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With the commercialization and increasing availability of Unmanned Aerial Vehicles (UAVs)

multiple rotor copters have expanded rapidly in plant phenotyping studies with their

ability to provide clear, high resolution images. As such, the traditional bottleneck of

plant phenotyping has shifted from data collection to data processing. Fortunately,

the necessarily controlled and repetitive design of plant phenotyping allows for the

development of semi-automatic computer processing tools that may sufficiently reduce

the time spent in data extraction. Here we present a comparison of UAV and field

based high throughput plant phenotyping (HTPP) using the free, open-source image

analysis software FIJI (Fiji is just ImageJ) using RGB (conventional digital cameras),

multispectral and thermal aerial imagery in combination with a matching suite of ground

sensors in a study of two hybrids and one conventional barely variety with ten different

nitrogen treatments, combining different fertilization levels and application schedules. A

detailed correlation network for physiological traits and exploration of the data comparing

between treatments and varieties provided insights into crop performance under different

management scenarios. Multivariate regression models explained 77.8, 71.6, and 82.7%

of the variance in yield from aerial, ground, and combined data sets, respectively.

Keywords: hybrid barley, Hordeum vulgare, nitrogen, vegetation index, UAV, RGB, multispectral, thermal

INTRODUCTION

Global nitrogen fertilizer use is expected to exceed 200 million tons in the next year and
continue to increase at 1.8% per year (FAO et al., 2015). The estimated increase in fertilizer
use by 22.4% globally over the last 10 years (2004–2014) differs from an increase of 14.3%
at the European level, where there is stronger and growing presence of precision agriculture
management practices (Food and Agriculture Organization of the United Nations, 2017), but
still demonstrates a growing demand for increased yields and an upwards trend in intensity of
agricultural practices. Strikingly, this increase in fertilizer application only corresponded to barley
(Hordeum vulgare) yield increases of 9.3 and 10.6% at the global and European scales, respectively.
For barley, the fourth global grain in terms of production (FAO et al., 2015), this represents only
5.7 and 3.3% increases in nitrogen use efficiency (NUE) over a period of 10 years, approximately
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half of which is attributed to improved management practices
(Raun and Johnson, 1999). Given global barley production at
144.6 million tons annually, improvements in NUE represent
significant savings that may enable production to meet future
demand and increase profits (Raun and Johnson, 1999). Barley
NUE is estimated to have been improved by nearly 26% over the
past 100 years of active breeding in developed countries, with
little signs of impediment, but active phenotyping toward NUE
has declined since the Green Revolution in favor or maximum
yield under optimum conditions (Raun and Johnson, 1999;
Rajala et al., 2017). With previously estimated NUEs of 42 and
29% between developed and developing countries, much of this
may be attributed to management practices such as variable
rate N applications based on precision agriculture technology
(Anbessa and Juskiw, 2012); however, improved NUE related to
cultivars and hybrid selection has long been focused on top yield
with N fertilizer intentionally removed from the study to focus
on other selection criteria (Raun and Johnson, 1999; Hirel et al.,
2007). Though some previous studies have covered NUE and
yield differences between two-row and six-row barley varieties
(Le Gouis, 1992; Papastylianou, 1995; Le Gouis et al., 1999;
Frégeau-Reid et al., 2001; del Moral et al., 2003; Arisnabarreta
and Miralles, 2008), hybrid barley may represent an alternative
not only in terms of higher yield but also of improved growth
andNUE (Gorny and Sodkiewicz, 2001; Kostadinova et al., 2016);
however, to date there are no studies that we know of aimed
at proving the effectiveness of remote sensing techniques as
phenotyping tools for assessing the higher performance of hybrid
barley in terms of growth, grain yield and NUE.

New techniques in high throughput plant phenotyping
(HTPP) can provide key assistance in gathering data in support
of assessing key crop physiological traits for breeding selection
programs, including quantifying the physiological condition
of crops, prediction of yield pre-harvest, and the heritability
of traits such as increased resources use efficiencies (Furbank
and Tester, 2011; Cabrera-Bosquet et al., 2012; Fiorani and
Schurr, 2013; Araus and Cairns, 2014; Araus et al., 2014).
In the past these techniques, applied to field phenotyping,
have focused largely on the improvement in efficiency in
time and cost of gathering the most important data, which
remained still fairly time consuming due to the need for
numerous replicates and varietal comparisons in traditional
phenotyping studies. Technological advancements have been
more focused on the use of robotics and automated processing
of replicates and crosses in controlled laboratory conditions
(Hawkesford and Lorence, 2017) and with large, expensive field
machinery (Virlet et al., 2017); however, recent technological

Abbreviations: ARI2, anthocyanin reflectance index 2; CRI2, carotenoid

reflectance index 2; CSI, crop senescence index; EVI, enhanced vegetation index;

GA, relative green area; GGA, relative greener area; GY, grain yield; HTPP, high

throughput plant phenotyping; MCARI, modified chlorophyll absorption ratio

index; NDVI, normalized difference vegetation index; NG, number of grains per

area; NUE, nitrogen use efficiency; OSAVI, optimized soil-adjusted vegetation

index; PRI, photochemical reflectance index; RDVI, renormalized difference

vegetation index; RGB, red-green-blue; SAVI, soil adjusted vegetation index;

TCARI, transformed chlorophyll absorption ratio index; TGW, thousand grain

weight; UAV, unmanned aerial vehicle; VIs, vegetation indices; WBI, water band

index.

advancements in Unmanned Aerial Vehicles, UAVs, toward
more stable and affordable research platforms and sensor
engineering (lighter sensors with higher spatial and spectral
resolution) have brought the capacity for increasing automation
in a wider range of field HTPP conditions and budgets
(Kefauver et al., 2015; Zhou et al., 2015; Vergara-Diaz et al.,
2016).

