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Background: Nitrogen (N) deposition could influence plant stoichiometry and growth
rate and thus alter the structure and function of the ecosystem. However, the
mechanism by which N deposition changes the stoichiometry and relative growth rate
(RGR) of plant organs, especially roots with different diameters, is unclear.

Methods: We created a gradient of N availability (0–22.4 g N m−2 year−1) for
Pinus tabuliformis seedlings for 3 years and examined changes in the carbon
(C):N:phosphorus (P) ratios and RGRs of the leaves, stems, and roots with four diameter
classes (finest roots, <0.5 mm; finer roots, 0.5–1 mm; middle roots, 1–2 mm; and
coarse roots, >2 mm).

Results: (1) N addition significantly increased the C and N contents of the leaves and
whole roots, the C content of the stems, the N:P ratios of the leaves and stems, and
the C:P ratio of the whole roots. (2) In the root system, the C:N ratio of the finest roots
and the C:P ratios of the finest and finer roots significantly changed with N addition. The
N:P ratios of the finest, finer, and middle roots significantly increased with increasing
amount of N added. The stoichiometric responses of the roots were more sensitive to
N addition than those of the other organs (3) The RGR of all the organs significantly
increased at low N addition levels (2.8–11.2 g N m−2 year−1) but decreased at high N
addition levels (22.4 g N m−2 year−1). (4) The RGRs of the whole seedlings and leaves
were not significantly correlated with their N:P ratios at low and high N addition levels.
By contrast, the RGRs of the stems and roots showed a significantly positive correlation
with their own N:P ratio only at low N addition level.

Conclusion: Addition of N affected plant growth by altering the contents of C and N;
the ratios of C, N, and P; and the RGRs of the organs. RGR is correlated with the N:P
ratios of the stems and roots at low N addition level but not at high N addition level. This
finding is inconsistent with the growth rate hypothesis.
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INTRODUCTION

Increasing global atmospheric N deposition could influence the
stoichiometry of plant aboveground organs and roots and thus
alter the physiological activity and growth rates (Niklas et al.,
2005). Such changes could influence the composition, structure,
and function of the plant ecosystem (Liu et al., 2011). However,
the mechanism by which N deposition changes the stoichiometry
and growth rate of plant organs, especially roots with different
diameters or orders, is unclear; thus, the understanding of plant
growth processes and mechanism is limited, and the development
of a plant growth model is hindered (Findenegg, 1990; Yu et al.,
2012).

Previous studies on the relationship between plant
stoichiometry and environmental changes focused only on
plant aboveground organs or leaf stoichiometry (Güsewell, 2004;
Cui et al., 2010). For example, Cui et al. (2010) studied the
stoichiometry of nine major species in temperate grassland and
found that N addition significantly increases the N and P contents
and decreases the C:N and C:P ratios of leaves. Meanwhile, Mo
et al. (2015) indicated that N addition significantly increases
the P content but non-significantly affects the N content and
N:P ratio of plant stems. Recent studies have found that the
stoichiometry of roots is more sensitive to environmental
changes than that of the leaves (Minden and Kleyer, 2014;
Schreeg et al., 2014). However, the effects of soil available
N on root stoichiometry remain unclear (Mo et al., 2015).
Hu et al. (2007) found that N addition does not significantly
affect the N and P contents and the N:P ratio of Ophiopogon
japonicus roots. By contrast, studies on seven tree species
in tropical forests reported that N addition increased the N
content and N:P ratio of fine roots (Mo et al., 2015). These
contradicting results may be due to the different plant species,
N addition levels, and soil initial N contents used (Li et al.,
2015). However, recent studies have shown that the varied
conclusions can be attributed to the different responses of the
stoichiometry of fine roots with different diameters to changes in
soil available N.

An increasing number of studies showed that N addition
induced varied effects on the stoichiometry of roots with
different orders and diameters. For example, Guo et al. (2004)
found that N addition significantly increased the N contents of
the first five root orders of longleaf pine. However, Pregitzer
et al. (2002) applied N fertilization to nine tree species and
observed that the N content of fine roots of the first three
orders increased significantly in three tree species; however,
those of the six other species showed no significant response.
Moreover, stoichiometric changes of the root system often altered
root physiological activities. For example, increasing root N
content may increase the respiration rate of fine roots instead
of the coarse roots, decrease root longevity, and increase root
potential decomposition rate (Guo et al., 2004; Chen et al.,
2016). Systematic studies on the effects of soil available N on the
stoichiometry of roots with different diameters or orders may
be helpful to elucidate the mechanism underlying root growth.
However, most studies on root stoichiometry mainly focused
on N content and disregarded C and P contents and C:N:P

