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Perception of pathogens by host pattern recognition receptors (PRRs) or R proteins is
a prerequisite to promote successful immune responses. The Hsp70/Hsp90 organizing
protein Hop/Sti1, a multifunctional cochaperone, has been implicated in the maturation
of a receptor-like kinase (RLK) necessary for chitin sensing. However, it remains
unknown whether Hop/Sti1 is generally participating in PRR genesis. Using RNA-
interference (RNAi), we silenced Hop/Sti1 expression in Nicotiana tabacum to gain
further insight into the role of the cochaperone in plant defense responses. As expected,
transgenic plants do not respond to chitin treatment anymore. In contrast to this,
trafficking and functionality of the flagellin PRR FLS2 were unaltered, suggesting a
selective involvement of Hop/Sti1 during PRR maturation. Furthermore, Hop/Sti1 was
identified as a cellular determinant of Potato virus Y (PVY) symptom development in
tobacco, since PVY was able to accumulate to near wild-type level without provoking
the usual veinal necrosis phenotype. In addition, typical antiviral host defense responses
were suppressed in the transgenic plants. These data suggest that perception of PVY is
dependent on Hop/Sti1-mediated receptor maturation, while viral symptoms represent
a failing attempt to restrict PVY spread. In addition, Hop/Sti1 colocalized with virus-
induced membrane aggregates in wild-type plants. The retention of Hop/Sti1 in potential
viral replication complexes suggests a role during viral translation/replication, explaining
why RNAi-lines do not exhibit increased susceptibility to PVY. This study provides
evidence for a dual role of Hop/Sti1 in PRR maturation and pathogen perception as
well as in promoting viral proliferation.

Keywords: Hop/Sti1 cochaperone, pattern recognition receptor, CERK1, FLS2, pathogen perception, Nicotiana
tabacum cv. Samsun NN, Potato virus Y

INTRODUCTION

Virtually all forms of life are subjected to a constant threat of pathogen attack. In the
course of evolution, animals as well as plants have developed sophisticated mechanisms in
order to defend themselves from such attacks, while pathogens have evolved strategies to
circumvent these lines of defense in this coevolutionary arms race. One prerequisite for
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successful defense is recognition of the pathogen. To this end,
plants as well as animals are able to sense conserved molecules
specific to pathogens known as pathogen- or microbial-
associated molecular patterns (PAMPs, MAMPs) by the use
of plasma membrane-localized pattern recognition receptors
(PRRs) (Nürnberger and Brunner, 2002; Macho and Zipfel,
2014; Zipfel, 2014). In the plant kingdom, the perception of the
flagellin-derived peptide flg22 by the leucine-rich repeat (LRR)
receptor-like kinase (RLK) FLAGELLIN-SENSING 2 (FLS2)
together with co-receptor BRI1-associated receptor kinase 1
(BAK1) is one of the best studied interactions (Felix et al.,
1999; Gomez-Gomez and Boller, 2000; Bauer et al., 2001;
Chinchilla et al., 2006, 2007; Sun et al., 2013; Liang et al.,
2016). Other examples for PAMPs that can be sensed by
plant PRRs include the bacterial elongation factor Ef-Tu or
the fungal cell wall-component chitin (Kunze et al., 2004;
Miya et al., 2007; Shimizu et al., 2010; Liu et al., 2012).
Common to all successful interactions of PRRs and PAMPs
is the elicitation of the PAMP-triggered immunity (PTI), a
multitude of defense responses including the generation of
reactive oxygen species (ROS) or expression of pathogenesis-
related genes to parry the pathogen attack (Bigeard et al.,
2015). To suppress these defense responses, pathogens have
evolved effectors, leading to effector-triggered susceptibility
(Jones and Dangl, 2006; Dodds and Rathjen, 2010; Macho and
Zipfel, 2015). The next tier of the plant immune system is
represented by mostly intracellular disease resistance proteins
(R proteins), which are able to recognize pathogenic effectors
either directly or indirectly by “guarding” other cellular proteins
(Dangl and Jones, 2001; Stuart et al., 2013). When activated,
R proteins induce a strong and rapid defense response,
which may ultimately lead to a local programmed cell death
reaction known as hypersensitive response (HR), serving to
confine the pathogen infection and thus conferring effector
triggered immunity (ETI) (Jones and Dangl, 2006; Cui et al.,
2015).

Although these plant immune responses are already well-
investigated, some of the underlying mechanisms are just being
unraveled. For instance, the cellular processes involved in
PRR maturation and trafficking remained largely unresolved
until the group of Ko Shimamoto was able to assign the
transport of a RLK crucial for chitin-perception in rice,
chitin elicitor receptor kinase 1 (OsCERK1), to the chaperone
Hsp90 and the cochaperone Hsp70/Hsp90 organizing protein,
also known as stress-induced protein 1 (Hop/Sti1) (Chen
et al., 2010; Shimizu et al., 2010). This finding was also
adopted by Popescu (2012), whose review features both
Hop/Sti1 and Hsp90 in a model for a multi-step trafficking
pathway from the endoplasmic reticulum (ER) to the plasma
membrane for signaling receptors in plants. In general, the
function of Hop/Sti1 is to tether Hsp90 to Hsp70, forming
a ternary complex (Chen and Smith, 1998). Therefore, the
cochaperone, which is conserved across kingdoms, is a
substantial part of the protein folding machinery, allowing
for client protein transfer from Hsp70 to Hsp90 in a tightly
regulated manner (Johnson et al., 1998; Zhang et al., 2003;
Alvira et al., 2014; Rohl et al., 2015). Interestingly, the

maturation of steroid receptors in mammals was shown
to be aided by Hop/Sti1, paralleling the observations of
PRR/RLK maturation in rice to some extent (Chen et al.,
1996; Dittmar et al., 1996; Morishima et al., 2000; reviewed
by Smith, 2004). Apart from this, the cochaperone was also
implicated in post-translational protein targeting to yeast
mitochondria and to Arabidopsis thaliana chloroplasts by
preventing premature folding and/or aggregation, thus allowing
for import into these organelles (Fellerer et al., 2011; Hoseini
et al., 2016).

Unlike most phytopathogenic bacteria and fungi, plant viruses
reside inside the cells of their host plants, largely evading
detection by plasma membrane-localized PRRs. Therefore,
resistance to viruses is predominately conferred by activation of
corresponding intracellular R proteins, basically following the
long standing gene-for-gene hypothesis (Flor, 1971; Mandadi
and Scholthof, 2013). In susceptible plants, viruses are able to
spread systemically and cause manifold disease symptoms. Potato
virus Y (PVY), a member of the large genus of potyviruses,
is able to cause damage in a wide range of economically
important crop plants, including Solanaceae species such as
potato (Solanum tuberosum), tobacco (Nicotiana tabacum),
tomato (Solanum lycopersicum), and pepper (Capsicum spec.)
(Quenouille et al., 2013). Depending on the virus strain,
symptoms in potato include stunted growth, vein necrosis,
mosaic and deformation of leaves and development of the
tuber necrotic ringspot disease (Beczner et al., 1984; Quenouille
et al., 2013). In Nicotiana tabacum cv. Samsun NN, infections
with the necrotic strain of PVY (PVYN) cause necrosis in
leaf veins and stems, leaf deformations and stunted growth
(Singh et al., 2008; Faurez et al., 2012). The initial cause
of the development of these symptoms, however, is not yet
entirely resolved. Thus, it is unclear whether they are, as
suggested by Mandadi and Scholthof (2013), a consequence of a
failing HR-like programmed cell death response to restrict viral
spread, or whether the ravaging effect of cellular rearrangement
induced by viral proteins may be significantly involved in
this specific phenotype. Likewise, the cellular mechanisms
underlying a potential insufficient defense reaction remain
unknown.

In order to gain insight into the defense-related functions
of Hop/Sti1, we generated Nicotiana tabacum cv. Samsun
NN lines stably expressing an RNA-interference construct to
silence the expression of the cochaperone. Here, we report
that Hop/Sti1, although necessary for maturation of CERK1
(Chen et al., 2010), is not required for targeting or function
of FLS2. Furthermore, our study reveals that the cochaperone
functions as determinant of PVYN symptom development in
tobacco, since Hop/Sti1 RNAi-lines were tolerant to the virus.
Despite only moderate reductions in virus spread, typical
defense reactions in response to virus infection were absent
in transgenic plants, suggesting a defect in PVYN perception.
Infected wild-type cells show a colocalization of Hop/Sti1
with ER-derived membrane aggregates, likely representing viral
replication complexes. Regarding this localization, we analyzed
the integrity of the ER stress-induced unfolded protein response
(UPR) in transgenic plants and found it unaltered. Taken
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together, our study specifies the role of Hop/Sti1 in PRR-
maturation and extends its functional range toward host–virus
interactions.

MATERIALS AND METHODS

Plant Material and Virus Inoculation
Nicotiana benthamiana and Nicotiana tabacum cv. Samsun NN
were grown in a greenhouse maintaining a 16 h light/8 h darkness
photoperiod and temperatures of 25◦C and 20◦C, respectively.
PVYN infections were carried out by mechanical inoculation as
described earlier (Herbers et al., 1996).

Plasmid Constructs
The 35Sp::GFP-NtHop/Sti1 construct was generated using the
Gateway R© Cloning system (Thermo Fisher Scientific, Waltham,
MA, United States): The coding sequence of NtHop/Sti1 was
amplified from Nicotiana tabacum cv. Samsun NN cDNA by
PCR (Oligonucleotide primers: fwGFP-Hop: 5′-CACCGCCGAC
GAAGCTAAGGC-3′; revGFP-Hop: 5′-CTATCATTGGACAA
TTCCTGCATTAATCAACTTTTG-3′) and subcloned into
pENTR/D-TOPO R© (Thermo Fisher Scientific) according to the
manufacturer’s advice. The final construct was generated using
the LR-Clonase R© Enzyme Mix (Thermo Fisher Scientific) and
the destination vector pK7WGF2 (Karimi et al., 2002).

The plasma membrane-GFP marker as well as the ER-
mCherry marker generated by Nelson et al. (2007) were obtained
from the Arabidopsis Biological Resource Center1 as stock #
CD3-1003 and CD3-959, respectively.

The FLS2p::FLS2-3xmyc-mCherry construct was kindly
provided by Prof. Silke Robatzek (The Sainsbury Laboratory,
Norwich, United Kingdom).

Generation of NtHop/Sti1-RNAi Lines
A 578 bp NtHop/Sti1 fragment (Nucleotides +1150 to +1728
relative to the ATG codon) was amplified from tobacco
leaf cDNA (Oligonucleotide primers: NtHOP-RNAi-for: 5′-
CACCTTAACTTGGACAATTCCT-3′; NtHOP-RNAi-rev: 5′-A
GAGCAGCAAGAGTATTTCAATC-3′). The resulting amplicon
was inserted into the pENTR-D/TOPO R© vector (Thermo Fisher
Scientific) according to the manufacturer’s instructions. The
fragment was subsequently recombined into the destination
vector pK7GWIWG2(II) (Karimi et al., 2002) using LR-
Clonase R© Enzyme Mix (Thermo Fisher Scientific). The resulting
plasmid was transformed into Agrobacterium tumefaciens strain
C58C1 harboring pGV2260 (Deblaere et al., 1985). The
transformation of tobacco was carried out following Horsch et al.
(1985).