In traditional plant breeding and phenotyping studies, the
measurement of objective traits relevant for plant breeding
needs to be acquired as efficiently possible to achieve statistical
confidence (Montes et al., 2007; White et al., 2012; Fiorani and
Schurr, 2013; Araus and Cairns, 2014). To this aim, the very
high resolution and inherent color calibration of commercial
digital RGB (Red, Green and Blue, or visible light) may provide
fast quality image-based data acquisition (Fiorani et al., 2012;
Akkaynak et al., 2014). Through not scientifically designed
sensors, commercial RGB cameras include rigorous factory color
calibration that enables their use for extensive scientific capacity,
considering that it is in the visible where plant pigments related
to photosynthesis capture light—color quality is inherently tied
to photosynthesis. From this a specific suite of vegetation indices
(VIs) were developed by Casadesús et al. (2007); Casadesús and
Villegas (2014) to take advantage of transformations from the
RGB to the CIElab, CIEluv, andHSB color spaces that can in effect
remove artifacts of illumination variation and more accurately
quantify the relative abundance of different pigments in plants at
very detailed spatial resolutions. In a sense similar to traditional
multispectral indices, Hunt et al. (2011, 2013) used RGB cameras
to calculate normalized and area-based indices based on the
broad band reflectance of each band, namely the Triangular
Greenness Index and the Normalized Green Red Difference
Index.

In this study, we compared the technical capacity of field- and
UAV-based RGB andmultispectral image analyses to differentiate
the nitrogen related performance between two barley hybrids
and a commercial line of barley that is widely cultivated in
the region where the experiment was performed. While the
emphasis of our study is in the performance of affordable remote
sensing approaches (derived from RGB images), for comparison
to these novel low-cost commercial RGB camera image analyses,
a commercial scientific multispectral sensor was also mounted
on the same UAV in order to compare the quality and cost-
effectiveness of the field data quantification with each sensor
type. The multispectral sensor payload included a camera array
of 11 separate spectral bands with an upwards pointing incident
light sensor for simultaneous calibration to reflectance and a
thermal camera. We calculated from the multispectral camera
a suite of scientific spectral reflectance indices for the purposes
of comparing the nitrogen use efficiency and yield component
estimating capabilities of different combinations of high spatial
(16 megapixel), low spectral resolution (RGB) sensors with low
spatial resolution (1.3 megapixel) and moderate multispectral
resolution (11 band) scientific sensors from a UAV HTPP. To
further explore the benefits of high spatial resolution, the same
RGB analyses conducted from the UAV data taken at a 50m
altitude was further compared with data acquired from an equal
resolution commercial RGB digital camera at approximately 1m
above the canopy of each study plot.

Frontiers in Plant Science | www.frontiersin.org 2 October 2017 | Volume 8 | Article 1733

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Kefauver et al. UAV Versus Ground NUE Phenotyping

MATERIALS AND METHODS

Plant Material and Experimental Setup
The field trial was carried out during the 2015/2016 crop season
in the Arazuri Station of the Institute of Agrifood Technologies
and Infrastructures of Navarra (INTIA), located in Navarra,
Spain (42◦ 48′ N, 1◦ 43′ W, 396m a.s.l.). The climate conditions
of the region represents a transition from Mediterranean to
Atlantic climate, with a mean, maximum and minimum daily
air temperature of 12.9◦, 18.8◦, and 7.6◦C, respectively, average
relative humidity of 75.2%, and annual precipitation of 854mm
during 2015. Three barley (H. vulgare L.) genotypes were used in
this study, one conventional two-row cultivar (Meseta), and two
six-row hybrids (Jallon and Smooth). Meseta is a winter barley
variety widely cultivated in Spain due to its high yield potential
in most areas. Jallon and Smooth are two winter barley hybrids
released by Syngenta S.A.U. using the HyvidoTM technology.
Barley seeds were planted in plots of 12 m2 (10 × 1.2m)
with 8 lines per plot separated by 15 cm at the recommended
sowing rate for each variety on November 16, 2015. Initially, 10
different N fertilization regimens were established in the trial,
differentiated in application dates and doses (Table 1). A mix of
urea and ammonium sulfate was applied on January 25, 2016
in the first fertilizer applications, and urea was applied in all of
the subsequent fertilizer applications. The experimental design
was performed in randomized blocks with three replicates per
genotype and N treatment combination, with a total of 90 plots
(Figure 1). Weeds, insect pests and diseases were controlled by
the application of the recommended pesticides for the location,
includingAxial Pro (Syngenta) andTrimmer (tribenuron-methyl,
Conquest) herbicides at the recommended doses in one single
application on April 26, 2016.

Direct measurement parameters such as vegetation indices
(VIs) from ground, as well as image data acquisition with
the UAV for the calculation of canopy temperature and other
multispectral VIs were recorded at the growth stage of booting
in all plots. All the measurements were performed during the
morning and early afternoon between 10:00 and 15:00 (except
the canopy temperature at afternoon). Agronomic traits were
determined at physiological maturity for every plot.

