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Qin Chen*

State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China

Late blight, caused by the pathogen Phytophthora infestans, is one of the most
devastating diseases of potato. Here, we describe a new single dominant resistance
gene, Rpi2, from the Mexican diploid wild species Solanum pinnatisectum that confers
high level and broad spectrum resistance to late blight. The Rpi2 locus confers full
resistance to complex isolates of P. infestans, for which race specificity has not yet
been demonstrated. This new gene, flanked by the RFLP-derived marker SpT1756 and
AFLP-derived marker SpAFLP2 with a minimal genetic distance of 0.8 cM, was mapped
to potato chromosome 7. Using the genomic sequence data of potato, we estimated
that the physical distance of the nearest marker to the resistance gene was about
27 kb. The map location and other evidence indicated that this resistance locus was
different from the previously reported resistance locus Rpi1 on the same chromosome
from S. pinnatisectum. The presence of other reported resistance genes in the target
region, such as Gro1-4, I-3, and three NBS-LLR like genes, on a homologous tomato
genome segment indicates the Rpi2-related region is a hotspot for resistance genes.
Comparative sequence analysis showed that the order of nine markers mapped to the
Rpi2 genetic map was highly conserved on tomato chromosome 7; however, some
rearrangements were observed in the potato genome sequence. Additional markers
and potential resistance genes will promote accurate location of the site of Rpi2 and
help breeders to introduce this resistance gene into different cultivars by marker-aided
selection.

Keywords: potato, late blight, resistance gene, genetic map, collinearity analysis

INTRODUCTION

Late blight caused by Phytophthora infestans is one of the most devastating diseases of potato
worldwide. Under favorable conditions for the pathogen, complete defoliation of a potato plant
can occur in just a few weeks. The development and deployment of cultivars with genetic resistance
is the most economical and eco-friendly approach for reducing yield losses due to late blight.
Wild potato species are a valuable genetic pool for finding late blight resistant genes. The first
paradigm came from the hexaploid Mexican wild species Solanum demissum. Eleven resistance
(R) genes, named R1 to R11, were identified in this wild species and introduced into S. tuberosum

Frontiers in Plant Science | www.frontiersin.org 1 October 2017 | Volume 8 | Article 1729

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
https://doi.org/10.3389/fpls.2017.01729
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2017.01729
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2017.01729&domain=pdf&date_stamp=2017-10-04
http://journal.frontiersin.org/article/10.3389/fpls.2017.01729/abstract
http://loop.frontiersin.org/people/458549/overview
http://loop.frontiersin.org/people/320035/overview
http://loop.frontiersin.org/people/320056/overview
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-01729 September 30, 2017 Time: 16:0 # 2

Yang et al. Resistance Gene against Late Blight

(Black, 1951; Black et al., 1953; Malcolmson and Black, 1966).
However, these R genes conferred race-specific resistance and
those that were introgressed into potato varieties were quickly
overcome by the pathogen because of its high genetic variability
(Wastie, 1991). Hence, new sources of resistance are required,
especially those conferring race non-specific resistance to late
blight.

The co-evolution of the pathogen and wild species in Central
America indicated the possibility of finding resistance in species
from Mexico such as S. bulbocastanum, S. pinnatisectum, and
S. trifidum. A set of late blight resistance genes has already been
identified in these species. Notably, in S. bulbocastanum, four
different loci with broad spectrum late blight resistance have been
identified, namely Rpi-Blb1/RB (Helgeson et al., 1998), Rpi-blb2
(van der Vossen et al., 2005), Rpi-blb3 (Park et al., 2005a), and
Rpi-apbt (Park et al., 2005b). Recently, several other wild Solanum
species have been reported as potential sources of resistance, such
as S. mochiquense (Jones et al., 2013), S. chacoense (Vossen et al.,
2011), and S. × edinense (De Vetten et al., 2014). Sustainable
breeding efforts using these resistance sources have resulted in
several new potato cultivars (Jo et al., 2014; Haesaert et al., 2015).