ratios (Pregitzer et al., 2002). Only a few studies analyzed the
stoichiometric changes of fine roots based on the root diameter
or root orders. Moreover, most studies added 5–15 g N m−2

year−1, which is insufficient to change soil N content from
limitation to saturation for plant growth in most ecosystems
(Lu et al., 2009). Thus, we hypothesize that the stoichiometry
of C, N, and P varies in plant leaves, stems, and roots with
different diameters and that N addition causes different effects
on the stoichiometry of plant organs. We also hypothesize that
the stoichiometry of the roots is more sensitive to N addition
than that of the leaves because roots absorb N from soil. Based
on these hypotheses, we try to find the potential mechanism
underlying the coupled changes between plant stoichiometry and
physiological function at the plant organ level induced by soil N
content changes.

The growth rate hypothesis (GRH) indicates that fast-growing
plants have low N:P and C:P ratios because of the differential
allocation to P-rich ribosomal RNA, which results in a negative
relation between growth rate and N:P ratio (Sterner and Elser,
2002). Many studies have validated the GRH in microbes,
zooplanktons, arthropods, and insects (Main et al., 1997; Elser
et al., 2003; Makino et al., 2003; Acharya et al., 2004). However,
the test of GRH to higher plants showed inconsistent results.
Some studies support the GRH (Vrede et al., 2004; Niklas and
Cobb, 2005; Lovelock et al., 2007). However, a few scholars
reported that higher plants can store extra nutrients and thus
change the relationship between growth rate and N:P ratio.
Thereby, the applicability of GRH to higher plants should be
modified (Ågren, 2004, 2008; Cernusak et al., 2010; Yu et al.,
2012). The allometric growth of different organs of higher plants
may be another reason for the inconsistent results. The functional
balance hypothesis suggests that increasing soil available N
content increases the aboveground growth rate of plants and
relatively decreases the belowground growth rate (Pan et al., 2005;
Zhang et al., 2009). Nevertheless, the effect of soil available N
on the N:P ratio of different plant organs remains controversial.
For example, increasing the soil available N content increased
(Cui et al., 2010), decreased (Lü et al., 2012), or did not change
(Hu et al., 2007) the N:P ratio of plant organs. Hence, growth
rate and N:P ratio may exhibit significant positive correlations,
significant negative correlations, irrelevant, or other relationships
of plant organs. To the best of our knowledge, few studies
have investigated the effects of N addition on the relationship
between growth rate and N:P ratio of different plant organs.
Moreover, the relationships between plant relative growth rate
(RGR) and N:P ratio can change under different soil nutrient
conditions (Yu et al., 2012). Increasing the level of N enrichment
from deposition alters the N cycle in some ecosystems, thereby
shifting the nutrient conditions from N limitation to saturation
(Holland et al., 1999). Therefore, the relationship between plant
RGR and N:P ratio would be changed. These changes regulate
the growth rate, stoichiometry of individual plants, structure,
and biogeochemical cycle at the ecosystem level (Aber et al.,
1998). The effects of increasing soil available N content on
the growth rate, stoichiometric ratio, and relationship between
growth rate and N:P ratio of plant organs must be determined
to clarify the mechanism underlying N deposition, affecting
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plant growth (Liu et al., 2011; Wang et al., 2011). Thus, we
propose the second hypothesis that N addition alters the plant
growth and growth rate related to the N:P ratio of different
plant organs; however, these relationships change at different N
addition levels.

In this study, we tested the two hypotheses by determining
the growth rates and stoichiometry of leaves, stems, and roots
with four diameters (<0.5, 0.5–1, 1–2 and >2 mm) of Pinus
tabuliformis seedlings. We created N availability levels from 2.8 g
N m−2 year−1 to 22.4 g N m−2 year−1 to determine the possible
critical values that promote or limit plant growth and alter the
relationship between growth rate and N:P ratio from coupling to
decoupling.

MATERIALS AND METHODS

Study Area
The experiment was conducted at the Institute of Soil and Water
Conservation in Yangling, Shaanxi Province, China (107◦38′E,
33◦40′N). The region has a classic temperate continental climate
with a mean annual precipitation of 674.3 mm, a mean annual
temperature of 13.2◦C, a sunshine period of 1993.7 h, and a
frost-free period of 225 days.

