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Genomic selection is being used increasingly in plant breeding to accelerate genetic gain

per unit time. One of the most important applications of genomic selection in maize

breeding is to predict and select the best un-phenotyped lines in bi-parental populations

based on genomic estimated breeding values. In the present study, 22 bi-parental tropical

maize populations genotyped with low density SNPs were used to evaluate the genomic

prediction accuracy (rMG) of the six trait-environment combinations under various levels

of training population size (TPS) and marker density (MD), and assess the effect of trait

heritability (h2), TPS and MD on rMG estimation. Our results showed that: (1) moderate

rMG values were obtained for different trait-environment combinations, when 50% of

the total genotypes was used as training population and ∼200 SNPs were used for

prediction; (2) rMG increased with an increase in h2, TPS and MD, both correlation and

variance analyses showed that h2 is the most important factor and MD is the least

important factor on rMG estimation for most of the trait-environment combinations; (3)

predictions between pairwise half-sib populations showed that the rMG values for all the

six trait-environment combinations were centered around zero, 49% predictions had rMG
values above zero; (4) the trend observed in rMG differed with the trend observed in rMG/h,

and h is the square root of heritability of the predicted trait, it indicated that both rMG and

rMG/h values should be presented in GS study to show the accuracy of genomic selection

and the relative accuracy of genomic selection compared with phenotypic selection,

respectively. This study provides useful information to maize breeders to design genomic

selection workflow in their breeding programs.
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INTRODUCTION

Genomic selection (GS) is being used increasingly in plant
breeding to accelerate genetic gain (Crossa et al., 2010; Zhang
et al., 2015; Roorkiwal et al., 2016; Edriss et al., 2017). In GS, a
training population is used for estimating the effects of markers
based on prior phenotypic and marker data. The marker effects
estimated from the training population are then used to predict
the genomic estimated breeding value (GEBV) of individuals
in the prediction population, which have been genotyped but
not phenotyped (Meuwissen et al., 2001). Breeders then select
individuals from the prediction population based on the GEBV
to advance to the next cycle (generation) to shorten the length
of the selection cycle and increase the genetic gain per unit time
(Heffner et al., 2009; Lorenz et al., 2011; Guo et al., 2012; Newell
and Jannink, 2014).

In plant breeding, several studies have implemented GS to
develop improved germplasm, evaluate the genetic gain of GS
(Poland et al., 2012; Battenfield et al., 2016; Marulanda et al.,
2016), and compare the genetic gains from GS with marker
assisted selection or pedigree selection methods (Asoro, 2013;
Combs and Bernardo, 2013; Beyene et al., 2015; Rutkoski et al.,
2015; Zhang et al., 2017). Using recombinant inbred lines derived
from a cross between B73 and Mo17, Massman et al. (2013)
showed that GS produced from 14 to 50% higher genetic gains
for stover and grain yield thanmarker assisted recurrent selection
for several traits in a maize biparental population. This result was
then verified in tropical maize (Beyene et al., 2015; Vivek et al.,
2017). Beyene et al. (2015) found that the average genetic gain
per year across eight tropical maize populations of GS was three
times higher than that of pedigree based phenotypic selection
in drought stress conditions. Vivek et al. (2017) pointed that
two cycles of GS produced 4–43% higher grain yield than two
cycles of pedigree-based phenotypic selection in two bi-parental
populations. In a multi-parental tropical maize population,
Zhang et al. (2017) reported that the realized genetic gain of GS
per year was 1.2%, when the total breeding time was estimated
frommaking the initial cross to harvesting the last selection cycle.
The average genetic gain per selection cycle was 2.8%, when only
the selection cycles were considered as the total breeding time.

Prediction accuracy (rMG), defined as the correlation between
the true breeding value and the GEBV, is used to evaluate
the effectiveness of genomic selection, rMG value must be high
enough for GS to be time and cost effective (Combs and
Bernardo, 2013). Highly variable levels of rMG values have been
reported in plants depending on prediction models, breeding
schemes, training population size, the relationship between
the training and the prediction populations, trait complexities,
marker densities, and genotyping platforms (Jia and Jannink,
2012; Zhao et al., 2012; Crossa et al., 2013; Lian et al., 2014;
Spindel et al., 2015; Battenfield et al., 2016; Bernardo, 2016).
Previous studies showed that the rMG value is increased as the
increase of trait heritability, size of training population, and
marker density. The rMG value also could be improved, when the
relationship between the training population and the prediction
population is close (Sonah et al., 2015). Modeling genotyping by
environment interactions and incorporating known marker-trait

associations into prediction model is also beneficial increasing
the rMG value (Crossa et al., 2014; Zhang et al., 2015; Bian and
Holland, 2017; Cao et al., 2017). Lian et al. (2014) showed that
the rMG is difficult to be predicted in advance, but r2(Nh2)1/2 had
a strong association with the prediction accuracy value, where
r2 refers to the linkage disequilibrium between a marker and a
quantitative trait locus, N is the training population size, and
h2 is the trait heritability. Further GS studies are still required
to understand the factors that affect the prediction accuracy,
and how to maximum the prediction accuracy to streamline GS
schemes in a breeding program.

