 IGS (ndhF-rpl32) 24 TAATGAAAAAAATAAATTTATTAT 2/2 SSC

TR16 G (ycf1) 21 TTTTGATTATTG 2/2 SSC

z IGS, Intergenic sequence; G, Genic sequence.
yLSC, Large Single Copy; IR, Inverted repeat; SSC, Small single copy.

FIGURE 4 | Schematic diagram of the alignment of the Chenopodium quinoa (Q) and C. album (A) trnI-GAU gene sequences. Tandem repeats, 95 and 66 bp long,

are designated with a rectangle and a triangle, respectively. Tandem repeat motives and copy numbers are shown in Table S5. InDel_QA_02 primers (Table S6) that

amplify the 66 bp tandem repeat region are shown as arrows. M, 100 bp DNA ladder; Q, C. quinoa; A, C. album.
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FIGURE 5 | Frequency of simple sequence repeats (SSRs) in the chloroplast genome of two Chenopodium species.

FIGURE 6 | PCR amplification of Chenopodium quinoa germplasm and seven Chenopodium species using InDel markers. (A) InDel_QA_01; (B) InDel_QA_02. Details

of the germplasm list are shown in Table S1. 1–8, Chenopodium quinoa; 9, C. album; 10, C. koraiense; 11, C. glaucum; 12, C. ficifolium; 13, C. hybridum; 14,

C. pumilio.

genome. In the present study, the nucleotide diversity of the cp
regions was relatively low (trnL-trnF, 0.01918; matK, 0.00982;
trnK-UUU intron, 0.01359; atpB, 0.00601; atpB-rbcL, 0.00689;
rbcL, 0.00493). Based on our study, high sequence divergence was
detected in the following regions: psbK-psbI, psbI-trnS, ycf3-trnS,
trnS-rps4, rps4-trnT, trnT-trnL, trnM-trnV, cemA-petA, psbJ-
psbL, trnW-trnP, psaJ-rpl33, petD-rpoA, rpl16-rps3, rpl22-rps19,
rrn23-rrn4.5, ccsA-ndhD, and rpl32-trnL (Figure 3; Table S4).
Therefore, these regions are considered useful markers for
elucidating the phylogenetic relationship within Chenopodium.
However, when selecting suitable molecular markers, the length
of amplified regions must also be considered. The length of
nine regions, psbI-trnS, trnM-trnV, psbJ-psbL, trnW-trnP, petD-
rpoA, rpl16-rps3, rpl22-rps19, rrn23-rrn4.5, and ccsA-ndhD, is
considered relatively short and insufficient to reproduce the

nucleotide variation in various taxa. In contrast, the remaining
eight regions (psbK-psbI, ycf3-trnS, trnS-rps4, rps4-trnT, trnT-
trnL, cemA-petA, psaJ-rpl33, and rpl32-trnL) are judged suitable
for phylogenetic analysis of Chenopodium and helpful to evaluate
unresolved phylogenetic relationships.

Intron Sequence Variation in Chenopodium

Species
Introns in cp genomes are generally conserved, but structural
variations such as sequence loss or variations (SNP), have been
reported in several species. Structural intron variation is known
to occur in ATP synthetase (atpF), RNA polymerase (rpoC2), and
ribosomal proteins (rpl2, rps12, and rps16; Daniell et al., 2016;
He et al., 2017). Introns have important roles in gene expression
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regulation by alternative splicing or stabilization of transcripts
and they are gained or lost over evolutionary time (Daniell
et al., 2008). Intron variations are also often implemented in
phylogenetic and evolutionary analyses. In the present study,
we identified 10 proteins and 6 tRNAs with introns in cp
genes (Table S3). Although intron sequence variation such as
transversion, transition, and small InDels (3–10 bp) have been
reported in proteins (Cho et al., 2016; Devi and Chrungoo, 2017),
the present study is the first report of the variations in TR
copy number in tRNA introns. The changes in highly conserved
cp genes have been used to resolve phylogenetic relationships
in angiosperm families. To test whether our findings can
be applied in phylogenetic analysis, we investigate the copy

TABLE 3 | Copy number variation of tandem repeats and intron size of trnI-GAU

gene in chloroplast genome sequences of the seven Chenopodium taxa with

out-group (Spinacia olreacea).

