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BACKGROUND

We live in a plastic age (Thompson et al., 2009), with microplastic (typically defined as plastic
particles < 5mm) becoming an increasingly appreciated aspect of environmental pollution.
Research has been overwhelmingly focused on aquatic systems, especially the oceans, but there
is a current shift to more strongly consider terrestrial ecosystems (Rillig, 2012; Horton et al.,
2017). In particular agroecosystems are coming into focus as a major entry point for microplastics
in continental systems (Nizzetto et al., 2016b), where contamination might occur via different
sources as sludge amendment or plastic mulching (Steinmetz et al., 2016). Given the central
role of agroecosystems, including their soil biodiversity (Rillig et al., 2016), in food production,
such numbers are potential cause for concern. Field data on measured microplastic presence in
agricultural soils are still not widely available, but nevertheless this material is certain to arrive
at the soil surface. The fate of material deposited at the soil surface is not clear: particles may be
removed by wind or water erosion, becoming airborne, or may be lost by surface runoff (Nizzetto
et al., 2016a). Nevertheless, a substantial part of the microplastic (or nanoplastic following further
disintegration) is expected to enter the soil.

The degree of hazard represented by microplastic to various soil biota is not clear. Direct
evidence comes from experimental work on earthworms, on which microbeads had negative effects
(Huerta Lwanga et al., 2016; also reviewed in Horton et al., 2017). Data on impacts on other soil
biota groups are not available. However, Kiyama et al. (2012) have shown that polystyrene beads can
be taken up by the nematode Caenorhabditis elegans; this means the material could also accumulate
in the soil food web (Rillig, 2012). Movement into soil is an important aspect of assessing risk: will
soil biota be exposed to microplastics? Here, we sketch what is known about movement of such
particles in soil, which players and factors could influence this, and we chart avenues for research
aimed at the movement and distribution of microplastic in agricultural soils.

EVIDENCE OF MICROPLASTIC TRANSPORT IN SOIL

Early evidence for transport of microplastic particles comes from work in which researchers have
used plastic particles as tracers to monitor particle movement through porous media from a soil
physical perspective. This is a research topic on which abundant experimental data from column
studies exist, and also conceptual understanding in the form of mathematical models describing
physical features (McDowell-Boyer et al., 1986). For example, studies using mostly packed sand
have used polystyrene latex particles (0.2µm) of different hydrophobicity (Wan and Wilson,
1994), 0.468-µm latex microspheres (Roy and Dzombak, 1997), or latex particles of 0.11µm size
(Grolimund et al., 1998). Since these studies were typically aimed at colloidal behavior (as transport
agents of pollutants), the particle sizes are smaller than the ones typically examined for microplastic
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in environmental assessments; this notwithstanding, there is clear
evidence that such particles move through a packed sand or soil
(Grolimund et al., 1998) column in the lab, and that retention also
depends on particle hydrophobicity (Wan and Wilson, 1994). In
the field, microplastic fibers were present near preferential flow
paths and below the soil mixing layer, suggesting the surface-
applied fibers (in sludge) had also moved (over a period of 15
year) (Zubris and Richards, 2005).

More recently, the action of soil biota, specifically animals,
has been examined as a driver of microplastic incorporation
into soil. For example, Huerta Lwanga et al. (2016) showed size-
specific incorporation and concentration of microplastic beads
in earthworm casts, Huerta Lwanga et al. (2017) have shown
that earthworms can incorporate microplastic beads into their
burrows from the surface, and Rillig et al. (2017) showed that
earthworms can enhance the movement of microplastic beads
down the soil profile from the surface in the laboratory. Smaller
microbeads moved more readily down the soil profile in this
experiment.

In summary, both in terms of the more physical aspects
and for soil biota there is now experimental evidence that
microplastic particles are moved into the soil when deposited at
the soil surface. This clearly establishes a case for exposure of soil
biota, including roots and the soil and rhizosphere microbiome,
to these particles. It is now necessary to explore the various
factors that may affect transport of these particles.

FEATURES AFFECTING MICROPLASTIC

MOVEMENT INTO AND WITHIN SOIL

Several soil features, soil biota activities or management actions
can potentially influence the movement of microplastic into and
within the soil. Biopores (macropores created by soil biota), and
plowing, as well as soil cracking are likely most responsible for
downward movement, whereas soil biota (mesofauna, fungi),
harvesting, and plowing would serve to distribute the particles
also horizontally. Transport will additionally be influenced by
particle properties, and also by processes potentially sequestering
them, such as soil aggregation.

Microplastic Particle Properties
Size, hydrophobicity, charge, density, and shape (fiber, bead,
planar structure, foam) would all be expected to significantly
influence movement of particles, with direct evidence existing for
size (Rillig et al., 2017) and hydrophobicity (Wan and Wilson,
1994). Shape is particularly interesting since microbeads, so far
used in experiments, will behave differently from microfibers.
The latter are more likely to become entangled in the soil
matrix and would be expected to interact differently with soil
biota. Even though so far studied mostly in aquatic systems,
microplastic particles in soil will likely also be surrounded by
an ecocorona (Galloway et al., 2017), consisting of microbes
and various organic deposits. This ecocorona could substantially
influence the shape, size, and surface properties of particles,
and therefore also their movement. Degradation of microplastic
particles (e.g., photolysis at the soil surface, or biodegradation)

could also influence movement by altering surface properties and
the particle ecocorona.