Experimental Design
Gray forest soil (Gray Luvisols, FAO soil classification) was
collected from Yichuan in Shaanxi Province, China. The soil
was sieved through a 2 mm mesh and then transferred to 175
pots. Each pot weighted 18 kg (depth of 35 cm, diameter of
40 cm). One-year-old P. tabuliformis seedlings with 3 cm height
and similar growth characteristics were transplanted to pots in
March 2011 and were grown for 3 years in a free air field setting
under five levels of N addition (0–22.4 g N m−2 year−1) in the
form of urea. Urea (Fumin Agriculture Product Company, Xi’an,
China) was dissolved in 10 mL of distilled water and evenly added
to the pot during a rain fall event in March of each year from
2011 to 2014. The levels of N addition for the five fertilization
treatments were 0 (control, CK), 2.8, 5.6, 11.2, and 22.4 g N m−2

year−1 (0, 0.57, 1.15, 2.3, and 4.6 g urea pot−1 year−1). The five
N addition treatments were observed, and 35 pots were used for
each N treatment; this study had a total of 175 pots.

Sampling and Analysis
Samples were harvested at two growth stages. In stage I, 1-
year-old P. tabuliformis seedlings with 3 cm height and similar
characteristics were separated into three parts: leaves, stems, and
roots to measure initial biomass in March 2011. In stage II, mean
height (m) and basal diameter (cm) of P. tabuliformis seedlings
were measured from each treatment at the growing season in
July 2014. Organs were collected from four seedlings with mean
height and basal diameter for each treatment (four seedlings can
represent the properties of treatment and meet the requirements
of mathematical analysis). Each individual was separated into six
parts: leaves, stems, and four diameter root classes (finest roots:
0–0.5 mm, finer roots: 0.5–1 mm, middle roots: 1–2 mm, and
coarse roots: >2 mm). The six parts were immediately weighed

when samples were fresh. The leaves, stems, and roots were
rinsed with deionized water before drying and grinding to a fine
powder. All plant organs were oven-dried at 65 ◦C for 2 days
to a constant weight, weighed, finely ground in a ball mill, and
then stored until chemical analysis. The organs’ total C content
(mg g−1) was determined through H2SO4–K2Cr2O7 oxidation
(Lu, 2000). Total P content (mg g−1) was determined by
persulfate oxidation followed by colorimetric analysis (Lu, 2000).
The total N content (mg g−1) was determined colorimetrically by
Kjeldahl acid digestion with an Alpkem auto-analyzer (Kjektec
System 1026 distilling unit, Sweden) after extraction with sulfuric
acid (Bremner and Mulvaney, 1982). The heterostasis of plant
organs can be expressed as relative standard deviation (RSD
%), which is an index of plant organ’s stoichiometry sensitivity
response to N addition. RSD = Standard deviation/Arithmetic
mean× 100. RGR was calculated using the following equation:

RGR =
lnMt2 − lnMt1

1t

Mt1: Initial organ (leaves, stems, and roots) biomass at stage I (g).
Mt2: Final organ [leaves, stems, and whole roots (with four root
diameters)] biomass at stage II (mg). 1t: Days from stages I–II.

Statistical Analyses
Differences in element content and stoichiometric ratio between
any two N addition treatments were tested using one-way
ANOVA on SPSS 20.0 statistical software package (SPSS, Inc.,
United States). Linear regression analyses were used to test
the stoichiometric relationships and element contents between
leaves and four-diameter root classes, as well as the relationships
between RGR and N:P ratio.

RESULTS

Effects of N Addition on Element Content
of Seedling Organs
Across all seedling organs, the leaves and stems had higher
C content than the whole roots. The C content of the roots
increased with increasing root diameter. The leaves had higher
N and P contents than the other organs. The N and P contents

TABLE 1 | Mean (mg g−1) and relative standard deviation (RSD, %) of element
contents across N addition gradient.