Heterologous Expression of NtHop/Sti1
in E. coli
The NtHop/Sti1 open reading frame was amplified from a
tobacco cDNA template using appropriate oligonucleotide

1https://abrc.osu.edu/

primers (NtHOP-pQE32-for: 5′-AATCCCGGGGCCGACGAA
GCTAAG-3′; NtHOP-pQE32-rev: 5′-CGCGAAGCTTTTATTT
AACTTGGACAATTCC-3′) which create a SmaI site at the 5′
end of the amplicon and a HindIII site at its 3′ end. The
amplicon was then cloned into the pCR2.1 vector (Invitrogen,
now Thermo Fisher Scientific), and the construct validated
by sequencing. The NtHop/Sti1 coding sequence was excised
by digestion with SmaI and HindIII, directionally cloned into
the pQE32 expression vector (Qiagen, Hilden, Germany), and
introduced into E. coli strain XL1 Blue (Bullock et al., 1987).
An aliquot of an overnight E. coli culture grown at 37◦C in LB
medium containing 100 µg ml−1 ampicillin was used to inoculate
50 ml fresh LB medium containing ampicillin and grown at
37◦C to an OD600 of 0.5–0.6. IPTG (isopropylthio-ß-galactoside)
was added to a final concentration of 1 mM to induce the
expression of the HIS::NtHop/Sti1 fusion protein and the culture
was allowed to grow for an additional 2 h at 37◦C. The cells
were then pelleted by centrifugation and re-suspended in three
volumes of 50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole,
pH 8.0 containing HP proteinase inhibitor (Serva, Heidelberg,
Germany). After 30 min of incubation in the presence of 1 mg
ml−1 lysozyme, the cells were lysed by sonication on ice and
the lysate was clarified by centrifugation (16,000 × g, 30 min,
4◦C). Protein concentration in the lysate was determined by the
Bradford method.

Affinity Purification of the Recombinant
NtHop/Sti1 and Generation of an
Antibody
The purification of the recombinant NtHop/Sti1 protein was
carried out using a HisTrap Kit (GE Healthcare, Little Chalfont,
United Kingdom). The lysate was loaded on an equilibrated
HiTrap Chelating HP 1 ml column at a flow rate of 0.25 ml
min−1. Non-specifically bound proteins were eluted by washing
with 20 ml of 50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole,
pH 8.0. The target proteins were then eluted from the column
by the passage of 7 ml 50 mM NaH2PO4, 300 mM NaCl,
500 mM imidazole, pH 8.0. The purity of the recombinant
NtHop/Sti1 protein was confirmed by SDS-PAGE (Laemmli,
1970).

Following the immunization of rabbits with purified,
recombinant NtHop/Sti1, antisera were affinity purified on a
5 ml HiTrap-NHS column using the ÄktaExplorer System (GE
Healthcare). Isopropanol was first removed from the column
by washing three times in ice cold 1 mM HCl and the column
was then loaded with 2 mg recombinant NtHop/Sti1 for 30 min
at room temperature. Non-specifically bound proteins were
removed by washing with 25 ml of 140 mM NaCl, 10 mM KCl,
6.4 mM Na2HPO4, 2 mM KH2PO4. Washing and deactivation
of the column were achieved by alternate incubation with 0.5 M
ethanolamine, 0.5 M NaCl, pH 8.3 and 0.1 M acetate, 0.5 M NaCl,
pH 4. The antiserum was desalted by passing through a PD-10
column (GE Healthcare) and then loaded onto the equilibrated
HiTrap-NHS column at a flow rate of 0.3 ml min−1. After the
removal of non-specifically bound proteins (with 40 ml of 0.01
M Tris, 1 M NaCl, pH 7.5), the antibodies were eluted with 0.1 M
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glycine, pH 2.8 and neutralized by the addition of Tris-HCl pH
8.0. The purity was confirmed by immunoblot analysis.

Protein PAGE and Western Blot Analysis
To obtain total protein extract, two leaf disks (Diameter∼9 mm)
were frozen in liquid nitrogen, ground in 140 µl extraction
buffer (90 mM Tris HCl pH 6.8, 20% glycerol, 2% SDS, 0.02%
bromophenol blue, 100 mM DTT), boiled for 10 min at 95◦C
and centrifuged for 3 min at 15,000 × g. Supernatant was loaded
on a Bis/Tris gel containing 12% acrylamide for electrophoresis.
Proteins were transferred onto a nitrocellulose membrane, which
afterward was blocked for at least 1 h in blocking buffer [20 mM
Tris HCl, 500 mM NaCl, 0.1% (v/v) Tween20, 5% (w/v) milk
powder]. Detection was carried out using suitable primary
antibodies as indicated and horseradish peroxidase conjugated
secondary antibodies, followed by enhanced chemiluminescence
detection.

Nitrocellulose membrane stainings were conducted using
a solution of 0.5% (w/v) Ponceau S in 1% acetic acid.
Membranes were incubated for 2 min in the staining solution and
subsequently destained in distilled water.

Relative Measurement of Reactive
Oxygen Species
The relative amount of ROS was measured in response to
treatment of leaf disks (Diameter ∼4 mm, three biological
replicates per line) with 1 µM flg22 or 20 µg ml−1 hexa-N-acetyl-
chitohexaose according to the bioassay established by Smith and
Heese (2014).

Transient Expression in Nicotiana spec.
and Confocal Laser Scanning
Microscopy
Agrobacterium tumefaciens (strain C58C1)-mediated transient
expression in Nicotiana spec. was carried out as described
(Deblaere et al., 1985; Sparkes et al., 2006). Microscopy
was performed using a Leica TCS SP5 II confocal laser
scanning microscope (Leica Microsystems, Wetzlar, Germany) as
described earlier (Lamm et al., 2016).

Double Antibody Sandwich
Enzyme-Linked Immunosorbent Assay
Enzyme-linked immunosorbent assays were performed using a
PVY CP ELISA Kit (Bioreba, Reinach, Switzerland) according to
the manufacturer’s advice. In short, one N. tabacum SNN leaf disk
(Diameter ∼9 mm) obtained from a systemically infected leaf
(five leaves above inoculation site) was ground in 600 µl of the
provided extraction buffer containing cOmplete ULTRA Tablets
(Roche, Penzberg, Germany). Following 1 min of centrifugation
at 15,000 × g, the supernatant was used for the generation
of serial dilutions. Protein dilutions were incubated overnight
in Nunc MaxiSorp microtiter plates (Thermo Fisher Scientific)
coated with a cocktail of PVY CP monoclonal antibodies raised
against different PVY strains. Following three washing steps
with PBS-Tween with a Bio-Tek ELx50 plate washer (Bio-Tek,
Minooski, VT, United States), a solution of PVY CP monoclonal

antibodies conjugated with alkaline phosphatase was added to the
wells. After 4 h of incubation at room temperature, the plates
were washed four times as described above, and 200 µl of a
1 mg ml−1 solution of p-nitrophenyl phosphate (pNPP) was
added. The reaction was stopped after 20 min of incubation in
the dark via addition of 100 µl 3 M NaOH. Finally, absorbance
was measured at 405 nm using an EL808 plate reader (Bio-Tek).
Data evaluation was carried out with eight, nine, seven, or ten
considered biological replicates for wild-type, Hop/RNAi line
#17, #59 and #61, respectively.

Grafting of Nicotiana tabacum Plants
For grafting of non-infected scions on PVY-infected rootstocks,
designated Nicotiana tabacum stocks were mechanically
inoculated with PVYN as indicated above. As soon as early
infection symptoms could be observed in wild-type plants, the
stems were cut horizontally and, using a razorblade, a V-shaped
slit was introduced into the stem. The designated non-infected
scion was cut to fit the slit with a fresh razorblade. After joining
both stock and scion, the graft was sealed with parafilm and
several leaves were detached to ensure proper water supply.
For the first week after grafting, plants were kept in a plastic
film-covered housing in order to maintain high humidity.

Generation of cDNA, RT-PCR, and
Quantitative Real-time PCR
RNA was isolated from wild-type Nicotiana tabacum plants
and from NtHop/Sti1-silenced plants, both PVY-infected and
uninfected, as described before (Logemann et al., 1987). The
obtained RNA was then used to generate cDNA, using the Bio-
Rad iScript cDNA synthesis kit (Bio-Rad) for analysis of PR-gene
expression or the RevertAid H Minus Reverse Transcriptase
(Thermo Fisher Scientific) for analysis of bZIP60 splicing status,
PVY genome detection and analysis of Hop/Sti1 expression.

For PVY RNA detection, cDNA was amplified using Taq
polymerase and oligonucleotide primers specific for the viral
capsid protein (CPfw: 5′-CGGAGTTTGGGTTATGATGG-3′;
CPrev: 5′-ACGCTTCTGCAACATCTGAG-3′). The band
intensities in the successional agarose gel were determined
using the ImageJ software. Quantitative real-time PCR
analyses were performed using specific oligonucleotide
primers for Nicotiana tabacum PR-1 and PR-2 (PR1-for:
5′-TTGCCGTGCCCAAAATTCTC-3′; PR1-rev: 5′-ACAATC
TGCAGCCAATTGGG-3′; PR2-for: 5′-TGCTCCTGCCATGC
AAAATG-3′; PR2-rev: 5′-ATACTATCTTTGGGCGGGTT
GG-3′), Hop/Sti1 (Hop-fw: 5′-AGACGAAGAACGCGAGA
AAG-3′; Hop-rev: 5′-TATATGCCCTCGGGTCTTTG-3′)
or spliced bZIP60 (bZIP60F: 5′-GCAGAAAATCAAGCT
TTGCGCT-3′; bZIP60SR: 5′-AGGGAACCCAACAGCAGACT-
3′) as reported earlier (Gaguancela et al., 2016). For normalization
of target gene expression, the expression of either actin or
ubiquitin was determined (Act-for: 5′-GCTGGATTTG
CTGGTGATG-3′; Act-rev: 5′-TCCTTCTGTCCCATTCCGAC-
3′; UBQ10fw: 5′-AGATCCAGGACAAGGAAGGTATTC-3′;
UBQ10rev: 5′-CGCAGGACCAAGTGAAGAGTAG-3′). As a
reference dye, SYBR green was used (Brilliant II SYBR R© MM
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or Brilliant III SYBR R© MM, Agilent, Santa Clara, CA, United
States). The reactions were performed in triplicates in Agilent
MX3000P or AriaMx real-time thermocyclers. Data evaluation
was performed either by the Stratagene MxPro software (Agilent)
or (when the AriaMx thermocycler was used) according to Livak
and Schmittgen (2001).