Extensive investigations have shown that the molecular basis
of R gene resistance is a gene family characterized by two
domains, the nucleotide binding site (NBS) and leucine-rich
repeat (LRR) domains (Martin et al., 2003). The conserved
nature of the motifs within these domains has been exploited
to search for new resistance gene-like sequences or resistance
gene analogs (RGAs) using a homology-dependent PCR-based
approach (Kanazin et al., 1996; Leister et al., 1996; Chen et al.,
1998; Hayes and Maroof, 2000). Many RGAs have been mapped
to genomic positions containing known resistance specificities,
and RGAs have been shown to be derived from known
resistance genes (Collins et al., 1999). Thus, RGAs represent
candidates for functional resistance genes. NBS-LRR genes can
generally be divided into two distinct groups: one encoding an
N-terminal domain with Toll/Interleukin-1 Receptor homology
(TIR-NBS-LRR) and the other with an N-terminal coiled-coil
motif (CC-NBS-LRR) (Martin et al., 2003). So far, over 20
late blight resistance genes, such as R1, R2, R3a, R3b, RB,
Rpi-blb2, Rpi-blb3, Rpi-abpt, Rpi-sto1, Rpi-pta1, Rpi-vnt1.1, and
Rpi-vnt1.3, which all belong to the CC-NBS-LRR class, have
been cloned (Ballvora et al., 2002; Song et al., 2003; van der
Vossen et al., 2003; Huang et al., 2005; Vleeshouwers et al.,
2008; Foster et al., 2009; Lokossou et al., 2009; Pel et al., 2009).
The publishing of the potato genome sequence derived from
the S. tuberosum Group Phureja clone DM1-3 516 R44 (DM)
accelerated the identification of 438 NB-LRR type genes from
∼39,000 potato gene models, and will increase the velocity of
functional NB-LRR gene cloning from Solanum species (Jupe
et al., 2012).

High level and broad spectrum late blight resistance has
also been observed in the Mexican diploid wild species
S. pinnatisectum (Menke et al., 1996; Chen et al., 2003).
Compared with S. bulbocastanum, S. pinnatisectum has received
less attention in late blight research. Kuhl et al. (2001) screened
13 accessions of S. pinnatisectum and found that most were
resistant to late blight. Chen et al. (2003) revaluated the late

blight resistance of S. pinnatisectum (PI275233) and found that
it showed broad-spectrum resistance against various known
P. infestans strains including the R9 isolate. They also found
different levels of resistance among different accessions of
S. pinnatisectum, suggesting the presence of different resistance
genes. To date, only Kuhl et al. (2001) have reported the genetic
analysis and identification of a single dominant resistance locus
in S. pinnatisectum (PI253124), Rpi1, which was mapped to
chromosome 7 in an interval of 14.6 cM between two RFLP
markers, CP56 and TG20A.

The hybridization barrier between S. pinnatisectum and
cultivated potatoes had been overcome by the combination of
the Sli gene and chromosome-doubling techniques (Sanetomo
et al., 2014). Therefore, the wild species S. pinnnatisectum
should receive more attention as a resource for potato late
blight resistance breeding. The objective of this study was
to characterize and map a late blight resistance gene from
S. pinnatisectum (PI275233) through genetic linkage analysis and
collinearity analysis. This gene may be useful for developing
potato cultivars with broad spectrum resistance.

MATERIALS AND METHODS

Plant Materials
A backcross population was developed by crossing the susceptible
diploid S. cardiophyllum (PI186548) as the male parent with the
resistant diploid S. pinnatisectum (PI275233). Several clones of a
single resistant F1 individual, propagated through in vitro culture,
were then backcrossed with the susceptible parent to generate a
backcross mapping population.

The F1 and BC1 populations were maintained vegetatively
from tubers following their first propagation from true seed.
A total of 931 clones from the backcross population were
selected to analyze the genetics of resistance to late blight using
detached leaf methods at the first clonal generation (Chen et al.,
2003).