One of the most important applications of GS in maize
breeding is to predict and identify the best untested lines
from bi-parental populations, when the training and prediction
populations are derived from the same cross. Moderate-to-high
rMG values have been reported in biparental populations due
to the close relationship between the training and prediction
populations, and the maximum linkage disequilibrium between a
marker and a quantitative trait locus (Zhang et al., 2015). In this
study, 22 bi-parental tropical maize populations including 4,120
segregating lines were phenotyped with six trait-environment
combinations and each lines were genotyped with 162 to 283
SNPs (single nucleotide polymorphisms) (Semagn et al., 2014;
Ertiro et al., 2015). The main objectives of this study were to: (1)
evaluate the rMG value of the six trait-environment combinations
in 22 bi-parental tropical maize populations; (2) assess the effect
of trait heritability, training population size (TPS) and marker
density (MD) on rMG estimation in bi-parental populations; (3)
identify the most important factor affecting rMG estimation and
provide useful information to breeders for implementing GS in
their breeding programs; and (4) assess the predictions accuracy
between pairwise half-sib populations.

MATERIALS AND METHODS

Plant Materials and Phenotyping
This study comprised a total of 4,120 lines derived from 22 bi-
parental populations. Sixteen of the 22 bi-parental populations
were developed in 2009 as part of the Water Efficiency Maize
for Africa project, and the other six bi-parental populations
were developed as part of the Drought Tolerant Maize for
Africa project in 2008. Details on population development and
phenotyping were described in previous studies (Beyene et al.,
2015; Zhang et al., 2015; Wallace et al., 2016). In brief, all
the populations were derived from crosses between CIMMYT
drought-tolerant donors and CIMMYT inbred lines currently
in commercial use in eastern and southern Africa. The F1
crosses formed with two inbred line parents were advanced
to the BC1F2:3, F2:3, or F7:8 generations for each population
(details showed in the previous studies). Testcross hybrids of
each population were generated by crossing the individual family
with a single-cross tester from a complementary heterotic group.
The testcrosses along commercial checks were planted under
four well-watered (WW) environments and three to four water-
stressed (WS) environments in Kenya, Zambia, and Zimbabwe
during 2010 and 2011 (Semagn et al., 2013). The WW trials were
planted during the rainy season, and supplemental irrigation
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was provided as needed. The WS trials were planted during the
dry (rain-free) season by withdrawing irrigation starting from 2
weeks before flowering through harvest.

Parameter information of each population including pedigree
code, tester, number of families in each population, number
of polymorphic SNPs in each bi-parental population, mean,
and standard deviation of all trait-environment combinations is
summarized in Table 1. In total, 28 inbred lines were used as
the parents to form the 22 bi-parental populations. Six testers
were used in making testcrosses, of which 10 populations share
tester T1, 6 populations share T2, 3 populations share T3, and
the remaining 3 populations were testcrossed with T4, T5, or T6
(Table 1). The number of polymorphic SNPs in each population
ranged from 162 to 283, with a mean of 206.

All the testcross hybrids in each population were evaluated
up to 17 different traits, but only grain yield (GY), anthesis date
(AD), and plant height (PH) were selected as the main target
traits in the present study. GY was measured as dry shelled
grain yield at 12.5% moisture content. AD was measured as the
number of days from planting to when 50% of the plants had
shed pollen. PH was measured as the distance from the base
of the plant to the height of the first tassel branch. In total, six
trait-environment combinations (that is, GY_WW, AD_WW,
PH_WW, GY_WS, AD_WS and PH_WS) were considered,
GY_WW and GY_WS were treated as complex traits, and the
other four trait-environment combinations were treated as less
complex traits in the present study.

Phenotypic Data Analysis and Heritability
Estimation
The experimental design in each environment was an α-lattice
incomplete block design with two replications per location. At
all locations, entries were planted in one-row plot with 5m
long, 0.75m between rows and 0.25m between hills. For each
population, combined trial analyses were performed within WW
andWS environments, respectively.

MEATA-R software (http://hdl.handle.net/11529/10201) was
used to conduct multi-location trial analysis using a mixed linear
model with all factors set as random effects. Best linear unbiased
prediction (BLUP) value of genotypes, variance components and
broad-sense heritability were obtained. Broad-sense heritability
of the target trait was calculated as the ratio of total genetic to total
phenotypic variance. In multi-location trial analysis, broad-sense
heritability was calculated as

h2 =
σ 2
g

σ 2
g +

σ 2
ge

e +
σ 2
e
er

Where σ 2
g , σ 2

ge, and σ 2
e are the genotypic, genotype-by-

environment interaction, and error variance components,
respectively, and e and r are the number of environments
and of replicates within each environment included in the
corresponding analysis, respectively. According to the h2 value
of each trait-environment combination, the 22 populations were
sorted in an ascending order and divided into 4 subgroups for
estimating the relationship between h2 and genomic prediction

accuracy. Subgroup 1 (lowest heritability subgroup) had six
populations, and the other three subgroups each had five
populations.