Extraction of Salicylic Acid and HPLC
Analysis
Salicylic acid (SA) was extracted as reported earlier (Nawrath
and Metraux, 1999). To each sample 250 ng of ortho-anisic acid
were added as internal standard to which the measured values
were corrected, as described before (Meuwly and Metraux, 1993).
For each line, three to four biological replicates were included
in the evaluation. HPLC separation of SA and o-anisic acid was
performed on a Dionex Summit system (P680, ASI-100, TCC-
100, RF-2000, Thermo Fisher) equipped with a Phenomenex
Luna Security Guard C18 column (4.0 mm × 3.0 mm,
Phenomenex, Torrance, CA, United States) followed by a 5-µm
Luna C18(2) reverse-phase column (250 mm × 4.6 mm,
Phenomenex) as described by Voll et al. (2012).

Measurement of Electrical Conductivity
As a proxy for cell death in response to tunicamycin treatment
of N. tabacum leaf disks (Diameter ∼9 mm), the increasing
electrical conductivity caused by leakage of ions into the
floating medium was measured. In short, leaf disks were floated
abaxial side down on 1 ml H2O in a 24-well plate for 1–2 h.
Subsequently, the water was discarded and replaced by either
1 ml of 10 µg ml−1 tunicamycin in 0.4% dimethyl sulfoxide
(DMSO) or 1 ml 0.4% DMSO as control. At each timepoint,
140 µl of the floating medium was pipetted on the electrode of
a conductivity meter (LAQUAtwin, Horiba Scientific, Bensheim,
Germany) for measurement and afterward returned into its
well. Data analysis was carried out with four to six biological
replicates.

Statistical Analyses
Bonferroni-corrected student’s t-tests were carried out in
Microsoft Excel 2010 (Microsoft, Redmond, WA, United States),
while analysis of variance (ANOVA) followed by Tukey’s
Honestly Significant Difference test was performed using IBM
SPSS Statistics 24 (IBM, Armonk, NY, United States).

RESULTS

Generation of Hop/Sti1-Silenced
Transgenic Nicotiana tabacum Plants
The expression of the cochaperone Hop/Sti1 in Nicotiana
tabacum cv. Samsun NN plants was downregulated by
posttranscriptional gene silencing using stable expression
of a hairpin RNA interference (RNAi) construct. The efficiency
of Hop/Sti1 silencing in T0-plants was tested by Western
blotting using affinity purified polyclonal antibody raised against
Hop/Sti1. Out of 78 regenerated plants, three independent

FIGURE 1 | Characterization of Hop/Sti1-RNAi plants. (A) Morphology of
wild-type (WT) Nicotiana tabacum cv. Samsun NN plant and Hop/Sti1-RNAi
plants from three independent lines. Height of the plants is given as average
plus/minus standard deviation, calculated from ten individual plants per line.
Difference between wild-type and transgenic plants is significant
(Bonferroni-corrected student’s t-test, p-values of 4.51E–05, 7.14E–05 and
1.09E–04 for lines #17, #59, and #61, respectively) (B) Western blot analysis
of Hop/Sti1 protein level in wild-type and Hop/Sti1-RNAi lines using an
anti-Hop/Sti1 antibody. Hop/Sti1 is detectable in wild-type plants, but not in
the transgenic lines. Ponceau S staining confirms equal loading of the gel.

lines (#17, #59, and #61) with almost no detectable Hop/Sti1
protein in leaves were selected for further analysis. Compared
to wild-type, T1-offspring of these lines showed no drastic
growth phenotype but a mild, yet significant growth retardation
(Figure 1A, Bonferroni-corrected student’s t-test, p-values
of 4.51E−05, 7.14E−05, and 1.09E−04 for lines #17, #59,
and #61, respectively). To confirm the RNAi-mediated
absence of Hop/Sti1 in the T1-generation, quantitative real-
time PCR analysis and Western blotting was conducted.
In agreement with a downregulation of Hop/Sti1-mRNA
(Supplementary Figure S1), crude protein extracts from leaves of
transgenic plants showed no or almost no detectable Hop/Sti1
protein, while a strong signal could be obtained in extracts from
wild-type plants (Figure 1B). This indicates that Hop/Sti1 is
efficiently silenced in the three selected lines, offering an ideal
basis for further analysis.

Hop/Sti1-Silencing Impairs Maturation of
Receptor-Like Kinase CERK1, But Not
FLS2
In rice, Chen et al. (2010) were able to show the crucial
role of Hop/Sti1 in the maturation and trafficking of the
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FIGURE 2 | Detection of ROS production in response to
hexa-N-acetyl-chitohexaose treatment in wild-type plants and in
Hop/Sti1-RNAi line #61. Luminescence is given in relative luminescence units
(RLU), error bars represent the standard error.

N-acetylchitooligosaccharide-responsive RLK OsCERK1.
The group could show that cell cultures not expressing
Hop/Sti1 showed greatly decreased and/or delayed expression
of defense-related genes when treated with hexa-N-
acetylchitohexaose. Thus, we employed a similar approach
to analyze whether Hop/Sti1-silenced tobacco plants behave
in a comparable manner. To this end, we measured hexa-
N-acetylchitohexaose-induced accumulation of ROS in
leaf disks by means of a luminol/horseradish peroxidase-
based bioassay (Smith and Heese, 2014). In agreement
with results obtained in rice, wild-type control samples
exhibited increased ROS-levels when stimulated with the
oligosaccharide. In contrast to this, samples derived from
the transgenic line #61 showed no comparable increase in
ROS-production, confirming both the functional integrity of
the RNAi-line and the finding of Chen et al. (2010) in tobacco
(Figure 2).

Since the study in rice evaluated the lysine-motif RLK
OsCERK1 only, we wondered whether the cochaperone Hop/Sti1
might be generally involved in the trafficking of PRRs to
the plasma membrane. In order to test this hypothesis,
we analyzed the targeting of the well described leucine-
rich repeat RLK FLS2 by confocal laser scanning microscopy
(CLSM). Arabidopsis thaliana FLS2 tagged with mCherry
and under control of its native promoter was expressed
transiently in both wild-type Nicotiana tabacum cv. Samsun
NN plants and Hop/Sti1-RNAi line #61 together with a plasma
membrane marker tagged with GFP. Proper FLS2-targeting
could be observed in wild-type plants showing overlapping
fluorescence signals at the plasma membrane of coexpressing
cells (Figure 3A). The same result was found when FLS2-
mCherry and the plasma membrane marker were expressed
in Hop/Sti1-silenced leaves (Figure 3B). Furthermore, the
ratio of plasma membrane-localized FLS2-mCherry-signal to

cytoplasmic signal was found to be comparable in both wild-
type and RNAi-line (Figure 4), confirming that FLS2 is not
mistargeted in the transgenic plants. Both findings indicate
that the cochaperone is not, as was shown for OsCERK1,
crucial for the transport of FLS2 to the plasma membrane.
In addition to this, we examined the functionality of FLS2
in wild-type and Hop/Sti1-RNAi plants with respect to their
ability to perceive the FLS2 elicitor, the flagellin-peptide flg22.
Again the previously used ROS-bioassay was utilized as a
proxy for successful stimulation of the PRR. Thus, we observed
a positive and comparable oxidative burst reaction for both
wild-type and the transgenic line #61 (Figure 5), showing
that FLS2 is still functional and, unlike CERK1, Hop/Sti1-
independent.

Hop/Sti1-Silencing Renders Nicotiana
tabacum Tolerant to Potato Virus Y
With the silencing of Hop/Sti1, we intended to interrupt the
functional conjunction of Hsp70 and Hsp90. Apart from their
involvement in plant immune responses, both chaperones are
involved in a variety of other cellular processes and plant
viruses rely on the chaperone system for their translation,
replication, and movement (reviewed by Verchot, 2012). On
the other hand, cellular chaperones are also involved in
the induction of antiviral immune responses (Mandadi and
Scholthof, 2013). Based on this, and since Hop/Sti1 seemed
to be required for transport and maturation of RLKs in a
selective manner, we raised the question whether the silencing
of the cochaperone might also have an impact on processes
related to the perception of plant viruses. To investigate
this matter, we inoculated both wild-type and Hop/Sti1-RNAi
Nicotiana tabacum plants with the necrotic strain of Potato
virus Y (PVYN, type species of the genus Potyvirus). Typical
symptoms in the interaction between PVYN and Nicotiana
tabacum cv. Samsun NN include necrosis of stem and leaf
veins, leading to leaf deformation (Figure 6A, 12 days post-
inoculation). In contrast to this, tobacco plants silenced
for Hop/Sti1 did not develop such symptoms at any given
point of the infection (Figure 6B, 12 days post-inoculation).
Despite this lack of typical disease symptoms, an ELISA test
revealed that the virus accumulation in systemically infected
leaves was only slightly decreased compared to wild-type
plants (Figure 6C and as boxplot: Supplementary Figure S2).
From the three independent lines, only line #61 showed a
significant reduction of the viral titer (Bonferroni-corrected
student’s t-test, p-value: 1.89E−02). This finding could also
be verified by examination of viral RNA accumulation in the
same systemically infected leaves by reverse-transcription PCR
(Figure 6D). Thus, viral RNA could be detected at a level,
which was comparable to the wild-type control in two of three
independent lines and correlated with the results from the
ELISA. Considering a possible abrogation of Hop/Sti1-silencing
by viral silencing-suppression, we monitored the expression
of the cochaperone by Western blotting. Still, Hop/Sti1 was
barely detectable in the transgenic lines, confirming the integrity
of the silencing also in PVYN-infected plants (Supplementary
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FIGURE 3 | Assessment of FLS2 plasma membrane-targeting using confocal laser scanning microscopy. Coexpression of FLS2-mCherry under control of its own
promoter with a plasma membrane-GFP marker. (A) In wild-type plants. (B) In Hop/Sti1-RNAi line #61. (I) Plasma membrane-GFP marker. (II) FLS2-mCherry. (III)
Merged channels. The dotted box is magnified in the lower right corner, an asterisk marks a coexpressing cell. Scale bars represent 10 µm. (IV) A diagram of the
fluorescence signal intensities along the region of interest (ROI, green arrow) shown in the inlay in panel III. Dotted lines indicate the intensity maxima representing the
plasma membranes of two neighboring cells.
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FIGURE 4 | Assessment of potential FLS2-mistargeting in Hop/Sti1-RNAi lines. (A) Wild-type Nicotiana tabacum transiently expressing FLS2-mCherry, fluorescence
signal intensities measured along the ROI (green arrow) are depicted in the diagram below, showing maxima at the plasma membranes and lower basal signal in the
cytoplasmic areas. (B) Hop/Sti1-RNAi plants transiently expressing FLS2-mCherrry, fluorescence signal intensities depicted analogous to (A). Scale bars represent
20 µm.

Figure S3). Taken together, this indicates that Hop/Sti1 is
a determinant of PVYN symptom development in Nicotiana
tabacum.