C N P

Leaves 461.22 (3.58)a 10.96 (12.77)a 0.638 (20.85)a

Stems 461.94 (4.53)a 3.37 (16.61)e 0.365 (24.93)d

Whole roots 390.82 (6.94)cd 6.10 (19.18)d 0.491 (15.07)c

Finest roots 331.27 (9.55)e 8.40 (22.02)b 0.687 (14.41)a

Finer roots 379.17 (8.60)d 7.23 (24.48)c 0.555 (17.66)b

Middle roots 402.45 (8.68)c 5.93 (24.96)d 0.459 (17.86)c

Coarse roots 420.93 (6.07)b 4.24 (30.66)e 0.366 (26.50)d

Different letters indicate significant difference for element contents among the
different organs (p < 0.05, n = 20). The diameter classes for finest, finer, middle,
and coarse roots are 0–0.5, 0.5–1, 1–2, and >2 mm, respectively.
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FIGURE 1 | Effects of N addition on the element content of seedling organs, (A) C content, (B) N content, and (C) P content, (n = 4). Different letters indicate
significant difference of C, N, and P contents (mg g−1) among different N addition gradients (P < 0.05). The diameter classes for finest, finer, middle, and coarse
roots are 0–0.5, 0.5–1, 1–2, and >2 mm, respectively.

of the roots decreased with increasing root diameter (Table 1). In
general, the C and N contents of the leaves and whole roots and
the C content of the stems significantly increased with N addition,
whereas the P content of the plant organs did not significantly
change with N addition (Figure 1). Across all seedling organs, the
RSD of elemental contents was highest in roots, except the RSD
of P content (Table 1). These results indicate that the responses of

C and N contents of roots are more sensitive to N addition than
those of leaves and stems.

Effects of N Addition on Stoichiometric
Ratio of Seedling Organs
Across all seedling organs, the leaves had the highest N:P ratio,
and the stems had the highest C:N and C:P ratios among all
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TABLE 2 | Mean and relative standard deviation (RSD, %) of stoichiometric ratios
across N addition gradient.

C:N C:P N:P

Leaves 42.66 (11.88)e 754.12 (21.48)c 17.84 (22.53)a

Stems 140.59 (15.95)a 1334.24 (23.61)a 9.56 (18.31)c

Whole roots 66.09 (18.69)cd 815.91 (19.05)bc 12.52 (18.21)b

Finest roots 40.91 (20.53)e 491.82 (17.43)d 12.25 (15.59)b

Finer roots 55.10 (23.52)d 714.31 (26.68)c 13.19 (21.61)b

Middle roots 71.73 (26.78)c 913.16 (24.74)b 13.03 (21.57)b

Coarse roots 108.02 (28.96)b 1234.77 (29.72)a 11.98 (38.73)b

Different letters indicate significant difference for stoichiometry ratio among different
organs (p < 0.05, n = 20). The diameter classes for finest, finer, middle, and coarse
roots are 0–0.5, 0.5–1, 1–2, and >2 mm, respectively.

organs tested. The C:N and C:P ratios of the roots increased with
increasing root diameter (Table 2). The N:P ratios of the leaves
and stems and the C:P ratios of the whole roots significantly
increased with N addition (Figure 2). In the root system, the C:N
ratio of the finest roots and the C:P ratios of the finest and finer
roots significantly changed with N addition. The N:P ratios of
the finest, finer, and middle roots significantly increased with N
addition. The RSD of the C:N ratio of roots was higher than those
of leaves and stems. Meanwhile, the RSD of the C:P and N:P ratios
varied among seedling organs (Table 2).

Linear Regression Analysis of
Stoichiometric Ratio between the Leaves
and the Root System
In most cases the element contents and the C:N:P ratios
of the leaves correlated significantly with those of the root
system, except for the five relationships that were non-significant
(Table 3). Any changes in the stoichiometric ratio or element
content of the leaves across the N addition treatments were
accompanied by larger changes of the root system except for three
relationships (Table 3, slope <1).

Effects of N Addition on RGR of Seedling
Organs
Relative growth rate varied among different seedling organs.
Compared with the other organs, the stems had higher RGR
whereas the roots had lower RGR (Table 4). The RGR of the
whole plants and organs significantly increased with N addition
at 0–11.2 g N m−2 year−1 treatments and then significantly
decreased at 22.4 g N m−2 year−1 treatments compared with the
control.

Relationships between RGR and N:P
Ratio
The relationships between RGR and N:P ratio varied under
different N addition ranges. The RGR of the whole seedlings and
leaves showed no significant correlation with their N:P ratios at
0–11.2 and 11.2–22.4 g N m−2 year−1 treatments. The RGRs of
the stems and whole roots had significantly positive correlation
with their own N:P ratios at 0–11.2 g N m−2 year−1 but not at
11.2–22.4 g N m−2 year−1 treatments (Figure 3).