Genotyping
The 16 populations developed for the Water Efficiency Maize for
Africa project were genotyped by the Monsanto Company using
a TaqMan assay (http://www.appliedbiosystems.com), while
the 6 populations developed for the Drought Tolerant Maize
for Africa project were genotyped at LGC genomics (http://
www.lgcgenomics.com/genotyping/kasp-genotyping-chemistry)
using a KASP assay (Semagn et al., 2014). For each family in
each population, equal amount of leaf tissue from 15 plants were
bulked for DNA extraction and genotyping. For each segregating
SNP, a χ2 goodness-of-fit analysis was performed to test for
deviation from the expected segregation ratio. Only SNPs passed
the segregation distortion tested were used for further analyses.

Genome-Wide Prediction
Genome-wide prediction was performed using the rrBLUP
package for R version 3.2.5 (Endelman, 2011). In order to test
the effects of TPS and MD on genomic prediction accuracy,
four levels of TPS (i.e., 30, 50, 70, and 90) and three levels of
MD (i.e., 50 SNPs, 100 SNPs, and all SNPs) were considered
to evaluate the prediction accuracy of each trait-environment
combination within each bi-parental population. Different with
the 5-fold cross-validation method reported previously (Zhang
et al., 2015; Cao et al., 2017), fixed number of lines were
randomly sampled 100 times from each bi-parental population
to develop the prediction model. Approximate 16, 28, 39,
and 50% of the entire population were selected to build the
training population, when the TPS was 30, 50, 70, and 90,
respectively. All the predictions were replicated for 100 times,
the average value of the Pearson correlations between the
phenotype and the genomic estimated breeding values was
defined as the genomic prediction accuracy (rMG). For each
trait-environment combination, value of rMG/h was calculated
to compare the breeding efficiency between phenotypic selection
and genomic selection, where h was the square root of the
heritability of the target trait-environment combination, and
the accuracy of phenotypic selection was measured by h. In
total, we did prediction on 1,584 scenarios, when all the
possible recombination were considered among 22 populations,
6 trait-environment combinations, 4 levels of TPS, and 3 levels
of MD.

Predictions between pairwise half-sib populations were
performed, when two populations shared one common parental
line, and one population was used as training population to
predict the other population. In the prediction population,
the Pearson correlations value between the phenotype and the
genomic estimated breeding values was defined as rMG. In
total, 204 predictions were made on the six trait-environment
combinations between all the 34 pairwise half-sib populations,
only the common markers shared between the pairwise half-sib
populations were used for prediction. Due to lack of common
markers, predictions across different genotyping platforms
(TaqMan assay and KASP assay) were not conducted.
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Correlation and Variance Analyses
between rMG and Three Factors
Correlation and variance analyses were performed across all the
22 bi-parental populations to see the importance of the three
factors (i.e., h2, TPS, and MD) on affecting rMG, correlation
coefficient between rMG and three factors across all the 22
bi-parental populations were estimated in R version 3.2.5 (R
Development Core Team, 2013) on all the six trait-environment
combinations.

In the variance analysis, rMG was set as response variable,
and h2, TPS and MD were set as predictor variables, where
the importance of the three factors will be assessed on all the
six trait-environment combinations across all the 22 bi-parental
populations.

RESULTS

Phenotypes and Heritability
For all the 22 bi-parental populations, the phenotypic mean and
standard deviation of the six trait-environment combinations
were showed in Table 1. Phenotypic mean of GY and PH
were consistently higher under WW condition than under WS
condition in all the populations. Phenotypic mean of GY ranged
from 2.54 to 9.91 t/ha, with an average value of 6.99 t/ha
under WW condition, while the mean of GY ranged from 1.54
to 4.88 t/ha, with an average value of 2.68 t/ha under WS

condition. For PH_WW, the phenotypic mean ranged from
155.07 to 251.26 cm, and have an average value of 218.47 cm
across all the populations. For PH_WS, the phenotypic mean
ranged from 126.86 to 223.7 cm, and have an average value
of 168 cm across all the populations. Phenotypic mean of
AD was consistently lower under WW condition than under
WS condition in all the populations. Phenotypic mean of AD
ranged from 54.38 to 100.81 days, with an average value of
64.23 days under WW condition, while the mean of AD ranged
from 64.79 to 98.97 days, with an average value of 83.29 days
under WS condition across all the populations. The phenotypic
mean distribution of all the six trait-environment combinations
was either normal or approximately normal for all the 22
bi-parental populations (data not shown). Standard deviation
of GY were consistently greater under WW condition than
under WS condition in all the populations, while standard
deviation of the less complex traits, i.e., AD and PH, were
consistently smaller under WW condition than under WS
condition.