Hop/Sti1-Silencing Does Not Affect PVYN

Long-Distance Movement and Infectivity
To investigate whether virus infectivity or long-distance
movement through the vascular tissue was impeded by the
knockdown of Hop/Sti1, grafting experiments were conducted.
Firstly, non-infected wild-type scions were grafted on PVYN-
infected Hop/Sti1-RNAi rootstocks. As expected, transgenic
rootstocks did not show viral symptoms 2 weeks after grafting,
while severe symptoms of viral presence could be observed on the
wild-type scions (Figure 7A). In addition, reverse-transcription
PCR was performed to detect viral RNA in systemically infected
leaves of the scion. The viral genome could be detected in three

individual scions at varying levels that were comparable to
control grafts (Figure 7B). The observed variation was likely
caused by non-synchronized functional symplasmic fusion of
scions and rootstocks resulting in differences in viral spreading.
Presence of the viral genome in the scions proves that (I) PVYN

derived from the transgenic rootstocks is still infectious and (II)
systemic virus spreading is not affected by the silencing of the
cochaperone.

PVYN Symptom Development Is Not
Mediated by a Systemic Signal and May
Not Be Restored by Grafting on
Wild-type Rootstock
Next, non-infected transgenic scions were grafted on PVYN-
infected wild-type rootstocks. While the rootstocks exhibited
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FIGURE 5 | Detection of ROS production in response to flg22 treatment in wild-type plants and in Hop/Sti1-RNAi line #61. Luminescence is given in relative
luminescence units (RLU), error bars represent the standard error.

severe symptoms of PVYN infection, the transgenic scions were
symptom-free 2 weeks after grafting (Figure 7C). Furthermore,
semi-quantitative reverse-transcription PCR confirmed the
presence of the viral genome in the Hop/Sti1-RNAi scions
(Figure 7B). This indicates that the development of PVYN

symptoms may not be induced by systemic signaling, thus
may not be restored by grafting on an infected wild-type
rootstock. Hence, suppression of viral symptoms in Hop/Sti1-
RNAi lines has to be ascribed to a defect in a local
mechanism.

Typical Defense Responses after PVYN

Infection Are Impaired in
Hop/Sti1-Silenced Plants
Although susceptible to PVYN, wild-type tobacco is still
responding to the viral intrusion by induction of basal defense
mechanisms such as pathogenesis-related (PR) gene expression,
SA mobilization and the production of ROS (reviewed, e.g.,
by Mandadi and Scholthof, 2013). Given the selective role of
Hop/Sti1 in the maturation of PRRs, we hypothesized that in
case of PVYN infection of the transgenic plants, the perception
of the pathogen may be impaired, leading to a lack of defense
response induction, which would otherwise be manifested as
disease symptoms. Hence, we investigated the responsiveness of
PR-genes and the accumulation of SA in both wild-type and
knockdown plants following PVYN infection. In the case of
the PR-genes, relative expression levels of PR-1 as well as PR-2
were investigated by quantitative real-time PCR in systemically
infected leaves 12 days after inoculation. Compared to non-
infected control plants, PR-1 expression in wild-type tobacco
was induced approximately 66-fold in response to the viral
infection (Figure 8A). However, the transgenic plants exhibited
a significantly lower induction of the PR-1 gene (5- to 22-fold,
analysis of variance: Supplementary Table S1) in comparison.
Although not as pronounced as for PR-1, PR-2 expression was

also strongly induced in wild-type plants, whereas Hop/Sti1-
silenced plants showed a significantly lower induction of PR-
2 expression upon virus infection, compared to the control
(Figure 8B, analysis of variance: Supplementary Table S2). For
measurement of free SA content, samples were taken from the
third leaf over the PVYN inoculation site prior to, as well as 5
and 12 days after inoculation. At the late time point, additional
samples were collected from the fifth leaf over the inoculation
site since the symptoms of viral infection in wild-type plants were
strongest in this leaf. As shown in Figure 8C, the content of
SA in wild-type plants stayed constant during the first 5 days,
yet rose significantly at day 12 after inoculation (analysis of
variance: Supplementary Table S3). In addition, the sample
derived from the leaf exhibiting stronger disease symptoms
contained an even higher amount of SA. In contrast to this,
the SA levels in the transgenic lines stayed constant at all time
points in the third leaf over the inoculation site. An increase
could only be observed in the samples derived from the fifth
leaf, however, to a significantly lower extent compared to the
control. Altogether, these data suggest a reduced responsiveness
of basal immune mechanisms in the Hop/Sti1-RNAi plants upon
PVYN infection, possibly caused by the failure to recognize the
virus. At this point it is important to note that, in spite of the
impaired basal defense, the PVYN titer in the transgenic lines
was not increased but slightly reduced as seen in the previous
experiments.

GFP-Hop/Sti1 Colocalizes with
ER-Derived Viral Structures in Nicotiana
benthamiana
The failure of PVYN to benefit from the reduced host defense
response in Hop/Sti1-silenced plants may be explained by a
role of the cochaperone during viral replication/translation.
In contrast to the rice blast fungus, which benefits from
the silencing of Hop/Sti1 in rice (Chen et al., 2010), plant
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FIGURE 6 | Hop/Sti1-RNAi plants are PVYN-tolerant. (A) Nicotiana tabacum
cv. Samsun NN wild-type plant infected by PVYN. Twelve days after
mechanical inoculation, plants show severe infection symptoms including leaf
deformation (left) and necrosis of stem and leaf veins (right).
(B) Hop/Sti1-RNAi plants infected with PVYN. Transgenic plants look healthy
and do not show typical disease symptoms 12 days after inoculation.
(C) PVY-CP ELISA. PVYN titer was determined in infected wild-type and
Hop/Sti1-RNAi plants. An asterisk indicates significance (Bonferroni-corrected
student’s t-test, p-value: 1.89E– 02). Error bars represent the standard error.
(D) Accumulation of viral RNA in infected wild-type and Hop/Sti1-RNAi plants.
RT-PCR was used to amplify a 122-basepair fragment of the viral RNA
encoding the coat protein (depicted by an arrow labeled CP). The amplicon
could be detected in infected wild-type and transgenic plants both, but not in
non-infected control plants. Values below depict the respective band
intensities relative to the infected wild-type control.

viruses are heavily dependent on miscellaneous host factors
to ensure their own genome translation, replication, cell-to-
cell movement, as well as other functions vital to effective
establishment of virulence (Jiang et al., 2006; Stapleford and
Miller, 2010; Heinlein, 2015). Assuming that PVYN is relying

FIGURE 7 | Reciprocal grafting of wild-type and Hop/Sti1-RNAi plants. (A) A
wild-type scion was grafted on a PVYN-infected Hop/Sti1-RNAi rootstock.
Two weeks after grafting, the wild-type type scion displayed infection
symptoms. (B) Accumulation of viral RNA in scions of grafted wild-type and
Hop/Sti1-RNAi plants, samples taken 2 weeks after grafting. RT-PCR was
used to amplify a 122-basepair fragment of the viral RNA encoding the coat
protein (depicted by an arrow labeled CP). Grafting combinations are labeled
as scion over infected rootstock. Viral RNA could be detected in all tested
mixed grafts (left) as well as in control plants (right, wild-type scion on infected
wild-type rootstock, analogous for transgenic line #61). (C) Hop/Sti1-RNAi
scion grafted on infected wild-type rootstock. Two weeks after grafting, the
transgenic scion was still symptom-free, although viral RNA was detectable
(compare to B).

on the cochaperone for its own proliferation, a reduced
virus accumulation, despite a lower basal defense response of
the host, seems conceivable. To investigate whether Hop/Sti1
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FIGURE 8 | Impaired immune responses after PVYN inoculation in
Hop/Sti1-RNAi plants. (A) PR-1 expression was analyzed by quantitative
real-time PCR. The expression increased significantly (ANOVA, p-value:
1.2E–05) in samples derived from systemically infected wild-type leaves
compared to non-infected samples. PR-1 expression in infected
Hop/Sti1-RNAi lines was in all cases significantly (ANOVA, p-values of
3.9E–04, 4.9E–05, 2.2E–05 for lines #17, #59, and #61, respectively) lower
than in infected wild-type plants. Error bars represent the standard error.
Different letters indicate statistically significant differences (ANOVA, p < 0.05).
(B) PR-2 expression was analyzed by quantitative real-time PCR. Infection of
wild-type plants with PVYN led to a significant induction of PR-2 expression

(Continued)

FIGURE 8 | Continued
(ANOVA, p-value: 4.3E–05). Infected transgenic plants again showed a
significantly (ANOVA, p-values of 2.6E–03, 1.3E–03, and 7.2E–03 for lines
#17, #59, and #61, respectively) lower PR-2 expression than infected
wild-type plants. Error bars represent the standard error. Different letters
indicate statistically significant differences (ANOVA, p < 0.05). (C) Content of
free salicylic acid (SA). In wild-type plants, SA levels increased significantly
after 12 days three (ANOVA, p-value: 1.8E–03) and five (ANOVA, p-value:
2.3E–12) leaves over the initial inoculation site. At the same time, SA content
in transgenic plants was not significantly altered three leaves over the
inoculation site. Five leaves over the inoculation site, SA levels were
significantly (ANOVA, p-value: 6.2E–07) lower compared to wild-type. Error
bars represent the standard error. Different letters indicate statistically
significant differences (ANOVA, p < 0.05).

may be associated with virus replication/translation, Nicotiana
tabacum Hop/Sti1 was fused to the carboxy-terminus of
the green fluorescent protein GFP for localization studies
in Nicotiana benthamiana. Consistent with previous studies,
the fusion protein was found in the cytoplasm and the
ER (Chen et al., 2010; Popescu, 2012), but also in the
nucleus (Figure 9A). Western blotting using both an anti-
Hop/Sti1 antibody and an anti-GFP antibody confirmed the
integrity of the construct, since no degradation products could
be detected (Figure 9B). To ascertain whether Hop/Sti1 is
involved in viral processes, we expressed the GFP-tagged
protein in PVYN-infected and in non-infected Nicotiana
benthamiana. Since it is well-known that potyviral infections
lead to rearrangements of the ER-membrane system to
facilitate viral replication and translation (Schaad et al., 1997;
Cotton et al., 2009; Grangeon et al., 2012; Ivanov et al.,
2014; Heinlein, 2015), an ER-marker fused to mCherry was
coexpressed (Nelson et al., 2007). In PVYN-infected cells,
ER-membranes stained by the marker protein appeared as
aggregates and presumably represent aforementioned viral
replication complexes (VRCs, Figure 9C, first and second
row, panels II). Remarkably, coexpressed GFP-Hop/Sti1 is also
recruited to the virus-induced aggregates (Figure 9C, first and
second row, panels I), which colocalize with the ER-marker-
stained VRCs (Figure 9C, first and second row, panels III).
In contrast to this, such aggregates could never be observed
in non-infected cells (Figure 9C, third row). This finding
demonstrates that Hop/Sti1 changes its localization in virus
infected cells, suggesting its involvement in viral replication
and/or translation.