Agronomical Traits and Vegetation Indices
(VIs) from Ground
Agronomic traits such as thousand grain weight (TGW),
number of grains per area (NG) and grain yield (GY) were
determined at harvest. The harvest was done with a micro-plot
combine-harvester equipped with an automatic weighing system.
Additionally, the agronomical NUE (aNUE) and the nitrogen
partial factor productivity (NPFP) were calculated according to
(Lü et al., 2012):

aNUE
(

g grain/g Nsupply

)

=
(

GY − GY for zero N plot
)

/Nsupply

NPFP (g grain/g Nsupply) = GY for N treated plot/Nsupply

Normalized Difference Vegetation Index (NDVI) was evaluated
with an active sensor hand-held portable spectroradiometer
(GreenSeeker, NTech Industries, Ukiah, CA, USA) by passing

TABLE 1 | N treatments and application dates supplied during the life cycle of

barley plants from three genotypes (Meseta, Jallon and Smooth).

References N

supply

Pre-sowing January

(emergence)

February

(tillering)

April

(booting)

N0 0 = 0 + 0 + 0 + 0

N130a 130 = 0 + 65 + 0 + 65

N130b 130 = 40 + 50 + 0 + 40

N150a 150 = 0 + 65 + 0 + 85

N150b 150 = 40 + 0 + 110 + 0

N150c 150 = 40 + 50 + 0 + 60

N170a 170 = 0 + 65 + 0 + 105

N170b 170 = 0 + 85 + 0 + 85

N170c 170 = 40 + 0 + 130 + 0

N170d 170 = 40 + 50 + 0 + 80

Values are expressed in kg ha−1.

the sensor in the middle of each plot at a constant height of
0.5m above and perpendicular to the canopy. This index is
calculated from the red and near infrared (NIR) light reflected
by vegetation using the following equation: (NIR − Red) /
(NIR + Red). Chlorophyll content was measured in situ using
a portable chlorophyll meter SPAD-502 (Minolta, Tokyo, Japan).
The measurements were carried out in the central segment of the
leaf lamina, using the flag leaves of 10 plants per plot selected
randomly and averaged.

For each plot, one RGB picture was taken by holding the
camera at 0.8-1.0m above the canopy in a zenithal plane and
focusing near the center of the plot. A camera Olympus E-M10
(Olympus Corporation, Tokyo, Japan) was used with a focal
length of 14mm, shutter speed of 1/250, no flash and the aperture
in automatic. The pictures were saved in JPEG format with a
resolution of 4608 × 3072 pixels. These were analyzed with the
open source BreedPix 0.2 software (Casadesús et al., 2007) for
the calculation of RGB indices in the canopy based on different
properties of color. In this study we used five color components
of potential interest as VIs: hue, saturation, intensity, lightness,
a∗, b∗, u∗, v∗, and the relative green area (GA) and greener area
(GGA) (Casadesús et al., 2007; Vergara-Diaz et al., 2015, 2016).
Hue belongs to the HSI color space (Hue, Saturation, Intensity),
where Hue refers to the color tint, while Saturation follows as
the amount of tint (ranging from an intense color to white) and
Intensity is the overall albedo or brightness of the image (ranging
from black to white). With regards to the CIE-Lab and CIE-Luv
color spaces (recommended by the International Commission on
Illumination (CIE) for improved color chromaticity compared
to HIS color space), L represents Lightness in both CIE-Lab
and CIE-Luv and is similar to Intensity or overall albedo from
the HIS color space, whereas a∗ and u∗ represent the red-green
spectrum of chromaticity and b∗ and v∗ represent yellow-blue
color spectrum. Finally, GA and GGA indicate the green biomass
in the picture calculated using the Hue channel of HIS color
space as it is detailed in Casadesús et al. (2007), with the latter
excluding yellowish pixels that correspond to senescent leaves.
Additionally, crop senescence index (CSI), which effectively
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FIGURE 1 | Field experiment at Arazuri Station in Navarra (Spain) during the crop season of 2015/2016.

provides a scaled ration between yellow and green vegetation
pixels in the image, was calculated in agreement with Zaman-
Allah et al. (2015) as follows:

CSI = 100× (GA− GGA)/GA.

Canopy Temperature and Vegetation
Indices from Aerial Images
All UAV aerial images were acquired on April 27, 2016 in
clear sky conditions using a Mikrokopter Oktokopter 6S12 XL
eight rotor UAV (HiSystems GmbH, Moomerland, Germany)
flown manually at a steady velocity of approximately 5 m/s
and a pressure altimeter stabilized a.g.l. altitude of 50m. Image
acquisition for each sensor was programmed for continuous
capture for the duration of each flight with image acquisition
rates of 2 s, 20/s and 5 s for the RGB, thermal and multispectral
cameras, respectively, representing the maximum recommended
image acquisition speed for each camera sensor system. All
cameras were mounted on the same MK HiSight SLR2 camera
platform with an active two servo axis gimbal to correct for
UAV pitch and roll movements during flight. Different payload
configurations allowed for the four image datasets to be gathered
in three flights. The first included digital RGB and thermal
cameras, the second flying only with the multispectral camera
array, and the third flight with the thermal camera alone. Nadir
image acquisition alignment accuracy was assessed and proper
gimbal function was tested prior to each flight.

The RGB images were recorded starting at 11:47 am using
a 16 megapixel micro 4/3 sensor Panasonic GX7 digital camera
(Panasonic Corporation, Osaka, Japan) with a 20mm “pancake”
lens set at automatic focus with a fixed exposure time and
aperture and programmed to record images continuously at
intervals of 2 s for the duration of the flight. RGB images
were imported and filtered to include only nadir images from

each flight line over of the study site at the 50m a.g.l. before
further processing into orthomosaics. The estimated resulting
pixel resolution of the RGB images was calculated at a 10mm
ground spatial resolution per pixel.