Broad-sense heritability of the six trait-environment

combinations in all the 22 bi-parental populations was shown
in Figure 1 and Table S1. h2 of the complex trait (GY) were
consistently lower than those of less complex traits (AD and

PH) under both WW and WS conditions. For the same trait, h2

under WW conditions were consistently higher than under WS
conditions in almost all the populations. Under WW condition,

TABLE 1 | Summary of 22 bi-parental populations used in the present study, including pedigree code, tester, number of families (Na) and number of polymorphic SNPs

(Nb) of all populations, mean and standard deviation of all target trait-environment combinations (GY, grain yield; AD, anthesis date; PH, plant height; WW, well-watered

environments; WS, water-stressed environments).

Pop Pedigree Tester Na Nb Mean ± Standard Deviation

No. code GY_WW GY_WS AD_WW AD_WS PH_WW PH_WS

1 P1×P2 T1 165 201 6.98 ± 1.91 2.34 ± 1.48 61.72 ± 8.28 86.78 ± 10.64 215.02 ± 37.06 151.68 ± 49.85

2 P2×P3 T1 162 188 7.03 ± 2.12 2.69 ± 1.61 62.39 ± 8.57 84.48 ± 11.67 218.53 ± 37.91 152.50 ± 36.14

3 P2×P4 T1 126 183 7.57 ± 2.64 2.34 ± 1.51 62.66 ± 8.55 86.3 ± 11.88 214.9 ± 39.08 160.57 ± 31.51

4 P2×P5 T1 163 209 7.62 ± 2.32 2.76 ± 1.48 62.46 ± 8.87 82.17 ± 10.57 215.27 ± 37.9 156.78 ± 34.66

5 P4×P1 T1 183 208 6.27 ± 2.37 2.81 ± 1.67 64.97 ± 8.25 83.88 ± 9.77 199.38 ± 46.76 155.99 ± 36.42

6 P6×P7 T1 173 195 6.32 ± 2.15 2.70 ± 1.88 60.32 ± 7.43 74.18 ± 10.83 180.97 ± 34.53 160.08 ± 27.26

7 P8×P9 T1 181 212 6.67 ± 1.98 2.55 ± 1.69 61.37 ± 6.75 75.22 ± 10.08 192.42 ± 38.06 169.55 ± 22.55

8 P8×P7 T1 184 212 6.67 ± 1.92 2.59 ± 1.28 60.43 ± 5.15 81.88 ± 11.25 174.38 ± 40.46 139.08 ± 35.87

9 P10×P11 T1 184 211 7.06 ± 1.91 1.75 ± 1.50 64.26 ± 8.33 89.67 ± 12.57 216.63 ± 44.08 154.39 ± 24.57

10 P12×P13 T1 174 194 7.31 ± 2.23 2.44 ± 1.62 65.20 ± 8.17 88.47 ± 11.04 220.70 ± 45.49 166.41 ± 29.92

11 P17×P18 T2 184 185 5.45 ± 1.91 1.99 ± 1.33 63.55 ± 8.10 86.28 ± 17.74 243.99 ± 35.67 177.80 ± 23.01

12 P18×P19 T2 160 162 6.66 ± 2.84 2.38 ± 1.23 66.04 ± 9.09 84.84 ± 12.85 243.56 ± 38.78 180.78 ± 22.17

13 P19×P15 T2 178 176 6.38 ± 2.73 1.90 ± 1.05 65.76 ± 8.86 84.83 ± 94.46 242.57 ± 46.75 172.52 ± 24.19

14 P20×P17 T2 173 166 6.95 ± 2.86 2.03 ± 1.16 64.14 ± 8.77 87.85 ± 12.61 232.14 ± 42.01 166.06 ± 36.08

15 P21×P22 T2 176 172 6.82 ± 2.87 2.04 ± 1.06 63.08 ± 8.20 85.00 ± 11.33 219.31 ± 33.64 156.47 ± 23.74

16 P22×P23 T2 155 184 6.63 ± 2.61 1.75 ± 0.99 64.01 ± 8.43 85.22 ± 11.32 233.82 ± 41.48 158.36 ± 28.42

17 P19×P15 T3 164 255 9.11 ± 0.91 5.55 ± 0.80 100.81 ± 1.56 98.97 ± 1.25 223.02 ± 7.81 192.59 ± 6.87

18 P19×P26 T3 278 283 9.91 ± 1.31 3.66 ± 0.66 65.64 ± 0.95 79.93 ± 1.57 247.07 ± 10.13 192.29 ± 8.19

19 P19×P27 T3 216 217 8.37 ± 1.26 4.64 ± 0.94 62.03 ± 1.59 85.59 ± 1.43 251.26 ± 10.49 223.70 ± 8.93

20 P24×P25 T4 247 199 10.00 ± 1.31 4.88 ± 0.55 62.32 ± 1.04 85.12 ± 1.23 233.92 ± 10.11 211.86 ± 7.68

21 P28×P29 T5 249 238 2.54 ± 0.48 1.54 ± 0.28 54.38 ± 0.76 64.79 ± 1.38 155.07 ± 9.90 126.86 ± 6.66

22 P30×P31 T6 245 271 5.38 ± 0.72 1.56 ± 0.33 55.46 ± 0.91 70.82 ± 0.98 232.45 ± 10.94 169.63 ± 7.40
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FIGURE 1 | Distribution of heritability of all the target trait-environment combinations across all the populations.