Silencing of Hop/Sti1 in Tobacco Does
Not Interfere with the Unfolded Protein
Response
The UPR represents a cellular reaction to the accumulation of
un- or misfolded proteins in the ER, aiming to restore protein
homeostasis. Failure at this restoration ultimately leads to the
induction of apoptosis or programmed cell death (Adamakis
et al., 2011; Walter and Ron, 2011; Iwata and Koizumi, 2012;
Williams et al., 2014). Of note, a recent study in Arabidopsis
thaliana implicated a Hop/Sti1-homolog in the ER stress
response, suggesting AtHOP3 being a negative regulator of
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FIGURE 9 | Continued
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FIGURE 9 | Continued
Subcellular distribution of GFP-Hop/Sti1 in Nicotiana benthamiana. (A) GFP-Hop/Sti1 localized to the cytoplasm, ER, and nucleus. Maximum projection of a
confocal Z-stack, scale bar represents 10 µm. (B) Detection of GFP-Hop/Sti1 by Western blotting using anti-Hop/Sti1- or anti-GFP-antibodies. With the
anti-Hop/Sti1 antibody, both the endogenous protein and the GFP-fusion protein could be detected as indicated by arrows. The anti-GFP antibody only yielded one
band, confirming the stability of the fusion protein. (C) Colocalization of GFP-Hop/Sti1 and an ER-mCherry marker in PVYN-infected (first and second row) and in
non-infected Nicotiana benthamiana plants (third row). In PVYN-infected cells, GFP-Hop/Sti1 was found to be retained in aggregates particularly in the vicinity of the
nucleus (panels I, nucleus marked with N, arrowheads point to aggregates) that colocalized with a coexpressed ER-marker (panels II, ER-mCherry marker; panels III,
merged images, arrowheads point to aggregates). In non-infected cells, no such aggregates could be observed. Images are maximum projections of confocal
Z-stacks, scale bars represent 10 µm.

this pathway (Fernández-Bautista et al., 2017). In addition
to this, other studies showed that potyviral infections also
lead to an induction of the UPR. Here, the ER-membrane
localized unfolded protein sensor inositol-requiring enzyme
1(IRE1) mediates the unconventional splicing of cytosolic bZIP60
mRNA, generating the template for an active transcription
factor that can upregulate the expression of certain UPR target
genes in the nucleus. However, it seems still unclear whether
the virus benefits from this induction (Zhang et al., 2015) or
whether the UPR poses a defense mechanism restricting viral
spread (Gaguancela et al., 2016). In any case, considering the
observed colocalization of Hop/Sti1 with aggregates evidently
derived from the ER and the above-mentioned fact that
prolonged ER stress may induce programmed cell death,
we next investigated a possible connection of the ER stress
pathway and the loss of PVYN symptoms in Hop/Sti1-
RNAi plants. To this end, we first inhibited N-linked protein
glycosylation by treatment of either wild-type or Hop/Sti1-
RNAi leaf disks with tunicamycin and thereby provoked
accumulation of unfolded proteins (Takatsuki and Tamura,
1971; Tkacz and Lampen, 1975). As an indicator of cell
death, we measured the electrical conductivity of the floating
buffer medium caused by leakage of ions from the dying
cells. During the observation period of 8 days, the electrical
conductivity of the wild-type control plant samples rose to a
value of approximately 600 µS cm−1, while untreated samples
remained at a basal value of ca. 40 µS cm−1 (Figure 10A).
Regarding the tunicamycin-treated samples derived from the
transgenic line #61, we did not find significant differences
to the wild-type samples. This suggests that programmed cell
death in fully grown leaves, mediated by the tunicamycin-
induced UPR, is not affected by the knockdown of the
cochaperone Hop/Sti1. In order to not neglect viral processes and
mechanisms, we furthermore investigated the UPR-induction
in response to PVYN infection in wild-type and Hop/Sti1-
knockdown plants. To this end, total RNA was isolated
from locally infected leaves prior to infection as well as 2
and 5 days after inoculation. Using quantitative real-time
PCR, the relative content of spliced bZIP60 mRNA was
determined as reported before (Gaguancela et al., 2016). In
support of the tunicamycin-floating assay, we could find a
similar increase in bZIP60-splicing over time for both wild-
type and Hop/Sti1-RNAi samples (Figure 10B and as boxplot:
Supplementary Figure S4). In summary, the knockdown of
Hop/Sti1 by RNAi does not affect the induction of the UPR
or the affiliated programmed cell death reaction in response
to PVYN or tunicamycin in Nicotiana tabacum leaves, i.e., the

Hop/Sti1-dependent formation of PVYN infection symptoms
does not stem from the induction of ER stress-mediated cell
death.

DISCUSSION

In this study, we investigated the role of the tobacco
Hsp70/Hsp90 organizing protein Hop/Sti1 in maturation and
trafficking of plant RLKs. The cochaperone has previously been
shown to participate in the maturation and plasma membrane-
targeting of rice chitin PRR CERK1, with which it interacts both
at the ER and the plasma membrane. Rice plants defective of
Hop/Sti1 could be shown to be more susceptible to rice blast
fungus, whereas overexpressing lines were more resistant (Chen
et al., 2010). Although it has been speculated that Hop/Sti1
plays a central role in PRR trafficking in general, PRRs other
than CERK1 were not examined in depth. To test for a general
function of Hop/Sti1 in PRR trafficking, we generated Nicotiana
tabacum cv. Samsun NN plants stably expressing an RNAi
construct to silence Hop/Sti1 expression. Similar to what has
been observed in rice, the transgenic plants were not able to
respond to CERK1-stimulation. Since the study in rice stated that
Hop/Sti1 interacts with Oryza sativa FLS2 in yeast-based split-
ubiquitin- and in bimolecular fluorescence complementation
experiments, but no evaluation of a functional dependency was
performed, we expressed a FLS2-mCherry fusion protein under
control of the FLS2 promoter in wild-type and transgenic plants.
Noteworthy, CERK1 belongs to the family of lysine-motif RLKs,
while FLS2 is a member of the leucine-rich repeat RLK class (Shiu
et al., 2004; Miya et al., 2007). Microscopical analyses revealed
successful targeting of FLS2 to the plasma membrane in wild-
type and transgenic plants, suggesting a Hop/Sti1-independent
trafficking mechanism. To investigate the functional integrity of
the PRR, leaf disks were furthermore treated with flg22 in a
floating assay. Both wild-type and Hop/Sti1-silenced leaf disks
were able to react to the stimulus with generation of ROS,
proving that the receptor is still functional. In conclusion, this
shows that Hop/Sti1 is not a generally required facilitator of
PRR-plasma membrane transport, but specifically takes part in
the maturation of CERK1. Regarding the previously published
interaction between Hop/Sti1 and FLS2, a functional relevance
could not be observed. Whether other PRRs are also dependent
on Hop/Sti1 for correct trafficking remains to be investigated in
future studies.

In general, immune responses to virus infections are mounted
by recognition of viral proteins by R proteins (Mandadi
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FIGURE 10 | Hop/Sti1-knockdown does not affect the unfolded protein
response (UPR) in Nicotiana tabacum leaves. (A) Cell death in response to
tunicamycin treatment in wild-type and Hop/Sti1-RNAi plants. Leaf disks were
floated on a tunicamycin-solution, ion leakage due to cell death was
measured as electrical conductivity of the solution. Error bars represent the
standard error. (B) Induction of the UPR by PVYN. Analysis of relative content
of spliced bZIP60 by quantitative real-time PCR showed no significant
difference (Bonferroni-corrected students t-test, p < 0.05) between wild-type
and Hop/Sti1-RNAi plants. Samples were taken from inoculated leaves at the
indicated time points. Error bars represent the standard error.

and Scholthof, 2013). In case of the well-studied interaction
between tobacco mosaic virus (TMV) and the R protein N,
the viral replicase p50 interacts with the N-receptor interacting
protein 1 (NRIP1) in the cytoplasm. This protein complex is
recognized by the N immune receptor, which then induces
defense signaling, eventually mediating TMV-resistance (Caplan
et al., 2008). Intriguingly, efficient N-mediated TMV-resistance
is also dependent on the presence of a RLK of unknown
function, designated induced RLK (IRK), whose maturation
is dependent on ER-localized chaperones such as protein
disulfide isomerases and calreticulins (Caplan et al., 2009).

This suggests that recognition and/or establishment of anti-viral
defense responses is not the sole domain of R proteins, but
also involves plasma membrane-localized receptors. Hence, we
aimed to gain further insight into a potential role of Hop/Sti1
during plant virus perception. Therefore, the transgenic lines
were inoculated with PVYN, leading to a loss of infection
symptoms, but only a moderate reduction of PVYN titer and
no impairment of virus progeny infectivity. Although the origin
of viral symptom development is not entirely understood,
evidence exist that, e.g., cell death, as seen during systemic
necrosis, is a consequence of a host immune response failing
to ultimately restrict viral spread (Komatsu et al., 2010;
Pacheco et al., 2012). Considering this, we hypothesized that,
due to a defect in PRR/RLK-maturation/trafficking, Hop/Sti1-
RNAi plants were not able to perceive the viral presence
anymore, and thus failed to induce defense-related reactions.
Indeed, infected transgenic plants showed decreased PR-
gene expression and lower SA-levels compared to wild-type,
supporting the proposition of a connection of plant defense
responses and viral symptom development. Furthermore, it
strengthens the assumption of an involvement of Hop/Sti1
in PVYN recognition, possibly during receptor maturation or
trafficking.

The observed impairment of basal immune responses in
Hop/Sti1-RNAi plants seems to be in conflict with the slightly
reduced PVYN titer. In fact, one would rather expect an increase
in viral proliferation, since PVYN is not facing any resistance
anymore. However, the single-stranded RNA genome of PVY
encodes only 11 viral proteins, and thus is well-known to
be heavily dependent on co-opting cellular proteins (Urcuqui-
Inchima et al., 2001; Chung et al., 2008). Especially chaperone
proteins of host plants are crucial for several steps during the
potyvirus replication cycle (reviewed by Verchot, 2012). For
instance, the proteasomal degradation of viral capsid protein
during viral RNA uncoating is mediated by delivery of capsid
protein to Hsp70 by cochaperone Hsp40, where it is designated
for degradation by polyubiquitination (Hofius et al., 2007;
Hafren et al., 2010). Furthermore, the viral RNA-dependent RNA
polymerase was found to interact with an Hsp70 protein in
ER-derived membranes, possibly representing viral replication
complexes (Dufresne et al., 2008). Therefore, an involvement of
the cochaperone in a virus-related process seemed conceivable.
In agreement with this, GFP-tagged Hop/Sti1 was found in
aggregates in PVYN-infected N. benthamiana cells, while this
was not the case in non-infected plants. Coexpression with
an ER-marker revealed that the observed aggregates colocalize
with aggregates derived from the ER, and therefore may
represent VRCs. Thus, it is tempting to speculate about a certain
function of Hop/Sti1 in optimization of viral replication, and the
aforementioned presence of Hop/Sti1 interactor Hsp70 in the
same complex endorses this hypothesis even more.