Canopy temperature was measured at morning (Tmor,
13:01 pm) and afternoon (Taft, 16:51 pm) using a FLIR
Tau2 640 (FLIR Systems, Nashua, NH, USA) thermal camera
with a VOx uncooled microbolometer equipped with a
TEAX ThermalCapture module (TEAX Technology, Wilnsdorf,
Germany) for recording of full resolution thermal video (640 x
520 pixels at 20 frames per second) with an estimated ground
spatial resolution of 54mm per pixel. The thermal images were
first exported using the TEAX ThermoViewer v1.3.12 in raw
16 bit TIFF format as Kelvin ∗ 10,000 and converted to 32 bit
temperature in Celsius using a custom batch processing macro
function in FIJI (Schindelin et al., 2012).

The multispectral data from the Tetracam (Tetracam, Inc.,
Gainesville, FL) mini MCA (Multiple Camera Array) 11 plus
Incident Light Sensor (ILS) camera includes 12 individual image
sensors with filters of center wavelengths and full-width half-max
bandwidths of 450 ± 40, 550 ± 10, 570 ± 10, 670 ± 10, 700 ±

10, 720 ± 10, 780 ± 10, 780 ± 10, 840 ± 10, 860 ± 10, 900 ± 20,
950 ± 40 nm, and one sensor dedicated to real-time reflectance
calibration (ILS) with a 30 cm fiber optic cable connected to
an upwards looking box with a light diffusion plate containing
11 matching filters corresponding exactly to the 11 downwards
looking sensor filters. Data acquisition was programmed for
every 5 s for the duration of the flight at 50m a.g.l., resulting in
12-band 8 bit TIFF images at 1,280 × 1,024 pixels with a ground
spatial resolution estimated at 27mm spatial resolution per pixel.
For processing, each of the resulting 12 separate images from
each sensor were first aligned to correct for parallax according to
the Pixel Wrench II version 1.2.2.2 Field of View (FOV) Optical
Calculator and calibrated to reflectance using the PixelWrench
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II version 1.2.2.2 Index Tools MCA and ILS functions in a batch
function with the provided factory calibration parameters.

The preprocessed exported images from each sensor were
then combined into orthomosaics to correct for terrain and UAV
flight movement by camera type for each flight using Agisoft
Photoscan Professional (Agisoft LLC, St. Petersburg, Russia).
Each orthomosaics image was then cut to create mini-raster
images for each individual study plot using FIJI and then batch
processed using custom macro functions for index calculations
and simultaneous data export for each sensor, including one
orthomosaic for the RGB andmultispectral sensors, andmorning
and afternoon orthomosaics from the thermal camera.

The same RGBVIs that were calculated as described in section
Agronomical traits and vegetation indices (VIs) from ground
were also calculated using RGB aerial images acquired using
from the UAV using the exported plot level images in the same
manner as the RGB images captured in the field. The thermal data
average temperature and standard deviation were exported per
plot using a custom macro developed in FIJI (Schindelin et al.,
2012). A suite of multispectral indices were calculated from the
11 multispectral reflectance bands of the Tetracam mini MCA
11+ILS as described herewith, where R indicates reflectance and
the subscripts indicate wavelengths in nm, including the NDVI
calculated as Rouse et al. (1974),

NDVI = (R840 − R670)/(R840 + R670);

the Photochemical Reflectance Index (PRI) (Gamon et al., 1992),

PRI = (R550 − R570)/(R550 + R570);

Soil Adjusted Vegetation Index (SAVI) (Huete, 1988),

SAVI = (R840 − R670)/(R840 + R670 + L) × (1+ L) ,

where L is a canopy background adjustment factor with an
optimal value of L = 0.5;

the Modified Chlorophyll Absorption Ratio Index (MCARI)
(Daughtry et al., 2000),

MCARI = [(R700 − R670) − 0.2× (R700 − R550)]× (R700/R670) ;

Water Band Index (WBI) (Peñuelas et al., 1993),

WBI = (R900/R950) ;

Renormalized Difference Vegetation Index (RDVI) (Roujean and
Breon, 1995),

RDVI = (R840 − R670)/(R840 + R670)
1/2

;

Enhanced Vegetation Index (EVI) (Huete et al., 2002),

EVI = 2.5× ((R840 − R670)/(R840 + 6× R670 − 7.5× R450 + 1)) ;

Anthocyanin Reflectance Index 2 (ARI2) (Gitelson et al., 2001),

ARI2 = R840 × [(1/R550) − (1/R700)] ;

Carotenoid Reflectance Index 2 (CRI2) (Gitelson et al., 2002),

CRI2 = (1/R550) − (1/R700) ;

Transformed Chlorophyll Absorption Ratio Index (TCARI)
(Haboudane et al., 2002),

TCARI = 3× [(R700 − R670) − 0.2× (R700 − R550) × (R700/R670)] ;

Optimized Soil-Adjusted Vegetation Index (OSAVI) (Rondeaux
et al., 1996),

OSAVI = (1+ 0.16) × (R780 − R670)/(R780 + R670 + 0.16);

and the TCARI/OSAVI ratio (Rondeaux et al., 1996; Daughtry
et al., 2000).