Detached Leaf Assay for Evaluating Late
Blight Resistance
An inoculum was prepared from the P1801C.16 strain of
P. infestans (US-8/A2 mating type) and diluted to a final
concentration of 30,000 sporangia per ml. Inoculation and the
detached leaf assay were performed according to Chen et al.
(2003). Three compound leaves were excised for the late blight
test, including the third to fifth leaves from the top on each plant’s
main branch. Each compound leaf with five leaflets was inserted
into prepared moist vermiculite in a plastic tray. The inoculum
was sprayed onto the surface of all leaflets. Trays with inoculated
compound leaves were incubated in a growth cabinet under an
18/6 h and 20/18◦C day/night regime for about 15 days. The
susceptible parent was inoculated as a susceptible check. Plant
resistance was evaluated after 8 and 15 days. Disease severity
was estimated using mean disease severity values (DSVs) of
three compound leaves based on the percentage of leaf area with
symptoms of late blight. Severity values were scored using a scale
of 0–5 where 0 = no disease to <3%; 1 = 3–24%; 2 = 25–49%;
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3 = 50–74%; 4 = 75–94%; and 5 = 95–100% infection. Plants
with a DSV of 0 were classified as resistant and those with DSVs
of 2–5 were classified as susceptible.

AFLP Analysis
DNA was extracted from 100 mg of young leaves for each
potato plant using a Genomic DNA Purification Kit (Promega,
Fitchburg, WI, United States). Bulked segregant analysis (BSA)
was used to screen for molecular markers associated with late
blight resistance (Michelmore et al., 1991). Two susceptible bulks
were constructed from 10 highly susceptible individuals and a
resistant bulk was developed with equal amounts of DNA from
10 highly resistant individuals among the BC1 population. DNA
markers were screened for the two susceptible bulks, the resistant
bulk and the resistant parent plant.

AFLP analysis was performed as described by Vos et al.
(1995) using EcoRI and MseI as rare- and frequent-cutter
enzymes, respectively. Genomic DNA digestion and ligation
were conducted using an AFLP Core Reagent Kit (Invitrogen,
Carlsbad, CA, United States) according to the instructions.
A pre-amplification was carried out with 1-bp extension primer
combinations (EcoRI+A/MseI+C and EcoRI+A/MseI+A) and
the PCR products were diluted at a ratio of 1:30 with TE buffer.
Selective amplification using primer combinations of EcoRI+3
and MseI+3 was conducted and the products were separated
on a 6% PAGE sequencing gel run at 100 W for 2.5 h after
pre-electrophoresis for 30 min. The gel was stained by the silver-
staining method (Bassam et al., 1991).

DNA Sequencing and Analysis
AFLP fragments were excised from the dried silver-stained
polyacrylamide gel and placed into microfuge tubes containing
30 µl distilled water. The samples were boiled for 10 min and
centrifuged, and then 3 µl of the supernatant was used for PCR
under the same conditions as those used for AFLP analysis.
The PCR products were then inserted into the pGEM-T easy
vector (Promega, Fitchburg, WI, United States) and sequenced.
A search for sequences homologous to the AFLP fragments was
conducted using the GenBank website1, and Clustal W22 was
used to compare the sequence homology.

RGA Markers
The digestion of genome DNA were performed by two restriction
enzymes, EcoRI and MseI, according to the instructions of AFLP
Core Reagent Kit. The primer combination EcoRI/MseI
was used to generate pre-amplification products. Then, the
second amplification step was carried out with five primer
combinations. The primer combinations were respectively
combined by five P-loop based RGAs primers, S1 (5′-G
GTGGGGTTGGGAAGACAACG-3′), S2 (5′-GGIGGIGTIGGI
AAIACIAC-3′), AS1 (5′-CAACGCTAGTGGCAATCC-3′), AS2
(5′-IAAIGCIAGIGGIAAICC-3′) and AS3 (5′-IAGIGCIAGI
GGIAGICC-3′) (Leister et al., 1996), with the EcoRI AFLP
primer. PCR conditions were somewhat different from the

1https://www.ncbi.nlm.nih.gov/genbank/
2http://www.ebi.ac.uk/Tools/msa/clustalw2/

standard AFLP procedure; 30 s DNA denaturation at 94◦C, 30 s
primer annealing at 55◦C and a 1 min elongation step at 72◦C
(35 cycles). Prior to the cycling, the template DNA was denatured
for 1 min at 94◦C and the PCR was finalized by applying an extra
5 min elongation step at 72◦C. The procedures for running the
gel and fragment extraction were the same as described for AFLP
section.