It was only recently shown that potyvirus infection induces
ER stress and the UPR (Zhang et al., 2015; Gaguancela et al.,
2016). Since prolonged ER stress also leads to programmed
cell death (Adamakis et al., 2011; Walter and Ron, 2011; Iwata
and Koizumi, 2012; Williams et al., 2014) and AtHOP3 was
implicated in negative regulation of the ER stress response
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(Fernández-Bautista et al., 2017), we assessed the relation of
Hop/Sti1, the UPR and PVY infection in Nicotiana tabacum.
However, Hop/Sti1-RNAi plants showed no significant difference
in tunicamycin-induced cell death or PVYN infection-mediated
splicing of bZIP60. Hence, in contrast to the null-mutant utilized
in the study in Arabidopsis thaliana mentioned above, the
mere knockdown of the cochaperone by RNAi does neither
enhance, nor impair ER stress-induced cell death in Nicotiana
tabacum leaves. Furthermore, PVYN-induced symptoms are not
a consequence of prolonged ER stress leading to cell death, but
occur rather independent of the UPR pathway.

In summary, the cochaperone Hop/Sti1 is a pivotal cellular
component for maturation and plasma membrane trafficking
of certain, but not all PRRs/RLKs. Future studies will have
to elucidate, to what extent PRRs/RLKs other than CERK1
are relying on the same pathway. We furthermore hypothesize
that, during infection with PVYN, Hop/Sti1 is playing an
ambivalent role: On the one hand, it is recruited by the viral
machinery to boost PVY proliferation, possibly at the stage of
viral genome replication. On the other hand, the cochaperone
is necessary to enable sensing of the viral presence in the
host and thus allowing for induction of defense responses.
This may be achieved by a yet unknown PRR/RLK, which is
contributing to antiviral measures similar to IRK in N-mediated
TMV resistance. In the interaction of PVYN with Nicotiana
tabacum, however, these antiviral measures fail to restrict the
virus and are thus perceived as necrotic symptoms. Should
this hypothesis prove true, future studies of Hop/Sti1’s target
receptors will lead to a better understanding of virus-host
interactions, antiviral defense responses and possibly plant innate
immunity in general.

AUTHOR CONTRIBUTIONS

US and H-PM conceived and designed the experiments; JH
measured extracted SA by HPLC; H-PM and FB generated the
Hop/Sti1-RNAi-line and antibody; CL and MK performed the
experiments and together with US analyzed the data; CL and US
wrote the manuscript.

FUNDING

This work was supported by the Deutsche Forschungsge-
meinschaft (SFB796 subproject C2).

ACKNOWLEDGMENTS

We would like to thank Barbara Kettig (IPK) for excellent
technical assistance and Christiane Hedtmann (IPK) for
screening of the primary transformants. The authors would like
to acknowledge the staff of the Optical Imaging Centre Erlangen
for advice on and technical maintenance of the Leica TCS SP5
II. We thank Prof. Silke Robatzek (The Sainsbury Laboratory,
Norwich, United Kingdom) for providing the FLS2-plasmid.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fpls.2017.01754/
full#supplementary-material

REFERENCES
Adamakis, I. D., Panteris, E., and Eleftheriou, E. P. (2011). The fatal effect of

tungsten on Pisum sativum L. root cells: indications for endoplasmic reticulum
stress-induced programmed cell death. Planta 234, 21–34. doi: 10.1007/s00425-
011-1372-5

Alvira, S., Cuellar, J., Rohl, A., Yamamoto, S., Itoh, H., Alfonso, C., et al.
(2014). Structural characterization of the substrate transfer mechanism in
Hsp70/Hsp90 folding machinery mediated by Hop. Nat. Commun. 5:5484.
doi: 10.1038/ncomms6484

Bauer, Z., Gomez-Gomez, L., Boller, T., and Felix, G. (2001). Sensitivity of different
ecotypes and mutants of Arabidopsis thaliana toward the bacterial elicitor
flagellin correlates with the presence of receptor-binding sites. J. Biol. Chem.
276, 45669–45676. doi: 10.1074/jbc.M102390200

Beczner, L., Horvath, J., Romhanyi, I., and Forster, H. (1984). Studies on the
etiology of tuber necrotic ringspot disease in potato. Potato Res. 27, 339–352.
doi: 10.1007/BF02357646

Bigeard, J., Colcombet, J., and Hirt, H. (2015). Signaling mechanisms in pattern-
triggered immunity (PTI). Mol. Plant 8, 521–539. doi: 10.1016/j.molp.2014.
12.022

Bullock, W. O., Fernandez, J. M., and Short, J. M. (1987). Xl1-blue - a
high-efficiency plasmid transforming reca Escherichia coli strain with beta-
galactosidase selection. Biotechniques 5, 376–378.

Caplan, J. L., Mamillapalli, P., Burch-Smith, T. M., Czymmek, K., and Dinesh-
Kumar, S. P. (2008). Chloroplastic protein NRIP1 mediates innate immune
receptor recognition of a viral effector. Cell 132, 449–462. doi: 10.1016/j.cell.
2007.12.031

Caplan, J. L., Zhu, X., Mamillapalli, P., Marathe, R., Anandalakshmi, R.,
and Dinesh-Kumar, S. P. (2009). Induced ER chaperones regulate

a receptor-like kinase to mediate antiviral innate immune response
in plants. Cell Host Microbe 6, 457–469. doi: 10.1016/j.chom.2009.
10.005

Chen, L., Hamada, S., Fujiwara, M., Zhu, T., Thao, N. P., Wong, H. L., et al.
(2010). The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and
transport of a PAMP receptor in rice innate immunity. Cell Host Microbe 7,
185–196. doi: 10.1016/j.chom.2010.02.008

Chen, S., Prapapanich, V., Rimerman, R. A., Honore, B., and Smith,
D. F. (1996). Interactions of p60, a mediator of progesterone receptor
assembly, with heat shock proteins hsp90 and hsp70. Mol. Endocrinol. 10,
682–693.

Chen, S. Y., and Smith, D. F. (1998). Hop as an adaptor in the heat shock protein
70 (Hsp70) and Hsp90 chaperone machinery. J. Biol. Chem. 273, 35194–35200.
doi: 10.1074/jbc.273.52.35194

Chinchilla, D., Bauer, Z., Regenass, M., Boller, T., and Felix, G. (2006).
The Arabidopsis receptor kinase FLS2 binds flg22 and determines the
specificity of flagellin perception. Plant Cell 18, 465–476. doi: 10.1105/tpc.105.
036574

Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones,
J. D., et al. (2007). A flagellin-induced complex of the receptor FLS2 and
BAK1 initiates plant defence. Nature 448, 497–500. doi: 10.1038/nature
05999

Chung, B. Y., Miller, W. A., Atkins, J. F., and Firth, A. E. (2008). An overlapping
essential gene in the Potyviridae. Proc. Natl. Acad. Sci. U.S.A. 105, 5897–5902.
doi: 10.1073/pnas.0800468105

Cotton, S., Grangeon, R., Thivierge, K., Mathieu, I., Ide, C., Wei, T., et al. (2009).
Turnip mosaic virus RNA replication complex vesicles are mobile, align with
microfilaments, and are each derived from a single viral genome. J. Virol. 83,
10460–10471. doi: 10.1128/JVI.00819-09

Frontiers in Plant Science | www.frontiersin.org 15 October 2017 | Volume 8 | Article 1754

https://www.frontiersin.org/articles/10.3389/fpls.2017.01754/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2017.01754/full#supplementary-material
https://doi.org/10.1007/s00425-011-1372-5
https://doi.org/10.1007/s00425-011-1372-5
https://doi.org/10.1038/ncomms6484
https://doi.org/10.1074/jbc.M102390200
https://doi.org/10.1007/BF02357646
https://doi.org/10.1016/j.molp.2014.12.022
https://doi.org/10.1016/j.molp.2014.12.022
https://doi.org/10.1016/j.cell.2007.12.031
https://doi.org/10.1016/j.cell.2007.12.031
https://doi.org/10.1016/j.chom.2009.10.005
https://doi.org/10.1016/j.chom.2009.10.005
https://doi.org/10.1016/j.chom.2010.02.008
https://doi.org/10.1074/jbc.273.52.35194
https://doi.org/10.1105/tpc.105.036574
https://doi.org/10.1105/tpc.105.036574
https://doi.org/10.1038/nature05999
https://doi.org/10.1038/nature05999
https://doi.org/10.1073/pnas.0800468105
https://doi.org/10.1128/JVI.00819-09
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-08-01754 October 9, 2017 Time: 15:35 # 16

Lamm et al. Hop/Sti1 in PRR Maturation and Viral Infection

Cui, H., Tsuda, K., and Parker, J. E. (2015). Effector-triggered immunity: from
pathogen perception to robust defense. Annu. Rev. Plant Biol. 66, 487–511.
doi: 10.1146/annurev-arplant-050213-040012

Dangl, J. L., and Jones, J. D. (2001). Plant pathogens and integrated defence
responses to infection. Nature 411, 826–833. doi: 10.1038/35081161

Deblaere, R., Bytebier, B., De Greve, H., Deboeck, F., Schell, J., Van Montagu, M.,
et al. (1985). Efficient octopine Ti plasmid-derived vectors for Agrobacterium-
mediated gene transfer to plants. Nucleic Acids Res. 13, 4777–4788. doi: 10.1093/
nar/13.13.4777

Dittmar, K. D., Hutchison, K. A., Owens-Grillo, J. K., and Pratt, W. B. (1996).
Reconstitution of the steroid receptor.hsp90 heterocomplex assembly system
of rabbit reticulocyte lysate. J. Biol. Chem. 271, 12833–12839. doi: 10.1074/jbc.
271.22.12833

Dodds, P. N., and Rathjen, J. P. (2010). Plant immunity: towards an integrated
view of plant-pathogen interactions. Nat. Rev. Genet. 11, 539–548. doi: 10.1038/
nrg2812

Dufresne, P. J., Thivierge, K., Cotton, S., Beauchemin, C., Ide, C., Ubalijoro, E.,
et al. (2008). Heat shock 70 protein interaction with Turnip mosaic virus RNA-
dependent RNA polymerase within virus-induced membrane vesicles. Virology
374, 217–227. doi: 10.1016/j.virol.2007.12.014

Faurez, F., Baldwin, T., Tribodet, M., and Jacquot, E. (2012). Identification of
new Potato virus Y (PVY) molecular determinants for the induction of vein
necrosis in tobacco. Mol. Plant Pathol. 13, 948–959. doi: 10.1111/j.1364-3703.
2012.00803.x

Felix, G., Duran, J. D., Volko, S., and Boller, T. (1999). Plants have a sensitive
perception system for the most conserved domain of bacterial flagellin. Plant
J. 18, 265–276. doi: 10.1046/j.1365-313X.1999.00265.x

Fellerer, C., Schweiger, R., Schongruber, K., Soll, J., and Schwenkert, S.
(2011). Cytosolic HSP90 cochaperones HOP and FKBP interact with freshly
synthesized chloroplast preproteins of Arabidopsis. Mol. Plant 4, 1133–1145.
doi: 10.1093/mp/ssr037