Macropores
Many physical factors affect the movement of particles through
the soil, including physical attachment and detachment,
sedimentation, and sieving. Macropores (pores > 0.08mm)
generally enhance movement of particles, because sedimentation
and sieving are not as pronounced, and they enhance the
movement of water. This means that all players affecting the
presence of macropores will indirectly influence the efficiency
with which microplastic particles are moved in soil. The most
important producers of biopores, macropores of typically tubular
shape, are earthworms and roots. In addition, soil aggregation,
a joint physiochemical/ biotic process, leaves macropores in
between structural units, the aggregates. Experimental data for
earthworms already exist (e.g., Rillig et al., 2017), even though
in these studies active earthworms were present, and it is
therefore not clear what percentage of microplastic particles
moved through existing earthworm biopores rather than with
the animals. There are no data on roots, however. Especially
in agricultural systems, after harvest, this could be a massive
transport pathway as roots decompose, leaving biopores. Root
systems differ widely, for example in terms of depth and also in
terms of fineness. One could expect that deeply rooted plants with
coarser roots may be most effective at facilitating the movement
of particles.

Soil Cracking and Wet-Dry Cycles
In agricultural soils with expanding mineral types, e.g.,
montmorillonite, cracks, and fissures can appear when soil
dries. These cracks are open entryways for particles, that in
this way could potentially move to substantial depths, very
quickly arriving at deeper soil layers. Wet-dry cycles have been
experimentally shown to directly mobilize colloid-sized particles
in soils at a smaller scale (Majdalani et al., 2008), an effect the
authors attributed to soil matrix weakening; similar patterns
likely also hold for freeze-thaw cycles.

Sequestration Inside Soil Aggregates
Microplastic particles will likely become embedded inside
of soil aggregates, even though the extent to which this
happens is unknown. Soil aggregation is a dynamic process,
with aggregates being formed and disintegrating. During
formation of macroaggregates in hierarchically structured soils,
microplastic particles, and microaggregates (<0.250mm) will be
included along with organic matter, microbes, and primary soil
particles (Tisdall and Oades, 1982). During the persistence of
macroaggregates, which can range range to weeks and months
(Peng et al., 2017), the microplastic particles contained therein
would be retained in the soil profile.

Soil Biota
Other than as producers of biopores, soil biota can actively
contribute to the movement of microplastic particles. Recently,
microarthropods (collembola) have been shown to be able to
move microplastic beads in a laboratory arena (Maaß et al.,
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2017). Such active, incidental, relatively small-scale transport
could spread microplastic particles also horizontally, which
may facilitate their subsequent entry into the soil. Similar
effects can also be expected for mites, even though there is
no experimental evidence yet. Perhaps fungal hyphae may also
serve as preferential paths for movement of particles in the
cm-range, as has been demonstrated for the transport of bacterial
cells (Wick et al., 2007). The general literature on particle
transport in soil by bioturbation (Gabet et al., 2003) also suggests
that plant processes (e.g., root growth, uprooting) and various
animals (earthworms, various larvae, vertebrates) can contribute
to particle movement.

Plowing and Harvesting
In agroecosystems, plowing is a widespread practice, and
through this activity microplastic particles can be very effectively
moved into the soil to the depth of the plow. Different tillage
practices affect different soil layers and thus the depth to which
microplastic can be incorporated. For instance, conventional
tillage practices affect usually the first 20–30 cm, while in no-
tillage soil disturbance, to place the seeds, affects only the
very top soil layer, generally a few centimeters (Paustian et al.,
1997). In addition, under conventional tillage different types
of plowing may differ in the extent to which they facilitate
microplastic incorporation along the layer affected by the
machinery. Moaldboard plowing brings about an inversion of
the respective soil layer, with the consequence that microplastic
present at the soil surface will mostly be brought to a single
layer at the plowing depth. By contrast, other tillage practices
such as shallow hallowing or harrowing, have a mixing effect,
likely resulting in the distribution of the microplastic particles
throughout the tillage layer.

Harvesting especially of plant portions below the soil surface
(e.g., potatoes, carrots) can also serve to incorporate microplastic,
albeit to a shallower depth, depending on the crop.

RESEARCH NEEDS AND CONCLUSIONS

There are clear research needs that emerge from the discussion
above:

(i) Dedicated column experiments in the laboratory, and
eventually in the field, will be necessary to estimate rates of
movement of microplastic particles, and to disentangle the
relative roles of the various factors potentially influencing
movement. This should include an assessment of risk for
microplastics reaching groundwater.

(ii) Such experiments and other studies should not only include
beads or approximately spherical particles but also fibers
and other plastic particles. There is very little we know about
the behavior of microplastic fibers in soil, despite their likely
prominence (e.g., Zubris and Richards, 2005; Hartline et al.,
2016; Hernandez et al., 2017).

(iii) Interactions with soil aggregates should be a focus,
because microplastic particles could be incorporated into
soil aggregates, thereby immobilizing these particles.
However, this also likely protects microplastics from
microbial breakdown, increasing overall residence time;
and given the aggregate dynamics, particles would be
continuously re-released. Additionally, it is unclear what
effects microplastics have on the soil aggregation process
itself, which could affect macropores and ultimately particle
movement.

Such future work is important: particles remaining at the
surface could be moved around the landscape with potentially
undesirable effects, but particles in the soil could have mostly
unknown effects on soil biota and crop plants, possibly
affecting food security. And, when microplastic particles move
further through the soil profile, they would eventually also
end up in groundwater. The contamination of subterranean
waters with microplastic is of particular concern because
they could have direct implications for human and animal
health. Additionally, as a consequence of abrasion, chemical,
or biodegradation occurring during transport, nanoplastic
particles could be produced, posing fundamentally different
hazards.

Many aspects discussed here also pertain to soils in
other terrestrial ecosystems; however, it is evident that the
specific combination of machinery-driven soil preparation, crop
cultivation, and harvest dynamics, and unique microplastic
exposure pathwaysmake agricultural soils particularly vulnerable
and important to study.
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