Locus-Specific Marker Development
Locus-specific markers on chromosome 7 of potato and tomato3

were selected to develop PCR-based markers. Generally, the
RFLP probe sequences were used as queries to search ESTs using
the BLASTn program (Altschul et al., 1997). Then, the ESTs
and RFLP probes were assembled with a criterion of more than
95% identity over a stretch of 40 nucleotides using SeqMan
II (LASERGENE, DNASTAR, Madison, WI, United States).
Primers were designed according to the assembled sequences
guided by intron finder4 to amplify regions spanning introns
and avoid placing primers in exon–intron boundaries. The
PCR products were separated after digestion with one of the
4-bp cutter restriction enzymes TaqI, Trul1, Msp1, Rsa1, and
Tail1.

The PCR amplification reactions were conducted in 20 µl
reaction mixtures containing 10 mM TRIS-HCl, pH 8.3, 50 mM
KCl, 2 mM MgCl2, 100 µM of each dNTP, 200 nM primers,
approximately 20 ng template DNA and 1 Unit Taq DNA
polymerase. The cycling program consisted of an initial 3 min
denaturation step at 94◦C, followed by 35 cycles of 94◦C (30 s),
55◦C (30 s), and 72◦C (50 s), and a final 5 min extension step at
72◦C. The PCR products were size-separated on a 2% agarose gel,
stained with ethidium bromide, and visualized on a Gel Imaging
system (Bio-Rad, San Diego, CA, United States).

Linkage Analysis
Linkage analysis was performed using the software package
MAPMAKER V3.0 (Lander et al., 1987). Markers and their
corresponding distances (cM) were included in the framework
map only if the LOD value for the ripple was >3. The Kosambi
mapping function was employed to convert recombination
frequencies to map distances in cM (Kosambi, 1943). Collinearity
analysis results were visualized using Circos-0.67 (Krzywinski
et al., 2009).

RESULTS

The BC1 generation produced 440 resistant plants and 491
susceptible plants. The segregation ratio fit a monogenic
Mendelian inheritance model of 1:1 (resistant:susceptible) in the
population (χ2

= 2.794, P = 0.095). This result suggested that
a single dominant locus controlled the late blight resistance in
S. pinnatisectum (PI275233). Subsequently, 164 susceptible and
101 resistant plants with extreme phenotypes were chosen for
mapping.

3https://solgenomics.net/cview/index.pl
4http://ftp.sgn.cornell.edu/tools/intron_detection/find_introns.pl
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AFLP and AFLP-Derived Markers
In an attempt to find AFLP markers linked to the resistance
locus, 324 EcoRI+3/MseI+3 (196 E-A/M-C and 128 E-A/M-A)
AFLP primer combinations were screened in the bulk material
using a BSA strategy. Ten putative AFLP fragments were
identified and segregation analysis in the BC1 population
confirmed that seven of them were associated with the
resistance locus. The two closest markers, EAGCMCGA-450
and EACAMAGG-330, were determined to be linked
to the resistance locus at distances of 1.2 and 0.8 cM,
respectively.

These two AFLP fragments were cloned and sequenced.
BLAST analysis showed that the sequence of EAACMATC-330
had no similarity to any known sequence in GenBank, whereas
EAGCMCGA-450 hit four potato ESTs (BQ509088, BG600948,
DV623421, DV623416). These four ESTs and two other potato
ESTs were assembled into a 1720-bp contig with a complete
coding region that showed high similarity to the Arabidopsis
gene GLUCAN SYNTHASE-like 7 (1e-139) in Blastx5) analysis.
Based on this assembled sequence, a CAPS marker of
EAGCMCGA-450, SpAFLP1, was developed (Figures 1A,D). In
addition, EAACMATC-330 was converted into the CAPS marker
SpAFLP2 (Figures 1B,E).