Fernández-Bautista, N., Fernández-Calvino, L., Muñoz, A., and Castellano, M. M.
(2017). HOP3, a member of the HOP family in Arabidopsis, interacts with
BiP and plays a major role in the ER stress response. Plant Cell Environ. 40,
1341–1355. doi: 10.1111/pce.12927

Flor, H. H. (1971). Current status of the gene-for-gene concept. Annu. Rev.
Phytopathol. 9, 275–296. doi: 10.1146/annurev-phyto-072910-095339

Gaguancela, O. A., Zuniga, L. P., Arias, A. V., Halterman, D., Flores, F. J.,
Johansen, I. E., et al. (2016). The IRE1/bZIP60 pathway and bax inhibitor 1
suppress systemic accumulation of potyviruses and potexviruses in Arabidopsis
and Nicotiana benthamiana plants. Mol. Plant Microbe Interact. 29, 750–766.
doi: 10.1094/MPMI-07-16-0147-R

Gomez-Gomez, L., and Boller, T. (2000). FLS2: an LRR receptor-like kinase
involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol.
Cell. 5, 1003–1011. doi: 10.1016/S1097-2765(00)80265-8

Grangeon, R., Agbeci, M., Chen, J., Grondin, G., Zheng, H., and Laliberte, J. F.
(2012). Impact on the endoplasmic reticulum and Golgi apparatus of turnip
mosaic virus infection. J. Virol. 86, 9255–9265. doi: 10.1128/JVI.01146-12

Hafren, A., Hofius, D., Ronnholm, G., Sonnewald, U., and Makinen, K. (2010).
HSP70 and its cochaperone CPIP promote potyvirus infection in Nicotiana
benthamiana by regulating viral coat protein functions. Plant Cell 22, 523–535.
doi: 10.1105/tpc.109.072413

Heinlein, M. (2015). Plant virus replication and movement. Virology 47, 657–671.
doi: 10.1016/j.virol.2015.01.025

Herbers, K., Meuwly, P., Frommer, W. B., Metraux, J. P., and Sonnewald, U. (1996).
Systemic acquired resistance mediated by the ectopic expression of invertase:
possible hexose sensing in the secretory pathway. Plant Cell 8, 793–803.
doi: 10.1105/tpc.8.5.793

Hofius, D., Maier, A. T., Dietrich, C., Jungkunz, I., Bornke, F., Maiss, E., et al.
(2007). Capsid protein-mediated recruitment of host DnaJ-Like proteins is
required for Potato virus Y infection in tobacco plants. J. Virol. 81, 11870–11880.
doi: 10.1128/JVI.01525-07

Horsch, R. B., Fry, J. E., Hoffmann, N. L., Eichholtz, D., Rogers, S. G., and Fraley,
R. T. (1985). A simple and general-method for transferring genes into plants.
Science 227, 1229–1231. doi: 10.1126/science.227.4691.1229

Hoseini, H., Pandey, S., Jores, T., Schmitt, A., Franz-Wachtel, M., Macek, B., et al.
(2016). The cytosolic cochaperone Sti1 is relevant for mitochondrial biogenesis
and morphology. FEBS J. 283, 3338–3352. doi: 10.1111/febs.13813

Ivanov, K. I., Eskelin, K., Lohmus, A., and Makinen, K. (2014). Molecular
and cellular mechanisms underlying potyvirus infection. J. Gen. Virol. 95,
1415–1429. doi: 10.1099/vir.0.064220-0

Iwata, Y., and Koizumi, N. (2012). Plant transducers of the endoplasmic reticulum
unfolded protein response. Trends Plant Sci. 17, 720–727. doi: 10.1016/j.tplants.
2012.06.014

Jiang, Y., Serviene, E., Gal, J., Panavas, T., and Nagy, P. D. (2006). Identification
of essential host factors affecting tombusvirus RNA replication based on the
yeast Tet promoters hughes collection. J. Virol. 80, 7394–7404. doi: 10.1128/
JVI.02686-05

Johnson, B. D., Schumacher, R. J., Ross, E. D., and Toft, D. O. (1998). Hop
modulates Hsp70/Hsp90 interactions in protein folding. J. Biol. Chem. 273,
3679–3686. doi: 10.1074/jbc.273.6.3679

Jones, J. D., and Dangl, J. L. (2006). The plant immune system. Nature 444,
323–329. doi: 10.1038/nature05286

Karimi, M., Inze, D., and Depicker, A. (2002). GATEWAY((TM)) vectors for
Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193–195.
doi: 10.1111/jipb.12474

Komatsu, K., Hashimoto, M., Ozeki, J., Yamaji, Y., Maejima, K., Senshu, H., et al.
(2010). Viral-induced systemic necrosis in plants involves both programmed
cell death and the inhibition of viral multiplication, which are regulated by
independent pathways. Mol. Plant Microbe Interact. 23, 283–293. doi: 10.1094/
MPMI-23-3-0283

Kunze, G., Zipfel, C., Robatzek, S., Niehaus, K., Boller, T., and Felix, G.
(2004). The N terminus of bacterial elongation factor Tu elicits innate
immunity in Arabidopsis plants. Plant Cell 16, 3496–3507. doi: 10.1105/tpc.104.
026765

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the
head of bacteriophage T4. Nature 227, 680–685. doi: 10.1038/227680a0

Lamm, C. E., Link, K., Wagner, S., Milbradt, J., Marschall, M., and Sonnewald, U.
(2016). Human cytomegalovirus nuclear egress proteins ectopically expressed
in the heterologous environment of plant cells are strictly targeted to the nuclear
envelope. Viruses 8:73. doi: 10.3390/v8030073

Liang, X., Ding, P., Lian, K., Wang, J., Ma, M., Li, L., et al. (2016). Arabidopsis
heterotrimeric G proteins regulate immunity by directly coupling to the FLS2
receptor. Elife 5:e13568. doi: 10.7554/eLife.13568

Liu, T., Liu, Z., Song, C., Hu, Y., Han, Z., She, J., et al. (2012). Chitin-induced
dimerization activates a plant immune receptor. Science 336, 1160–1164.
doi: 10.1126/science.1218867

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression
data using real-time quantitative PCR and the 2−11CT Method. Methods 25,
402–408. doi: 10.1006/meth.2001.1262

Logemann, J., Schell, J., and Willmitzer, L. (1987). Improved method for the
isolation of RNA from plant tissues. Anal. Biochem. 163, 16–20. doi: 10.1016/
0003-2697(87)90086-8

Macho, A. P., and Zipfel, C. (2014). Plant PRRs and the activation of innate
immune signaling. Mol. Cell. 54, 263–272. doi: 10.1016/j.molcel.2014.03.028

Macho, A. P., and Zipfel, C. (2015). Targeting of plant pattern recognition receptor-
triggered immunity by bacterial type-III secretion system effectors. Curr. Opin.
Microbiol. 23, 14–22. doi: 10.1016/j.mib.2014.10.009

Mandadi, K. K., and Scholthof, K. B. (2013). Plant immune responses against
viruses: how does a virus cause disease? Plant Cell 25, 1489–1505. doi: 10.1105/
tpc.113.111658

Meuwly, P., and Metraux, J. P. (1993). Ortho-anisic acid as internal standard for
the simultaneous quantitation of salicylic acid and its putative biosynthetic
precursors in cucumber leaves. Anal. Biochem. 214, 500–505. doi: 10.1006/abio.
1993.1529

Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., et al. (2007).
CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in
Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 104, 19613–19618. doi: 10.1073/pnas.
0705147104

Morishima, Y., Kanelakis, K. C., Silverstein, A. M., Dittmar, K. D., Estrada, L., and
Pratt, W. B. (2000). The Hsp organizer protein hop enhances the rate of but
is not essential for glucocorticoid receptor folding by the multiprotein Hsp90-
based chaperone system. J. Biol. Chem. 275, 6894–6900. doi: 10.1074/jbc.275.10.
6894

Nawrath, C., and Metraux, J. P. (1999). Salicylic acid induction-deficient mutants
of Arabidopsis express PR-2 and PR-5 and accumulate high levels of

Frontiers in Plant Science | www.frontiersin.org 16 October 2017 | Volume 8 | Article 1754

https://doi.org/10.1146/annurev-arplant-050213-040012
https://doi.org/10.1038/35081161
https://doi.org/10.1093/nar/13.13.4777
https://doi.org/10.1093/nar/13.13.4777
https://doi.org/10.1074/jbc.271.22.12833
https://doi.org/10.1074/jbc.271.22.12833
https://doi.org/10.1038/nrg2812
https://doi.org/10.1038/nrg2812
https://doi.org/10.1016/j.virol.2007.12.014
https://doi.org/10.1111/j.1364-3703.2012.00803.x
https://doi.org/10.1111/j.1364-3703.2012.00803.x
https://doi.org/10.1046/j.1365-313X.1999.00265.x
https://doi.org/10.1093/mp/ssr037
https://doi.org/10.1111/pce.12927
https://doi.org/10.1146/annurev-phyto-072910-095339
https://doi.org/10.1094/MPMI-07-16-0147-R
https://doi.org/10.1016/S1097-2765(00)80265-8
https://doi.org/10.1128/JVI.01146-12
https://doi.org/10.1105/tpc.109.072413
https://doi.org/10.1016/j.virol.2015.01.025
https://doi.org/10.1105/tpc.8.5.793
https://doi.org/10.1128/JVI.01525-07
https://doi.org/10.1126/science.227.4691.1229
https://doi.org/10.1111/febs.13813
https://doi.org/10.1099/vir.0.064220-0
https://doi.org/10.1016/j.tplants.2012.06.014
https://doi.org/10.1016/j.tplants.2012.06.014
https://doi.org/10.1128/JVI.02686-05
https://doi.org/10.1128/JVI.02686-05
https://doi.org/10.1074/jbc.273.6.3679
https://doi.org/10.1038/nature05286
https://doi.org/10.1111/jipb.12474
https://doi.org/10.1094/MPMI-23-3-0283
https://doi.org/10.1094/MPMI-23-3-0283
https://doi.org/10.1105/tpc.104.026765
https://doi.org/10.1105/tpc.104.026765
https://doi.org/10.1038/227680a0
https://doi.org/10.3390/v8030073
https://doi.org/10.7554/eLife.13568
https://doi.org/10.1126/science.1218867
https://doi.org/10.1006/meth.2001.1262
https://doi.org/10.1016/0003-2697(87)90086-8
https://doi.org/10.1016/0003-2697(87)90086-8
https://doi.org/10.1016/j.molcel.2014.03.028
https://doi.org/10.1016/j.mib.2014.10.009
https://doi.org/10.1105/tpc.113.111658
https://doi.org/10.1105/tpc.113.111658
https://doi.org/10.1006/abio.1993.1529
https://doi.org/10.1006/abio.1993.1529
https://doi.org/10.1073/pnas.0705147104
https://doi.org/10.1073/pnas.0705147104
https://doi.org/10.1074/jbc.275.10.6894
https://doi.org/10.1074/jbc.275.10.6894
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-08-01754 October 9, 2017 Time: 15:35 # 17