h2 across populations had a mean value of 0.38, 0.55 and 0.59 for
GY, AD, and PH, respectively. Under WS condition, h2 across
populations had a mean value of 0.27, 0.47, and 0.37 for GY, AD,
and PH, respectively.

Prediction Accuracy Mean and Effect of
Heritability on Prediction Accuracy
Estimation
The mean, range and standard deviation of rMG differed
among the six trait-environment combinations (Figure 2, Table
S2). In general, trait-environment combination with higher h2

had a higher rMG. Mean of rMG of complex trait (GY) was
consistently lower than those of less complex traits (AD and
PH) under both WW and WS conditions. For the same trait,
rMG mean under WW condition was consistently higher than
under WS condition. The rMG mean was lowest for GY_WS
and highest for PH_WW. For example, when TPS equaled
to 90 and all the SNPs were used for prediction, rMG across
populations under WW condition had a mean value of 0.33,
0.34, and 0.38 for GY, AD, and PH, respectively (Figure 2,
Table S2). The rMG across populations under WS condition
had a mean value of 0.18, 0.28, and 0.25 for GY, AD, and
PH, respectively (Figure 2, Table S2). For the same trait, the
standard deviation of rMG under WW condition was similar
with that under WS condition. Similar trends were observed,
when other TPS and MD combinations were used for prediction
(Figures 3, 4).

For each trait-environment combination, the rMG differed
among populations, where populations with higher h2 had
higher rMG values (Figure 5). For all the six trait-environment
combinations, rMG mean estimated under combinations of
TPS = 90 and MD = All SNPs were used as example and
to show the correlations between rMG and h2, where 22
populations were divided into 4 subgroups sorted by the h2

of each trait-environment combination from low to high. In
general, the rMG value increased with the increase of h2 for
all the trait-environment combinations, but the trends differed
among trait-environment combination. For the complex traits
(GY_WW and GY_WS), slight increase was observed with
the increase of h2 among subgroups. Slight decrease was

observed from subgroup 1 to subgroup 2, due to sampling
variation/error in both rMG and h2 in subgroup 1, it indicated
that other factors, i.e., TPS and MD, are important for further
improvement on rMG estimation of GY. For less complex
trait AD, the increase in rMG began to plateau once a high
h2 was reached (subgroups 3 and 4). For less complex trait
PH, the rMG continuously increased with the increase of h2

from subgroup 1 to subgroup 4, it indicated that further
improvement on rMG of PH could be obtained by increasing
the h2.

The mean, range and standard deviation of rMG/h differed
among the six trait-environment combinations (Figure 2).
However, the trend observed in rMG/h different with the
trend observed in rMG for the different trait-environment
combinations. The highest rMG/hmeanwas observed on complex
trait GY under WW condition. In contrast, complex trait GY
had the lowest rMG/h mean among the three traits evaluated
under WS condition. For the same trait, rMG/h mean value
under WW condition was consistently higher than under WS
condition. When TPS equaled to 90 and all the SNPs were
used for prediction, rMG/h value across populations under WW
condition had a mean of 0.59, 0.46, and 0.49 for GY, AD,
and PH, respectively. Under WS condition, rMG/h value across
populations had a mean of 0.38, 0.42, and 0.46 for GY, AD, and
PH, respectively.

Effect of Training Population Size on
Prediction Accuracy Estimation
Prediction accuracy increased as the TPS increased for all the
trait-environment combinations, when the MD was constant
(Figures 3, 4, Table S2). When all the SNPs were used for
prediction, the rMG of GY_WW was 0.24 with TPS = 30, 0.28
with TPS= 50, 0.31 with TPS= 70, and 0.33 with TPS= 90. The
rMG mean of AD_WWwas 0.24 with TPS= 30, 0.29 with TPS=
50, 0.32 with TPS = 70, and 0.34 with TPS = 90. The rMG mean
of PH_WW was 0.27 with TPS = 30, 0.32 with TPS = 50, 0.36
with TPS = 70, and 0.38 with TPS = 90. The similar trend was
observed with MD = 50 and MD= 100. The rMG mean of the
target traits evaluated under WS condition also increased as the
TPS increased, when the MD was constant.
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FIGURE 2 | Mean and standard deviation (SD) of rMG and rMG/h of all the target traits across all the 22 bi-parental populations. Values of rMG in each population

were estimated, when training population size equaled to 90 and all the SNPs were used for prediction.