Integration of Rpi2 into the SGN Map
The 1720-bp contig of EAGCMCGA-450 was used to search
the high-throughput genomic sequence (HTGS) database with
BLASTn6 and a tomato BAC (C07HBa0116M01) was identified
(e-112). Annotation of this BAC (C07HBa0116M01) revealed a
partial VPS16-like gene in the 3′ terminus. This partial gene
sequence was used as a query to search the EST database with
BLASTn and 23 matching ESTs were identified. All 23 ESTs were
assembled to a 2.4-kb contig, named cEST1. BLAST analysis
showed that this sequence had homology to an RFLP marker,
TG572 (e-120), which was mapped to tomato chromosome 7.
Subsequently, a CAPS maker named SpTG572 was developed
according to this sequence and was shown to co-segregate with
SpAFLP1 (Figure 2).

The 5′ terminal sequence of BAC C07HBa0116M01 was used
to build a 2-kb contig with 10 ESTs, named cEST2. This contig
hit a potato BAC end sequence, POTDQ81TR. Using the other
end sequence POTDQ81TF as a query, we identified a tomato
BAC, C07HBa0018L21. A PCR marker, SpAL21, was developed
based on the left end sequence of BAC C07HBa0018L21 and
recombination was found between this marker and SpTG572
(Figure 2).

TG572 was near I-3, a gene for fusarium wilt resistance from
the wild tomato species Lycopersicon pennellii, with a genetic
distance less than 0.3 cM (Hemming et al., 2004). Two additional
markers closely linked to I-3, CT226, and Got2, were converted to
SCAR markers in our mapping population, and named SpCT226
and SpGot2, respectively. Segregation analysis indicated SpCT226

5https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastx&PAGE_TYPE=
BlastSearch&LINK_LOC=blasthome
6https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=
BlastSearch&LINK_LOC=blasthome

and SpGot2 were proximal and distal with genetic distances of 2.8
and 3.2 cM, respectively (Figure 3B).

The flanking markers TG572, T0810, and T1756 in the SGN
map7 were developed into PCR-based markers and tested in
the mapping population. The results delimited the resistance
locus to the interval between StAFLP2 and SpT1756 on potato
chromosome 7 (Figure 3B).

An RGA Flanks the Resistance Locus
The RGA fingerprinting technique was used to identify
functionally relevant markers linked to the resistance for late
blight. An RGA fragment, RGA1, amplified by the AS2 primer
(Leister et al., 1996) in combination with the E00 AFLP primer,
did not exist in the two susceptible bulks but appeared in the
resistant bulk and the resistant parent (Figure 1C). Sequence
analysis of this 320-bp long fragment revealed homology to an
RGA sequence previously mapped to the long arm of potato
chromosome 7, Gro1-5 (Leister et al., 1996). Therefore, this
fragment was named SpGrol-1. A PCR marker was developed and
segregation analysis indicated that SpGrol-1 was 2.8 cM from the
resistance locus (Figure 1F).

Genetic Relationship between Rpi1 and
Rpi2
Previously, the late blight resistant locus Rpi1, also derived from
S. pinnatisectum, was assigned to chromosome 7 flanked by
two RFLP markers, TG20 and CP56 (Kuhl et al., 2001). To
compare the map positions of Rpi1 and our target resistance
locus, the RFLP markers TG20, CP56 and their interval marker
GP1278 were converted into PCR-based markers. The marker
information is listed in Supplementary Table S1. Segregation
analysis of these converted PCR-based markers showed a link
between the late blight resistance loci. The genetic distance
between CP56 and TG20 was 15.1 cM, similar to the map of
Kuhl et al. (2001) (14.6 cM). However, there was an obvious
difference in the genetic distance between the markers linked to
the resistance genes. CP56 and TG20 were 4.0 and 11.1 cM away
from our target gene, respectively, which was different to the
genetic distances of Rpi1 to these two markers (9.4 and 5.2 cM,
respectively) (Figures 3A,B). Therefore, our resistance gene was
called Rpi2.