Lamm et al. Hop/Sti1 in PRR Maturation and Viral Infection

camalexin after pathogen inoculation. Plant Cell 11, 1393–1404. doi: 10.2307/38
70970

Nelson, B. K., Cai, X., and Nebenfuhr, A. (2007). A multicolored set of in vivo
organelle markers for co-localization studies in Arabidopsis and other plants.
Plant J. 51, 1126–1136. doi: 10.1111/j.1365-313X.2007.03212.x

Nürnberger, T., and Brunner, F. (2002). Innate immunity in plants and animals:
emerging parallels between the recognition of general elicitors and pathogen-
associated molecular patterns. Curr. Opin. Plant Biol. 5, 318–324. doi: 10.1016/
S1369-5266(02)00265-0

Pacheco, R., Garcia-Marcos, A., Manzano, A., De Lacoba, M. G., Camanes, G.,
Garcia-Agustin, P., et al. (2012). Comparative analysis of transcriptomic and
hormonal responses to compatible and incompatible plant-virus interactions
that lead to cell death. Mol. Plant Microbe Interact. 25, 709–723. doi: 10.1094/
MPMI-11-11-0305

Popescu, S. C. (2012). A model for the biosynthesis and transport of plasma
membrane-associated signaling receptors to the cell surface. Front. Plant Sci.
3:71. doi: 10.3389/fpls.2012.00071

Quenouille, J., Vassilakos, N., and Moury, B. (2013). Potato virus Y : a
major crop pathogen that has provided major insights into the evolution
of viral pathogenicity. Mol. Plant Pathol. 14, 439–452. doi: 10.1111/mpp.
12024

Rohl, A., Wengler, D., Madl, T., Lagleder, S., Tippel, F., Herrmann, M., et al.
(2015). Hsp90 regulates the dynamics of its cochaperone Sti1 and the
transfer of Hsp70 between modules. Nat. Commun. 6:6655. doi: 10.1038/
ncomms7655

Schaad, M. C., Jensen, P. E., and Carrington, J. C. (1997). Formation of plant RNA
virus replication complexes on membranes: role of an endoplasmic reticulum-
targeted viral protein. EMBO J. 16, 4049–4059. doi: 10.1093/emboj/16.13.4049

Shimizu, T., Nakano, T., Takamizawa, D., Desaki, Y., Ishii-Minami, N.,
Nishizawa, Y., et al. (2010). Two LysM receptor molecules, CEBiP and
OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J. 64,
204–214. doi: 10.1111/j.1365-313X.2010.04324.x

Shiu, S. H., Karlowski, W. M., Pan, R., Tzeng, Y. H., Mayer, K. F., and Li, W. H.
(2004). Comparative analysis of the receptor-like kinase family in Arabidopsis
and rice. Plant Cell 16, 1220–1234. doi: 10.1105/tpc.020834

Singh, R. P., Valkonen, J. P., Gray, S. M., Boonham, N., Jones, R. A., Kerlan, C.,
et al. (2008). Discussion paper: The naming of Potato virus Y strains infecting
potato. Arch. Virol. 153, 1–13. doi: 10.1007/s00705-007-1059-1

Smith, D. F. (2004). Tetratricopeptide repeat cochaperones in steroid receptor
complexes. Cell Stress Chaperones 9, 109–121. doi: 10.1379/CSC-31.1

Smith, J. M., and Heese, A. (2014). Rapid bioassay to measure early
reactive oxygen species production in Arabidopsis leave tissue in response
to living Pseudomonas syringae. Plant Methods 10:6. doi: 10.1186/1746-
4811-10-6

Sparkes, I. A., Runions, J., Kearns, A., and Hawes, C. (2006). Rapid, transient
expression of fluorescent fusion proteins in tobacco plants and generation
of stably transformed plants. Nat. Protoc. 1, 2019–2025. doi: 10.1038/nprot.
2006.286

Stapleford, K. A., and Miller, D. J. (2010). Role of cellular lipids in positive-sense
RNA virus replication complex assembly and function. Viruses 2, 1055–1068.
doi: 10.3390/v2051055

Stuart, L. M., Paquette, N., and Boyer, L. (2013). Effector-triggered versus pattern-
triggered immunity: how animals sense pathogens. Nat. Rev. Immunol. 13,
199–206. doi: 10.1038/nri3398

Sun, Y., Li, L., Macho, A. P., Han, Z., Hu, Z., Zipfel, C., et al. (2013). Structural basis
for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex.
Science 342, 624–628. doi: 10.1126/science.1243825

Takatsuki, A., and Tamura, G. (1971). Effect of tunicamycin on the synthesis of
macromolecules in cultures of chick embryo fibroblasts infected with Newcastle
disease virus. J. Antibiot. 24, 785–794. doi: 10.7164/antibiotics.24.785

Tkacz, J. S., and Lampen, O. (1975). Tunicamycin inhibition of polyisoprenyl
N-acetylglucosaminyl pyrophosphate formation in calf-liver microsomes.
Biochem. Biophys. Res. Commun. 65, 248–257. doi: 10.1016/S0006-291X(75)
80086-6

Urcuqui-Inchima, S., Haenni, A. L., and Bernardi, F. (2001). Potyvirus proteins:
a wealth of functions. Virus Res. 74, 157–175. doi: 10.1016/S0168-1702(01)
00220-9

Verchot, J. (2012). Cellular chaperones and folding enzymes are vital contributors
to membrane bound replication and movement complexes during plant
RNA virus infection. Front. Plant Sci. 3:275. doi: 10.3389/fpls.2012.
00275

Voll, L. M., Zell, M. B., Engelsdorf, T., Saur, A., Wheeler, M. G., Drincovich, M. F.,
et al. (2012). Loss of cytosolic NADP-malic enzyme 2 in Arabidopsis thaliana
is associated with enhanced susceptibility to Colletotrichum higginsianum. New
Phytol. 195, 189–202. doi: 10.1111/j.1469-8137.2012.04129.x

Walter, P., and Ron, D. (2011). The unfolded protein response: from stress
pathway to homeostatic regulation. Science 334, 1081–1086. doi: 10.1126/
science.1209038

Williams, B., Verchot, J., and Dickman, M. B. (2014). When supply does not meet
demand-ER stress and plant programmed cell death. Front. Plant Sci. 5:211.
doi: 10.3389/fpls.2014.00211

Zhang, L., Chen, H., Brandizzi, F., Verchot, J., and Wang, A. (2015). The UPR
branch IRE1-bZIP60 in plants plays an essential role in viral infection and is
complementary to the only UPR pathway in yeast. PLOS Genet. 11:e1005164.
doi: 10.1371/journal.pgen.1005164

Zhang, Z., Quick, M. K., Kanelakis, K. C., Gijzen, M., and Krishna, P. (2003).
Characterization of a plant homolog of hop, a cochaperone of hsp90. Plant
Physiol. 131, 525–535. doi: 10.1104/pp.011940

Zipfel, C. (2014). Plant pattern-recognition receptors. Trends Immunol. 35,
345–351. doi: 10.1016/j.it.2014.05.004

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Lamm, Kraner, Hofmann, Börnke, Mock and Sonnewald. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) or licensor are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Plant Science | www.frontiersin.org 17 October 2017 | Volume 8 | Article 1754

https://doi.org/10.2307/3870970
https://doi.org/10.2307/3870970
https://doi.org/10.1111/j.1365-313X.2007.03212.x
https://doi.org/10.1016/S1369-5266(02)00265-0
https://doi.org/10.1016/S1369-5266(02)00265-0
https://doi.org/10.1094/MPMI-11-11-0305
https://doi.org/10.1094/MPMI-11-11-0305
https://doi.org/10.3389/fpls.2012.00071
https://doi.org/10.1111/mpp.12024
https://doi.org/10.1111/mpp.12024
https://doi.org/10.1038/ncomms7655
https://doi.org/10.1038/ncomms7655
https://doi.org/10.1093/emboj/16.13.4049
https://doi.org/10.1111/j.1365-313X.2010.04324.x
https://doi.org/10.1105/tpc.020834
https://doi.org/10.1007/s00705-007-1059-1
https://doi.org/10.1379/CSC-31.1
https://doi.org/10.1186/1746-4811-10-6
https://doi.org/10.1186/1746-4811-10-6
https://doi.org/10.1038/nprot.2006.286
https://doi.org/10.1038/nprot.2006.286
https://doi.org/10.3390/v2051055
https://doi.org/10.1038/nri3398
https://doi.org/10.1126/science.1243825
https://doi.org/10.7164/antibiotics.24.785
https://doi.org/10.1016/S0006-291X(75)80086-6
https://doi.org/10.1016/S0006-291X(75)80086-6
https://doi.org/10.1016/S0168-1702(01)00220-9
https://doi.org/10.1016/S0168-1702(01)00220-9
https://doi.org/10.3389/fpls.2012.00275
https://doi.org/10.3389/fpls.2012.00275
https://doi.org/10.1111/j.1469-8137.2012.04129.x
https://doi.org/10.1126/science.1209038
https://doi.org/10.1126/science.1209038
https://doi.org/10.3389/fpls.2014.00211
https://doi.org/10.1371/journal.pgen.1005164
https://doi.org/10.1104/pp.011940
https://doi.org/10.1016/j.it.2014.05.004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

	Hop/Sti1 – A Two-Faced Cochaperone Involved in Pattern Recognition Receptor Maturation and Viral Infection
	Introduction
	Materials And Methods
	Plant Material and Virus Inoculation
	Plasmid Constructs
	Generation of NtHop/Sti1-RNAi Lines
	Heterologous Expression of NtHop/Sti1 in E. coli
	Affinity Purification of the Recombinant NtHop/Sti1 and Generation of an Antibody
	Protein PAGE and Western Blot Analysis
	Relative Measurement of Reactive Oxygen Species
	Transient Expression in Nicotiana spec. and Confocal Laser Scanning Microscopy
	Double Antibody Sandwich Enzyme-Linked Immunosorbent Assay
	Grafting of Nicotiana tabacum Plants
	Generation of cDNA, RT-PCR, and Quantitative Real-time PCR
	Extraction of Salicylic Acid and HPLC Analysis
	Measurement of Electrical Conductivity
	Statistical Analyses

	Results
	Generation of Hop/Sti1-Silenced Transgenic Nicotiana tabacum Plants
	Hop/Sti1-Silencing Impairs Maturation of Receptor-Like Kinase CERK1, But Not FLS2
	Hop/Sti1-Silencing Renders Nicotiana tabacum Tolerant to Potato Virus Y
	Hop/Sti1-Silencing Does Not Affect PVYN Long-Distance Movement and Infectivity
	PVYN Symptom Development Is Not Mediated by a Systemic Signal and May Not Be Restored by Grafting on Wild-type Rootstock
	Typical Defense Responses after PVYN Infection Are Impaired in Hop/Sti1-Silenced Plants
	GFP-Hop/Sti1 Colocalizes with ER-Derived Viral Structures in Nicotiana benthamiana
	Silencing of Hop/Sti1 in Tobacco Does Not Interfere with the Unfolded Protein Response

	Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