FIGURE 3 | Distribution of rMG across all the populations for all the target traits evaluated under WW condition under all the possible training population size (TPS)

and marker density (MD) combinations. (A) TPS = 30; (B) TPS = 50; (C) TPS = 70; (D) TPS = 90. Three levels of MD, i.e., 50 SNPs, 100 SNPs and All SNPs, were

used for prediction.
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FIGURE 4 | Distribution of rMG across all the populations for all the target traits evaluated under WS condition under all the possible training population size (TPS) and

marker density (MD) combinations. (A) TPS = 30; (B) TPS = 50; (C) TPS = 70; (D) TPS = 90. Three levels of MD, i.e., 50 SNPs, 100 SNPs and All SNPs, were used

for prediction.

Effect of Marker Density on Prediction
Accuracy Estimation
Prediction accuracy increased as the MD increased for all the
trait-environment combinations, when the TPS was constant
(Figures 3, 4, Table S2). When TPS equaled to 90, the rMG mean
of GY_WW was 0.24 with MD = 50, 0.29 with MD = 100, and
0.33 with MD = all of markers. The rMG mean of AD_WW was
0.24 with MD = 50, 0.31 with MD = 100, and 0.34 with MD =

all of markers. The rMG mean of PH_WW was 0.27 with MD =

50, 0.34 with MD = 100, and 0.38 with MD = all of markers.
The similar trend was observed with TPS = 30, TPS = 50 and
TPS= 70. The rMG mean of the target traits evaluated under WS
condition also increased as the MD increased, when the TPS was
constant.

Predictions between Pairwise Half-Sib
Populations
Number of markers used for predictions between the pairwise
half-sib populations ranged from 44 to 100, with a mean of

71 (Table S3). The observed rMG values between the pairwise
half-sib populations were centered around zero for all the
six trait-environment combinations (Figure 6). Out of the 204
predictions, 100 (49%) had rMG values above zero. Themaximum
rMG value of the target traits evaluated under WW condition
was 0.32, 0.14, and 0.18 for GY, AD, and PH, respectively. While
the maximum rMG value of the target traits evaluated under
WS condition was 0.25, 0.30, and 0.14 for GY, AD, and PH,
respectively (Table S3).

Association between Prediction Accuracy
and All the Three Factors
Correlation analysis results between rMG and individual factor
(h2, TPS, and MD) were showed in Table 2, which differed
among the different trait-environment combinations. The rMG

was most strongly associated with h2 for all the trait-
environment combinations except for GY_WW. The second
strongly associated factor was TPS for all the trait-environment
combinations except for GY_WS. The rMG was least associated
with MD for all the trait-environment combinations except for
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FIGURE 5 | Combination plot of rMG and h2 of all the 6 trait-environment combinations, all the 22 populations were divided into 4 subgroups sorted by the h2 of

target traits from low to high, mean rMG of each subgroup was estimated under combinations of TPS = 90 and MD = All SNPs. (A) GY_WW; (B) GY_WS; (C)

AD_WW; (D) AD_WS; (E) PH_WW; (F) PH_WS.

GY_WS. Compared with the less complex traits (AD and PH),
the correlation values between rMG and h2 of the complex traits
(GY) were lower, it indicated that all the three factors have
to be considered simultaneously for further improvement on
rMG estimation for GY. For the less complex traits, h2 of the
predicted trait was the most important factor for rMG estimation
improvement.

Variance analysis results between the rMG and all three factors
together were shown in Table 3. Total variance explained by the
three factors were lower for complex traits than less complex

traits. In the regression model, the total variance explained by
the three factors was 17.69, 39.18, and 58.85% for traits of GY,
AD, and PH evaluated under WW condition, while the total
variance explained by the three factors was 32.51, 57.68, and
58.62% for GY, AD, and PH evaluated under WS condition. For
the same trait, the percentage of total variance explained was
higher or similar underWS condition than underWWcondition.
Among the three factors, h2 explained the greatest percentage
of the total variance for all the trait-environment combinations
except GY_WW, and MD explained the least percentage of the
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FIGURE 6 | Distribution of rMG values of predictions between the pairwise half-sib populations.

TABLE 2 | Correlation between rMG and the three factors (h2, TPS and MD) for all

the trait-environment combinations.

Trait h2 TPS MD

Correlation P value Correlation P value Correlation P value

GY_WW 0.17 4.66E-03 0.29 1.49E-06 0.25 5.12E-05

GY_WS 0.49 2.24E-17 0.19 2.01E-03 0.24 7.57E-05

AD_WW 0.51 6.00E-19 0.26 1.37E-05 0.22 3.45E-04

AD_WS 0.72 3.91E-43 0.21 4.68E-04 0.16 8.28E-03

PH_WW 0.72 4.90E-43 0.19 2.05E-03 0.13 3.39E-02

PH_WS 0.75 4.93E-49 0.12 5.97E-02 0.9.0 1.45E-01

total variance for all the trait-environment combinations except
GY_WS and PH_WW. Variance analysis results were consistent
with the results observed in correlation analysis.