Although the two resistance genes were derived from the
same species, they came from two different accessions; Rpi1 from
PI235214 and Rpi2 from PI 275233. To further identify genetic
differences between the accessions PI275233 and PI235214, we
screened all of the markers and found that the two accessions had
different genotypes at two loci, SpAFLP2 and SpCT226.

Collinearity Analysis of Target
Chromosome Regions between Potato
and Tomato
The molecular marker sequences were used as queries to
search for homologous loci in the genome sequence databases

7https://solgenomics.net/cview/index.pl
8https://solgenomics.net/marker/SGN-M16437/details
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FIGURE 1 | AFLP and RGA markers and their conversion into PCR-based markers. (A) Marker EAGC/MCGA-450 and (D) its SCAR marker SpAFLP1. (B) Marker
EAAC/MATC-330 and (E) its SCAR marker SpAFLP2. (C) The RGA1 marker and (F) its SCAR marker SpGrol-1. Bs1, Susceptible bulk 1; Bs2, susceptible bulk 2;
Br, resistant bulk; Ps, susceptible parent; Pr, resistant parent.

FIGURE 2 | A contig built near the Rpi2 locus. Three BACs (C07HBa0018L21, POTDQ81, and C07HBa0116M01) and two EST assembles (cEST1 and cEST2)
overlapped and were assembled into a contig. Two markers located at either end of the contig were developed, SpAL21 and SpTG572. Ps, Susceptible parent; Pr,
resistant parent.

FIGURE 3 | Genetic maps of the late blight resistance gene Rpi2 and their correspondence to comparative genomic maps of DM and tomato. (A) A genetic map of
Rpi1 established by Kuhl et al. (2001). (B) A genetic map of Rpi2 established in this study. (C) Homologous markers on Solanum tuberosum group Phureja
DM1-3(DM) chromosome 7. (D) Annotated genes on DM chromosome 7 between StAFLP1 and StAL21. (E) Annotated genes on Solanum lycopersicum (SL2.50)
chromosome 7 between SlAFLP1 and SlAL21. (F) Homologous markers on S. lycopersicum chromosome 7. Collinear loci are indicated by black lines.
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FIGURE 4 | Collinearity analysis of target chromosome regions between potato and tomato. (A) The chromosome region between SlT1756 and SlTG572, which
contains 10 annotated genes in the tomato genome. (B) Collinearity analysis of Rpi2-related chromosome regions between potato (DM v4.03) and tomato (SL2.50).
(C) A 50-kb gap between StT1756 and StAFLP2 in the potato genome.

of potato and tomato. The majority of markers linked to
Rpi2 showed homology to STChr7 and SLChr7, and were
included in two orthologous genomic regions spanning 2.9
and 2.4 Mb, respectively (Figure 4B). Specifically, 9 of the 11
molecular markers mapped in the Rpi2 genetic linkage map
generated hits to 16 homologous loci in STChr7 and 10 loci in
SLChr7 (Figures 3C,F). Because cloning and sequencing failed,
homologous loci of SpGot2-1 and SpTG20 were not found.

Comparative genomic analysis revealed that 14 of the 17
annotated genes in potato between StAFLP1 and StAL21 had
similarity to corresponding regions in tomato (Figures 3D,E),
again revealing high levels of collinearity in the Rpi2 region
between potato and tomato. Furthermore, the order of these
similar genes was highly conserved but reversed. Segmental
inversion, which was a reasonable explanation for the reverse
order of the conserved genes, was observed on STChr7 between
StAFLP1 and StAL21 compared with the Rpi2 linkage map and
SLChr7.