Statistical Analysis
Agronomical traits and VIs were evaluated using multivariate
(PCA, principal component analysis) and univariate (ANOVA,
analysis of variance) analyses with the programs CANOCO 4.5
(Microcomputer Power, Ithaca NY, USA) and SPSS 22.0 (IBM
Corp., Armonk, NY, USA). ANOVA was conducted to calculate
differences between genotypes (Meseta, Jallon and Smooth),
nitrogen treatments (see Table 1) and their interaction. When
there were differences between treatments means, they were
assessed using Tukey’s HSD test. The results were accepted as
significant at P < 0.05. Most of the traits were not significantly
altered by the interaction genotype × N treatment. Therefore,
we presented in this study the significant effects for the main
factors independently. A correlation matrix was generated in R
environment for evaluating the linear relationships between all
parameters analyzed. Visualization of significant correlations was
performed using the software Cytoscape 3.4.0 (Shannon et al.,
2003). The significance threshold for correlations between traits
was set at r > 0.6 for positive correlations and r < −0.6 for
negative correlations, with a P-value < 0.001 in both cases. The
figures for the PCA were built in CanoDraw 4.0 (Microcomputer
Power) and for agronomical traits and linear regressions in
SigmaPlot 11.0 (Sysat Software Inc., Point Richmond, CA, USA).
Stepwise regressions between grain yield and VIs were performed
in SPSS 22.0 to develop prediction models for grain yield. The
proportion of variance explained by each predictor was calculated
in R environment using the package relaimpo.

RESULTS

Nitrogen use indexes as presented in Table 2 include the
agronomical nitrogen use efficiency (aNUE) and N partial factor
productivity (NPFP) according to the 10N application regimens
as detailed in Table 1 for the two hybrid (Jallon and Smooth)
and one conventional genotype (Meseta) of the study. While
the aNUE is calculated in reference to the N0 regimen yield in
order to estimate the use efficiency of the fertilizer applied on
top of the residual nitrogen found present in the soil, NPFP
adjusts for yield in reference to the applied nitrogen supply per
treatment without reference to the other treatments. There were
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TABLE 2 | Agronomical nitrogen use efficiency (NUE) and N partial factor productivity according to the 10N application regimens as detailed in Table 1.

Agronomical NUE (g grain g N−1) N partial factor productivity (g grain g N−1)

Meseta Jallon Smooth P Meseta Jallon Smooth P

N130a 20.12 13.89 22.38 0.057 46.93 a 46.69 a 57.06 b 0.017

N130b 21.69 19.13 20.91 0.857 48.51 51.94 55.58 0.376

N150a 18.09 16.67 17.65 0.946 41.34 45.10 47.69 0.402

N150b 17.75 20.44 20.05 0.381 40.99 a 48.87 b 50.10 b 0.006

N150c 20.89 21.11 23.00 0.855 44.13 49.54 53.05 0.171

N170a 17.84 11.97 18.24 0.053 38.35 a 37.06 a 44.75 b 0.028

N170b 18.90 15.50 16.80 0.479 39.41 40.58 43.31 0.381

N170c 19.51 17.96 19.43 0.420 40.01 a 43.04 ab 45.94 b 0.009

N170d 17.28 18.61 23.45 0.128 37.78 a 43.69 ab 49.96 b 0.011

N0 is used for reference in the calculation of each and as such is not shown. Treatments in bold indicates P < 0.05.

no significant differences found between the three genotypes
in the aNUE calculations, there are several clear separations in
NPFP between the hybrid and conventional genotypes, notably
at N130a, N150b, N170c, and N170d.

A close inspection of the principal component analysis (PCA)
combining the agronomical and physiological traits of the
different levels and application regimens of the study trial design
and the measured parameters from the UAV HTPP and field
data (Figure 2) demonstrates which fieldmethods havemeasured
similar crop attributes and how they are related to the different
genotypes and N levels (Figure 2A) and to the different N levels
and application dates (Figure 2B). In both PCA’s there is a clear
separation on PCA axis 1 between variables associated with
higher total green biomass (GA, GGA, Hue, NDVI, OSAVI) and
pigment/stress (CSI, v∗, TCARI/OSAVI, PRI, ARI2). The second
PCA axis appears to have separated SPAD as a leaf measurement
from some of the alternatives to RGB color space that are often
considered as indicators ground cover (Saturation, v∗ and b∗).
In Figure 2A it appears that the lower nitrogen application
levels positioned more associated with the pigment/stress plant
field measurements while the higher nitrogen applications and
yield are on the side of higher total green biomass. Meseta, the
conventional variety, appears opposite measures of total ground
cover and green biomass. In Figure 2B, again N0 is associated
strongly with pigment/stress, while the rest are only slightly on
the side of total biomass and more spread along the PCA axis 2,
indicating differences in chlorophyll leaf concentration (SPAD)
and percent ground cover. There is little difference noted between
the different nitrogen application levels (130–170 kg ha−1), with
more separation between the application timings (a, b, c, d), with
the largest separation between N170a and N170c.

Similar patterns are observed when comparing the different
varieties in the agronomical components in Figure 3. We see
significant differences in grain yield (GY) and thousand grain
weight (TGW) between the three varieties, but in terms of
number of grains (NG) the hybrids Smooth and Jallon are
together higher in comparison to the lower NG of the Meseta.
In nearly all cases, not surprisingly N0 is significant lower, but in
terms of GY, only N130a and N170d show significantly different
effects, while there is only slightly more separation in terms of

the yield subcomponents into a total of four groups for NG
and TGW. In all three comparisons, there were no separation
between N130b and N170b, for example. In Figure 4, looking in
greater detail at GY, we observe no interactions between genotype
and the non-zero nitrogen application regimens. There were no
differences at all in the conventional variety Meseta, and only two
slight separations in treatments in the hybrid varieties Jallon and
Smooth and more so due to fertilization regimen timing rather
than quantity of fertilizer.