Species Copy number of

tandem repeat (TR10z)

Intron size (bp)

Chenopodium quinoa 1 1,043

Chenopodium album 2 1,109

Chenopodium koraiense 2 1,109

Chenopodium glaucum 0 1,030

Chenopodium ficifolium 1 1,043

Chenopodium hybridum 1 1,043

Chenopodium pumilio 1 1,043

Spinacia oleracea 0 805

zTR10 information is shown in Table 2.

number variation of the trnI-GAU intron in other Chenopodium
species in Korea. All the seven Chenopodium species, except
C. glaucum, contained the same TR motifs and copy number
variations. These results implied that trnI-GAU intron sequences
provide valuable information about Chenopodium phylogenetic
relationships. Additional studies should examine whether the
copy number variation is present in other Chenopodium species
and explore other properties such as transcript stability of the cp
genome among different Chenopodium species.

Comparison of Phylogenetic Relationships
with Previous Studies
The results of the phylogenetic analysis using 59 protein-coding
genes of 24 Core Caryophyllales species and one outgroup
resulted in a well-resolved topology in which the monophyly
of the tested families and subfamilies was supported. However,
our results showed a slight difference from the APG IV
system (The Angiosperm Phylogeny Group, 2016). Specifically,
Aizoaceae were placed in the most basal clade and Cactaceae
formed a sister clade to Caryophyllaceae and Amaranthaceae.
In contrast, Caryophyllaceae and Amaranthaceae are in a
clade sister to other two families in the APG IV system. In
addition, the phylogenetic relationships among Amaranthaceae
species in the present study did not corroborate the results of
the previous study based on rbcL sequences (Kadereit et al.,
2010): (1) Amaranthoideae formed a basal clade within the
Amaranthaceae; (2) Betoideae were sister to Chenopodioideae,
but they formed an unresolved paraphyletic clade in the
previous study; and (3) Chenopodioideae were more closely
related to Betoideae, instead to Salsoloideae, Suaedoideae, and

FIGURE 7 | Phylogenetic tree reconstruction and copy number variation of tandem repeats in eight taxa using maximum likelihood analysis based on trnI-GAU

sequences. Bootstrap values >50% are given at the nodes. The triangle indicates tandem repeat (66 bp) and sequence information for each taxon is shown in

Figure S3. The rectangle represents tandem repeats (95 bp) in the trnI-GAU gene.
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FIGURE 8 | Phylogenetic tree reconstruction of 25 taxa using maximum likelihood based on 59 protein-coding genes. Bootstrap values >50% are given at the nodes.

Salicornioideae reported in the previous study. We believe
that these differences are due to increased resolution resulting
from the addition of more gene regions. However, the
present study analyzed a limited number of species. Therefore,
further studies should include various species to further
elucidate the phylogenetic relationships of Caryophyllales and
Amaranthaceae.
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Figure S1 | BLASTZ analysis of Chenopodium quinoa chloroplast genome against

Spinacia oleracea (NC_002202) chloroplast sequences. The inversion region is

delimited with the red rectangular line. Blue and yellow bars indicate contigs

matching the reference sequence in forward and reverse orientation, respectively.

Figure S2 | Comparison of the chloroplast genomes between Chenopodium

quinoa and C. album using mVISTA LAGAN program. Blue block: conserved

gene; sky blue: tRNA and rRNA; red block: intergenic region. White regions

indicate sequence divergence between two chloroplast sequences.

Figure S3 | Dot-plot analysis and sequence comparison of InDel_QA_02 region

between Chenopodium quinoa and C. album. The Indel_QA_02 region is shown in

Figure 4. Tandem repeats are underlined. C. album has two tandem repeat units,

whereas C. quinoa has one unit.

Figure S4 | ClustalW alignment of trnI-GAU gene intron sequences of the

chloroplast genome from seven Chenopodium species.
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