Scanning the Spud DB Genome Browser for Potato (Solanum
tuberosum group Phureja DM1-3) PGSC v4.03 Pseudomolecules9

suggested the physical distance between StAFLP2 and StT1756
was about 84 kbp. Consequently, we estimated that the physical
distance between Rpi2 and SpAFLP2 was about 28 kbp by
referring to their genetic distance. Unfortunately, there was
a 50-kbp gap in this potato genome region that potentially
contained the homologous gene of Rpi2 (Figure 4C). However,
the homologous segment in the tomato genome was assembled
completely, in which 3 of 10 loci Table 1 were annotated
as NBS-LRR class disease resistance proteins (Accession nos.
Solyc07g056180.1, Solyc07g056190.2, and Solyc07g056200.2)
(Figure 4A).

9http://solanaceae.plantbiology.msu.edu/cgi-bin/gbrowse/potato/

DISCUSSION

The short-lived R genes from S. demissum prompted potato
breeders and geneticists to look for resistance genes in other wild
Solanum species (Van Soest et al., 1984; Colon and Budding,
1988; Douches et al., 2001). High-level resistance has been found
in several diploid Mexican species, including S. bulbocastanum
and S. pinnatisectum (Helgeson et al., 1998; Kuhl et al., 2001;
Chen et al., 2003). These species may have adapted to coexist
with highly complex and dynamic P. infestans populations
(Niederhauser, 1953; Niederhauser et al., 1954). Genetic mapping
studies indicated that the resistance in both S. bulbocastanum
and S. pinnatisectum might be conferred by a single gene or
a few dominant genes (Naess et al., 2000; Kuhl et al., 2001).
Here, we identified a single dominant late blight resistance
gene from the wild potato species S. pinnatisectum (PI 275233)
and mapped it to an interval of 2.4 cM on the long arm of
chromosome 7.

A Hotspot of Resistance Genes on
Potato Chromosome 7
Accumulated evidence has suggested that resistance loci are
not distributed randomly along chromosomes. Several hotspots
for resistance genes have been described in Solanum species.
For instance, at least five R genes against diverse pathogens
have been mapped to the GP21–GP179 interval on chromosome
5 in different genetic backgrounds; Gpa and Grp1 conferring
resistance to potato cyst nematodes (Kreike et al., 1994; van
der Voort et al., 1998), Nb and Rx2 conferring resistance to
potato virus X (Ritter et al., 1991; DeJong et al., 1997), and
R1 conferring resistance to P. infestans (Leonards-Schippers
et al., 1992). In the current study, we found that Rpi2 was
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TABLE 1 | Annotated genes in the tomato genome region between SlT1756 and SlTG572.

Name Location on SL2.50ch07 Description InterPro domain

Solyc07g056130.1 63988594..63988983 Unknown protein –

Solyc07g056140.2 63989209..63993821 Glucose-1-phosphate adenylyltransferase IPR011831

Solyc07g056150.2 63994885..63999176 Ras-related protein Rab-2-A IPR003579

Solyc07g056160.2 64018080..64022506 Cytochrome P450 –

Solyc07g056170.2 64023009..64028326 Subtilisin-like protease IPR015500

Solyc07g056180.1 64036615..64037860 NBS-LRR class disease resistance protein –

Solyc07g056190.2 64043548..64044315 NBS-LRR class disease resistance protein –

Solyc07g056200.2 64047159..64048119 NBS-LRR class disease resistance protein –

Solyc07g056210.2 64055352..64056480 Unknown protein –

Solyc07g056220.2 64063658..64074684 Vacuolar sorting-associated protein IPR016534

located in a major cluster on the long arm of chromosome 7
in which several R genes have been mapped, including Rpi1
conferring resistance to P. infestans, Gro1-4 conferring resistance
to Globodera rostochiensis, and I-3 conferring resistance to
Fusarium oxysporum (Bournival et al., 1989; Ballvora et al.,
1995; Kuhl et al., 2001; Paal et al., 2004; Ruggieri et al., 2014;
Catanzariti et al., 2015). Clearly, this region is another hotspot for
resistance genes, and can be expected to contain more resistance
genes.