The full summary of the different non-destructive ground
and aerial VIs presented in Table 3 demonstrates their similar
capacity for quantifying the interactions between genotype and
treatment. With regards to total N and fertilizer application
timing, the physiologically based VIs are frequently able to
separate genotypes or differentiate between the conventional
and hybrid varieties. We also observe similar results from
aerial and ground measurements, as with the high resolution
RGB image analyses. However, little consistency is observed
between the non-zero N application quantities, with somewhat
more distinction made between treatments different in both
nitrogen quantity and timing. For example, there were significant
differences between the minimal number of applications in
N130a and N150a regimens and the three to four field
applications in N170c and N170d treatments (NDVI, Hue, and
GGA from the ground measurements; and additionally NDVI,
RDVI, SAVI and OSAVI from the aerial multispectral data).
All of these physiological indices are considered indicators of
total green biomass, albeit from different sensors and spectral
regions. The capacity for these total green biomass physiological
indices to track differences in yield is further corroborated in the
yield correlation network presented in Figure 5A, where yield is
effectively surrounded by the same set of VIs that were capable
of detecting differences related to the combination of N amount
and timing (GA, GGA, NDVI, RDVI, SAVI, and OSAVI).

NG is also very closely correlated with GY, while TGW
is not. In Figure 5B, the detailed graphs of the VIs most
significantly correlated directly with GY are shown, including
ground calculations of GA and GGA together (r2 0.70 and
0.72, respectively), ground and aerial based calculations of CSI
together (r2 0.69 and 0.65, respectively), SAVI and its optimized
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FIGURE 2 | Principal component analysis (PCA) of agronomical and physiological traits in three barley genotypes at different N levels. Arrows represent the variables

and triangles the different genotypes (green), N levels (purple) and their interaction (red) in (A), and circles the different N levels and application dates in (B) according

to Table 1. M, Meseta; J, Jallon; S, Smooth.

variant OSAVI together (r2 0.66 and 0.65, respectively), and
WBI (r2 0.68), RDVI (r2 0.66), NDVI (r2 0.65), and Hue (r2

0.65) separately below. The asymptotic effects of signal saturation
are observable more strongly in the correlation graphs of both
NDVI and Hue, while the WBI and RDVI both appear to hold
fairly linear in comparison though linear regressions were used
in all cases for the sake of comparison. Morning (Tmor) and

afternoon (Taft) temperature were both significantly higher for
the N0 treatment compared to N150b and N170c, while only Taft

provided additional separation between N0 and N130b, N150c
and N170a.

In Table 4 we present multivariate linear models for
estimating grain yield using different selections of non-
destructive VIs as indicated using both forward and backward
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FIGURE 3 | Grain yield (GY), thousand grain weight (TGW), and number of grains per area (NG). Each value is the mean ± SD for each genotype and nitrogen supply

(n = 30 for genotypes and n = 9 for N supplies). Bars with different letters are significantly different at P < 0.05.

stepwise selection techniques, with a standard AIC selection
criterion. We also present the proportion of variance explained
by each model predictor, in terms of total variance explained by
each predictor (sum equaling the total model r2) and the standard
error of prediction (SEP). All three models presented were found
to be significant at the P < 0.001 level. Using the UAV platform
for image acquisition, which allows for the use of the 11+ILS
sensor multispectral camera as well as the same sensors used on
the ground, explains a total of 77.8% of the variation in yield for
all 90 plots across genotypes under different N supply regimens
(total plus application timing) can be explained by the WBI and
SAVI indices. In the case of ground based VIs, 71.6% of the
yield may be explained by the GGA index alone. In the case of

combining VIs from both aerial and ground measurements, a
total of 82.7% of yield variation may be explained. In the case of
the combined aerial and ground measurements, the RGB indices
Hue and GGA taken from the ground level contributed nearly
50% of the final r2-value to the multispectral VIs WBI and RDVI,
with morning temperature making a minor contribution.

DISCUSSION

Total N and N Application Regimen Timing
Contributions to Yield
Directed plant phenotyping efforts toward improving barley
nitrogen use efficiency (NUE) and efficacymust take into account
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FIGURE 4 | Meseta (conventional), Jallon (hybrid), and Smooth (hybrid) barley varieties. Each value is the mean ± SD for each genotype separately for each nitrogen

supply (n = 3 for genotype replicates and n = 9 for N supplies). Bars with different letters are significantly different at P < 0.05.

the physiological mechanisms that affect NUE, but also consider
the associated economic costs of different fertilizer application
regimens, namely via plant nitrogen uptake and storage capacity
(Raun and Johnson, 1999; Hirel et al., 2007; Anbessa and
Juskiw, 2012; Krapp, 2015; Kostadinova et al., 2016; Rajala et al.,
2017). Not only the amount of fertilizer applied, but also the
number and timing of these applications may contribute to
specific growth stages of the crop and thus result in less or
greater contribution to the final yield of the crop. In the two
approximations of NUE presented in Table 2, the agronomical
nitrogen use efficiency (aNUE) and N partial factor productivity
(NPFP), we may observe some potential for error in each as an
approximation of actual NUE in the case of not fully accounting

for residual soil nitrogen. While there were no differences
in aNUE between the hybrids (Jallon and Smooth) and the
conventional genotype (Meseta), we are also able to note that
the yield from both the hybrids was quite a bit higher than the
conventional variety in the N0 treatment. This in of itself may
be interpreted as an indication of higher NUE by the hybrids
at low N levels, something in of itself of potential interest. Also,
since N0 is the reference point for the other N treatments’ aNUE,
the higher yield of the hybrids already at N0 becomes a strong
weighing factor in subsequent calculations. The separations in
NPFP between the hybrid and conventional genotypes, notably
at N130a, N150b, N170c, and N170d, if they may be assumed
as better indicators of relative NUE between the genotypes,
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FIGURE 5 | (A) Correlation network for physiological traits in barley using three different genotypes and ten nitrogen treatments. Edge color represent positive

correlations between traits in blue (Pearson’s r > 0.6; P < 0.001) and negative correlations in red (Pearson’s r < −0.6; P < 0.001). All the significant correlations

between yield and other traits are shown in (B) (n = 90).