DISCUSSION

In maize breeding, one of the most promising applications of
GS is to predict and select the best un-phenotyped lines in a bi-
parental population, when a subset of this population has been
phenotyped and genotyped as a training population, moderate-
to high rMG value for various traits could be obtained using
different TPS and MD combinations (Crossa et al., 2014; Zhang
et al., 2015). In the present study, 22 bi-parental tropical maize
populations were used to assess the effect of h2, TPS, and MD on
rMG estimation. Results showed that rMG value increase with an
increase in h2, TPS, andMD. The correlation between h2 and rMG

was significant for all the trait-environment combinations. Trait-
environment combinations with higher h2 had higher rMGvalues,
and rMG mean of less complex trait was consistently higher
than that of complex trait under both conditions. For the same
trait, rMG mean under WW condition was consistently higher
than that under WS condition, and populations with higher
h2 of the target trait-environment combination also had higher
rMG values than that of populations with lower h2. Variance

analysis also showed that h2 is the most important factors on
rMG estimation, and h2 explained the greatest percentage of the
total variance for all the trait-environment combinations, only
except for GY_WW. Our results agree with the previous studies
that increase in h2 of the target trait results in an increase in
rMG (Combs and Bernardo, 2013; Lian et al., 2014). When the
breeders design the GS pipeline in their breeding programs, they
should consider that the heritability of the target traits in training
population must be high to achieve good prediction accuracy
values by increasing the number of locations and replications in
phenotyping trials.

In both correlation and variance analyses, results showed that
the rMG was significantly associated with TPS for all the trait-
environment combinations, only except for PH_WS. This result
also agrees with the previous studies that increase in TPS results
in an increase in rMG (Zhang et al., 2015; Cao et al., 2017).
Optimal TPS for running GS within a bi-parental population
is also of interest of maize breeder. Cao et al. (2017) reported
that relative high rMG with the smallest standard error were
observed when 50% of the total genotypes were used as a training
population. Different with the 5-fold cross-validation method
reported previously, fixed number of lines were randomly
sampled 100 times to evaluate the rMG value of different target
trait-environment combinations in the present study. Our results
also confirm that moderate-to high rMG values of a wide range
of target trait-environment combinations obtained, when half of
the population is used to build the prediction model. However,
the rMG value could vary depending the genetic complexity of
the target traits and the total population size used for sampling
training population.

Among the three factors, the rMG was least associated with
MD for most of the trait-environment combinations, although
the rMG increases as theMD increases. In the correlation analysis,
the correlation values between rMG and MD of the complex
traits were higher as compared with the less complex traits under
both the WW and WS conditions, which indicated higher MD
is still required to obtain good rMG values for complex traits
with relative low h2. The variance analysis showed that the MD
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TABLE 3 | Variance analysis between rMG and the three factors (h2, TPS and MD) for all the trait-environment combinations.

Trait h2 TPS MD Residuals

Variance explained (%) P value Variance explained (%) P-value Variance explained (%) P-value Variance explained (%)

GY_WW 3.02 2.34E-03 8.58 1.14E-05 6.10 1.79E-05 82.31

GY_WS 24.04 8.09E-19 3.63 3.59E-03 4.84 2.42E-05 67.49

AD_WW 26.09 9.00E-22 7.18 2.40E-06 5.90 1.04E-06 60.82

AD_WS 51.56 1.54E-46 4.66 5.95E-06 1.46 3.15E-03 42.32

PH_WW 51.48 2.32E-47 3.67 6.36E-05 3.70 2.47E-06 41.15

PH_WS 56.32 4.79E-50 1.43 3.20E-02 0.87 2.06E-02 41.38

explained greater variance in complex traits than in less complex
traits, which indicated that MD plays a more important role on
improving the rMG value of the complex traits. Our results are
consistent with the previous studies, good rMG values could be
obtained in bi-parental maize populations, when the h2 of the
target trait is high and the genome is covered with sufficient
markers, i.e., mean distance between markers is <10–20 cM
or around 150 markers evenly distributed the whole genome
(Albrecht et al., 2011; Windhausen et al., 2012; Gorjanc et al.,
2016). Higher MD is required to achieve good rMG values in
bi-parental populations for complex traits with relative low h2