Resistance loci regions are usually enriched in NBS-LRR
homologs. For instance, there are at least 13 TIR-NBS-LRR
sequences clustered across more than 400 kb in the locus
Gro1 (Paal et al., 2004) and one of them, Gro1-4, has been
shown to be responsible for a resistance trait. In this research,
we used the RGA profiling strategy to identify an RGA
fragment, SpGrol-1, linked to the resistance locus. Sequence
analysis showed that SpGrol-1 belonged to the TIR-NBS-LRR
family, and that the most similar sequence was Gro1-5, a
gene at the Gro1 locus. However, mapping analysis showed
this RGA was proximal to Rpi2 with a genetic distance of
2.8 cM.

Resistance gene analogs are generally clustered in the genome
(Meyers et al., 1998; Michelmore and Meyers, 1998). Clusters
of R genes can be tightly organized or spaced over several
megabases of sequence (Meyers et al., 1998; Noël et al., 1999).
We thought that similar Gro1-like sequences might be present
in our resistance locus. Hence, we designed a set of primers
according to an alignment of 13 Gro1 sequences and developed
three PCR markers. However, all of these markers co-localized to
SpGrol-1 (data not shown). This indicated that there was more
than one Gro1-like sequence and that the Rpi2 gene might not be
a Gro1-like gene.

A similar observation was also described for the resistance
gene I-3 from the wild tomato L. pennellii (Hemming et al.,
2004). I-3 co-segregated with RGA St332; however, RGA St332
was ruled out as a candidate gene for I-3 because it was
a single-copy pseudo gene in L. pennellii. I-3 was flanked
by two RFLP markers TG572 and CT226 in an interval of
0.6 cM. That Rpi2 and I-3 share the flanking markers CT226
and TG572 supports that these two genes are in a syntenic
region.

Comparative Sequence Analysis of the
Rpi2 Region
Comparative genomics between potato and tomato facilitated
the mapping and isolation of the late-blight R genes R3a and
Rpi-blb2 from potato in a previous study, as these genes were
mapped to regions of the potato genome that were syntenic to
previously cloned gene loci (I2 and Mi, respectively) in tomato
(Huang et al., 2005; van der Vossen et al., 2005). Recently, both
the potato and tomato genomes have been sequenced (Xu et al.,
2011; Sato et al., 2012). This sequence information should greatly
accelerate the cloning of the Rpi2 gene through comparative
genomics.

Comparing the homologous regions in the potato and
tomato genomes, the genetic linkage map of Rpi2 showed high
uniformity except that a chromosome inversion had occurred in
the sequenced DM genome (Figure 3). Although this inversion
may be a result of chromosomal variation during evolution,
incorrect sequencing or assembly could equally have led to the
observed recombination because short reads, a large amount
of repetitive sequence, the sequence GC composition and other
effects can impede uniform and complete sequencing coverage
along the genome (Maiti and Bouvagnet, 2001; van Hijum et al.,
2005; Aird et al., 2011; Schatz et al., 2012; Berlin et al., 2015).
The gap between SpAFLP2 and SpT1756 on StChr7 indicated
the accuracy of the assembly in the Rpi2-related region was
not sufficiently high. In other words, the fragment inversion
observed by comparative analysis was not sufficient evidence to
demonstrate chromosome inversion. Furthermore, the lack of
sequence information between the flanking markers prevented
us from obtaining candidate genes from the DM genome data.
Therefore, constructing a higher quality genome assembly for the
Rpi2-related region requires enhanced approaches.

At present, an effort to introgress disease resistance genes
from S. pinnatisectum into potato is being carried out
to develop resistant cultivars. Because of the ploidy level
barrier and endosperm balance number incompatibility, it is
difficult to transfer resistance traits from S. pinnatisectum to
cultivated potato. Fortunately, the hybridization barrier between
S. pinnatisectum and cultivated potatoes can be overcome by
embryo rescue, protoplast fusion, and chromosome-doubling
techniques (Chen et al., 2008; Sanetomo et al., 2014). Our
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molecular markers could help breeders to introduce this
resistance gene into different cultivars by marker-assisted
selection.
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