TABLE 4 | Multivariate regression models explaining grain yield variation from vegetation indices (VIs) across genotypes under different N supplies.

Predicted parameter Traits Multivariate model r2 SEP P

Grain yield Vegetation indices

(from aerial images)

GY = 17.32 × WBI + 6.49 × SAVI – 19.02

0.778

0.555 <0.001

Proportion of variance explained by each predictor:

- WBI

- SAVI
0.402

0.376

Grain yield Vegetation indices

(from ground)

GY = 1.41 + 6.46 × GGA(gr)

0.716

0.625 <0.001

Proportion of variance explained by each predictor:

- GGA(gr) 0.716

Grain yield Vegetation indices (all) GY = 15.83 × WBI + 0.17 × Hue(gr) − 7.39 × GGA(gr)

+ 0.51 × RDVI – 0.48 × Tmor – 21.90 0.827

0.499 <0.001

Proportion of variance explained by each predictor:

- WBI

- Hue(gr)

- GGA(gr)

- RDVI

- Tmor

0.210

0.197

0.192

0.181

0.047

SEP, standard error of prediction.

again serves to highlight the importance of management practice
on NUE, potentially indicating more strongly the different
capacities of each genotype for nitrogen uptake and
storage.

Too minimal number of field applications will result in an
over application of fertilizer at any one time, exceeding the
crop uptake capacity and result in loss of excess fertilizer due

to leaching during rain or irrigation. Similarly, temporal
infrequency with long time periods between fertilizer
applications may exceed the plant capacity for N storage
and stunt growth in subsequent stages or trigger N mobilization
in a way that lowers yield by reducing total photosynthetic
biomass prior to grain filling. These concepts are supported
by the first comparisons of the data presented in this study
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where indeed the only differences observed between the different
non-zero nitrogen regimens are in terms of the application
frequency rather than the total fertilizer application amounts.
There is more separation in the PCAs presented in Figure 2B

where fertilizer timing by genotype is considered compared
to Figure 2A where only the total amount is considered. This
is even more clearly supported by Figure 3 where the only
differences in GY, NG, and RGW were found between the N130a
regimen and the N170c and/or N170d regimens, indicating
that the increase in total N is only to be marginally effective if
also increasing the frequency of application. In no instance was
there any distinction between N130a and N170a, suggesting an
exceedance of N uptake and/or storage capacity in terms of yield
production.

In Figure 4, with the detailed look at the full fertilizer regimen
by genotype, there is no separation at all between non-zero
N treatments in the conventional variety Meseta. The lowest
fertilization rate (130 kg ha−1) applied in both two or three
doses were sufficient to exceed the nitrogen uptake/assimilation
capacity of Meseta. Therefore, tilling costs could be reduced
with the application of less amounts and frequency of nitrogen
fertilizer. Jallon appears to have a greater capacity for fertilizer
uptake and use as evidenced by increased yield at higher
fertilizer applications with increased frequency. The analysis of
the application dates suggested that initial nitrogen fertilization
during pre-sowing guarantee higher grain yields at 130, 150,
and 170 kg ha−1. This could be an advantage due to better crop
establishment and initial tiller development (Baethgen et al.,
1995). The lesser degree of separation between the different
frequencies of application (a, b, c, d) in Smooth compared Jallon
may suggest a greater capacity for N storage for subsequent
mobilization at critical yield contributing growth stages. For
instance, average GY in Smooth was higher than in Jallon.
Overall, in both barley hybrids there is a tendency to higher
GY when nitrogen is applied at sowing. It may indicate that
the contribution of preanthesis reserves to grain filling is crucial
(Van Sanford and MacKown, 1987; Baethgen et al., 1995). These
findings suggest that the rate and timing of nitrogen application
depend on each genotype. Therefore, the characterization of the
different nitrogen strategies in barley genotypes could be relevant
to significantly reduce the costs of fertilizers and tilling and the
potential ground water contamination by nitrogen leaching.

Non-destructive Vegetation Indices for
Ground and UAV Phenotyping
Genotypic differences in VIs between the conventional line,
Meseta, and the hybrids, Jallon and Smooth, suggest that the
hybrids presented greater canopy biomass and green area,
water status and delayed senescence (Table 3). These traits were
correlated with GY, as indicated in the correlation network
(Figure 5), which suggest that the greater canopy biomass, water
status and the delayed senescence in the hybrids, especially in
Smooth, were an advantage over the conventional line. The
hybrids showed greater capacity for fertilizer uptake with higher
GY when nitrogen is applied at sowing, as we reported above,
which could have led to a higher tillering and crop canopy cover

during vegetative growth as VIs indicated. In previous studies, a
rapid development of wheat plants was considered a positive trait
for plant performance and to avoid abiotic stresses (Bort et al.,
2014; Medina et al., 2016).