and strong genotype by environment interaction (Lorenzana
and Bernardo, 2009; Lian et al., 2014; Zhang et al., 2015).In
the previous studies, either rMG or rMG/h was used to assess
the prediction ability (Crossa et al., 2014; Bernardo, 2016), the
accuracy of GS is measured by rMG (the average value of the
Pearson correlations between the phenotype and the genomic
estimated breeding values), and the accuracy of phenotypic
selection is measured by h (the square root of heritability of
the predicted trait). The relative accuracy of GS compared with
phenotypic selection represents by the value of rMG/h. In this
study, both rMG and rMG/h values were presented. However,
the trend observed in rMG differed with the trend observed in
rMG/h for the different trait-environment combinations. Under
WW condition, GY had a lowest rMG mean and a highest rMG/h
mean among all the three traits, and it indicated that GS is
more effective for complex trait improvement than phenotypic
selection. In contrast, GY becomes the most ineffective trait for
GS due to the lowest rMG and rMG/h means among all the three
traits evaluated under WS condition. Lowest rMG and rMG/h of
GY_WS are mainly caused by its relative low h2, which indicates
the importance of improving the h2 of the predicted trait in
training population.

Genomic prediction also could be improved by pooling
multiple related bi-parental populations into the training sets or
using multi-parental populations (Schulz-Streeckab et al., 2012;
Zhang et al., 2015). However, only predictions between pairwise
half-sib populations were performed in the present study,
pooling multiple related populations as training population to
predict the other related or un-related populations were not
applied. Because the low-density markers were used to genotype
each bi-parental population, and only few number of markers
shared among the multiple populations. Predictions between
pairwise half-sib populations showed that the rMG values for all

the six trait-environment combinations were centered around
zero, it indicated that the predictions between pairwise half-
sib populations does not work well, especially with less number
of shared markers among populations. Good predictions by
pooling multiple related populations as training population
require genotyping all the populations with high-density markers
to have enough number of common markers among all the
populations.

High-throughput and cost-effective genotyping platforms are
required to implement GS routinely in the breeding programs.
Recently advances in bar-coded multiplexed sequencing
technologies, such as genotyping-by sequencing (GBS), provide
the capacity to genotype a large number of breeding lines at low
costs (Elshire et al., 2011; Wu et al., 2016). GBS multiplexed 96
to 384 samples into one sequencing lane has a similar cost with
the low density SNPs obtained from the single-plex arrays. GBS
becomes a competitive alternative for increasing the number
of markers many folds economically for running GS on crop
improvement, several previous studies showed that GBS could
improve genomic prediction accuracy compared with the low
density SNPs at similar costs (Crossa et al., 2013; Zhang et al.,
2015). In this study, our results showed that high-density
genotyping platforms are required, when the predictions are
applied on complex traits with low heritability or by pooling
multiple related bi-parental populations as training population.
rAmpSeq (repeat Amplification Sequencing; (Buckler et al.,
2016) was developed recently for large-scale genomic selection
projects, this technology allows hundreds to thousands of
markers to be scored for less than US$ 5 per sample. CIMMYT
in collaborations with Cornell University is testing how to
implement genomic prediction on untested double haploid lines
using rAmpSeq technology. Cost benefit analysis and genomic
prediction accuracy results of this initiative will be reported in
the near future.

CONCLUSION

The main objectives of this study were to evaluate the rMG

value of the six trait-environment combinations in 22 bi-parental
tropical maize populations genotyped with low-density SNPs
and assess the effect of h2, TPS, and MD on rMG estimation
in bi-parental populations. Results of this study are clear,
moderate rMG means obtained for different trait-environment
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combinations, when 50% of the total genotypes was used as
training population and ∼200 SNPs were used for prediction.
Architecture of predicted trait affects the rMG value estimation,
complex traits had lower rMG means than those of less
complex traits, and rMG mean of the same predicted trait was
higher in WW condition than in WS condition. For all the
trait-environment combinations, rMG value increased as the
increase of h2, TPS, and MD. Both correlation and variance
analyses showed that h2 is the most important factor on rMG

estimation. Among the three factors, h2 most significantly
correlates with rMG and explains the greatest percentage of
the total variance of rMG for almost all the target trait-
environment combinations. Among the three factors, the MD
was least associated with rMG estimation for most of the trait-
environment combinations, good rMG values could be obtained
in bi-parental maize populations, when the h2 of target trait
is high and the genome is covered with sufficient markers
(mean distance between markers is <10–20 cM or around 150
markers evenly distributed the whole genome). Higher MD is
required to achieve good rMG values in bi-parental populations
for complex traits with relative low h2 and strong genotype by
environment interaction. Predictions between pairwise half-sib
populations showed that the rMG values for all the six trait-
environment combinations were centered around zero, high-
density and cost-effective genotyping platforms are required to
apply genomic predictions across populations and implement
GS routinely in the breeding programs. The trend observed in
rMG differed with the trend observed in rMG/h for the different
trait-environment combinations, which indicated that both rMG

and rMG/h values should be presented in the GS studies to
show the accuracy of GS and the relative accuracy of GS
compared with phenotypic selection on various target predicted
traits.
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