From a methodological perspective on the use of UAVs
for phenotyping, especially in terms of non-destructive
measurements for the selection of different levels of performance
by phenotype and treatment, both the high resolution RGB and
the multispectral VIs presented here performed comparatively
similar. Both class of VIs here managed to track the different
levels of performance from each of the three barley varieties in
terms of final post-harvest yield (Table 3) equally well as in the
comparison of the final yield and yield parameters themselves
(GY, NG, TGW; Figures 3, 4). This presents a case for the
potential benefits of this technology for modernizing traditional
plant phenotyping programs for both the improvement of
throughput in terms of time and labor spent in the field as
well as the amount of time that the crop must be grown before
selection is possible, both of which also represent cost savings
(Fiorani and Schurr, 2013; Araus and Cairns, 2014; Hawkesford
and Lorence, 2017). Furthermore, the comparable performance
of the relatively low cost RGB sensors, with use of appropriate
methodology as applied in this study, present a viable alternative
to the use of advanced scientific instruments such as the
Tetracam MCA11+ILS for plant phenotyping trials and studies
(Kefauver et al., 2015; Vergara-Diaz et al., 2015; Zhou et al.,
2015).

Still, the use of UAVs also enables the deployment of these
image analysis techniques for calculating various VIs to the realm
of field phenotyping with both improved throughput (capability
to cover hectares in minutes) and complete individual plot
coverage of whole trials to provide a more complete capture
of variability in field conditions compared to other point or
subset area field measurements such as SPAD or Greenseeker
NDVI (Fiorani and Schurr, 2013; Araus and Cairns, 2014;
Zaman-Allah et al., 2015). On the other hand, more advanced
sensor technology, such as field spectroscopy or hyperspectral
imaging sensors, may offer some improvements in N content
estimation and other relevant physiological parameters (Clevers
and Kooistra, 2012; Zarco-Tejada et al., 2012; Pölönen et al., 2013;
Bareth et al., 2015; Gonzalez-Dugo et al., 2015).

Contributions of UAV Plant Phenotyping
Platform for Improving Barley NUE and
Application Regimen Efficacy
The highest correlations with final grain yield came from the
GGA and GA indices from RGB images taken at the ground level
followed closely by the same indices measured from the UAV
aerial platform. In the application of multivariate models and
stepwise selection as presented in Table 4, GGA alone was only
slightly outperformed by two multispectral indices (r2 0.716 vs.
0.778). This may be related to the capacity of the multispectral
indices to measure plant physiological components separately,
such as with the WBI and SAVI indices selected here (Huete,
1988; Gamon et al., 1992; Peñuelas et al., 1993), whereas the
RGB indices most likely calculate a combination of physiological
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components or overall performance related to biomass and/or
total green biomass (Casadesús et al., 2007; Casadesús and
Villegas, 2014). In this sense, different multispectral indices
may be more often complimentary in a multivariate model
compared to the quantification provided by high resolution
RGB covering only broad electromagnetic regions in the visible
spectrum.

As seen in the final multivariate model combining all the
VIs from the ground and the UAV, the optimal combination
may be found in a selection of the best estimates overall crop
performance (RDVI and GGA contributing 0.192 and 0.181 to
the total model r2) and some multispectral index specific to the
target traits of the study, such asWBI, Hue or temperature, which
may be tracking more specific traits such as pigment quality
and root growth, representing traits more specific to the varying
nitrogen regimens of this study (contributing 0.210, 0.197, and
0.047 to the total model r2). Interesting enough the split between
more general performance indices and specific indices appears to
be about even, though it can be argued that the WBI in a lack
of water stress conditions may also be tracking biomass more
closely than actual water stress, since it is a measure of total
water in the plant canopy and is thus also strongly affected by
total plant biomass (Huete, 1988; Huete et al., 2002). Hue can
be seen as a potential pigment quantification replacement for the
multispectral pigment indices of ARI2, CRI2, MCARI, TCARI,
and TCARI/OSVI, but was here found to be much more closely
related to yield, which may be due to the fact that at high spatial
resolution sampling, it must also contain some component of
biomass as it separates out vegetation fractional cover based
soil background color separation from plant photosynthetic and
non-photosynthetic vegetation.

The relevance of the inclusion of both WBI and mid-morning
temperature (Tmor) may even be interpreted as factors related
to increased root growth that allowed for increased nutrient
uptake capacities in the higher yielding hybrid varieties. Other
previously discussed comparisons in terms of the difference in
performance with fertilizer application timing and number of
applications may also support this; however, since this study
did not include specifically root measurements, that cannot be
confirmed here, as it has been in other studies (Postma et al.,
2014; Gioia et al., 2015). Still, as UAV and sensor technology
and processing continues to advance, we may expect their
contributions to high-throughput plant phenotyping to similarly
increase (Hruska et al., 2012; Suomalainen et al., 2014; Gevaert
et al., 2015).

CONCLUSIONS

Nitrogen management, including rate and timing, is a key factor
controlling grain yield in barley genotypes. The selection of
hybrids with a better plant performance compared to lines,
such as greater crop canopy cover, water status and delayed
senescence, could contribute to the enhancement of barley
yield stability and nitrogen use efficiency. UAV platforms and
associated technology including aerial platform control and
stability, appropriate affordable scientific research sensors and
processing software capacities have advanced sufficiently to be of
use for HTPP studies in field conditions. This technology allows
for the development of phenotyping selection criteria for yield
under different experimental trial conditions, including but not
limited to the nitrogen fertilizer regimen treatments in this study,
or for the selection toward improving specific physiological
capacities such as nitrogen use efficiency or nitrogen uptake or
storage and remobilization capacity.
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