DISCUSSION

Effects of N Addition on the
Stoichiometry of Seedling Organs
In this study, the stoichiometric ratios varied among the different
plant organs. N addition significantly changed the stoichiometric
ratios and element contents (except P content) of the plant
organs. In addition, stoichiometry of root was more sensitive to
the changes of soil available N content compared with those of the
other organs. These results partly support our first hypothesis.

Many studies found that the stoichiometry of different organs
varies (Kleyer and Minden, 2015). For example, some studies
showed that the N and P contents and N:P ratio of the leaves were
higher than those of the other organs, whereas the C content and
C:N and C:P ratios of the stems were the highest among all organs
(Luo et al., 2006; Li et al., 2013). These findings are consistent with
our results. In addition, the C content and C:N and C:P ratios
increased, but the N and P contents decreased with increasing
root diameter in our research, which is consistent with the results
of Ma et al. (2015). Many studies showed that the stoichiometric
ratios of the roots with different diameters was coupled with their
physiological functions. For example, the finest, finer, and middle
roots are the main organs for water and nutrient uptake, with
high respiration and turnover rates, whereas the coarse roots
are the main organs for water and nutrient transport, with low
respiration and turnover rates (Wang et al., 2013). Our results
also showed that the N:P ratio did not decrease with increasing
root diameter, which is inconsistent with the results of Ma et al.
(2015). These inconsistencies may result due to the different
soil nutrients, regional climates, plant species, or study methods
used (Pregitzer et al., 2002). The different stoichiometry of the
roots may be consistent with their physiological functions of
roots with different diameters or orders. For example, many
studies found that finer roots with high N contents exhibit higher
respiration rates and mycorrhizal colonization rates, as well as
an active uptake of nutrients compared with coarser roots (Sun
et al., 2012; Wang et al., 2013). Many studies have reported that
the morphological, anatomical, and physiological characteristics
of the root system vary hierarchically between root orders and
diameters (Pregitzer et al., 2002; Guo et al., 2008; Yuan et al., 2011;
Sun et al., 2012). Such variation also applies to the stoichiometric
characteristic of the root system.

Stoichiometry mainly reflects the ability of plants to utilize
C, N, and P, which are susceptible to environmental changes
(Sardans et al., 2012). In this study, N addition significantly
increased the C and N contents of the plant leaves and whole
roots and the C content of the stems; however, N addition non-
significantly changed the P content of the plant organs. These
phenomena, which are consistent with previous studies, caused
changes in the C:P, N:P, and C:N ratios of plant organs (Zhang
et al., 2004; An et al., 2011; Bin et al., 2014; Shi et al., 2015). N:P
ratio is widely accepted as an efficient indicator of plant nutrient
condition in response to environmental changes (Griffiths et al.,
2012). In this study, N addition significantly increased the N:P
ratios of the seedling leaves and stems but exerted no significant
effects on the whole roots; this result is consistent with the result
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FIGURE 2 | Effects of N addition on stoichiometric ratio of seedling organs, (A) C:N, (B) C:P, and (C) N:P, (n = 4). Different letters indicate significant difference of
stoichiometric ratio among different N addition gradients (P < 0.05). The diameter classes for finest, finer, middle, and coarse roots are 0–0.5, 0.5–1, 1–2, and
>2 mm, respectively.

of a previous research (Zhang et al., 2016). Other related studies
have also found that N addition increased (Chen et al., 2015)
or decreased (Wei et al., 2013) the N:P ratio of plant leaves,
stems, and roots simultaneously or individually (Zhan et al.,
2016). Therefore, the effect of N addition on the stoichiometry
of plants generally varies depending on soil initial N content,
climate, vegetation type, and other factors (Lü et al., 2013; Mayor
et al., 2014).

The effects of N addition on plant stoichiometry are different
not only in different organs but also in the same organ. In this
study, N addition significantly changed the C:N ratio of the finest

roots and the C:P ratios of the finest and finer roots. Moreover, N
addition significantly increased the N:P ratios of the finest, finer,
and middle roots. In general, the changes in the stoichiometric
ratio were greater in finer roots than in coarse roots. The reasons
for these changes may be as follows: N addition would change
the morphological and physiological characteristics of the root
system; this change increases the number, length, production,
turnover, and biomass of finer roots but does not affect coarse
roots (Wang et al., 2017). These hierarchical changes were
formed by the responses of stoichiometry to N addition. The
stoichiometric changes of the different-diameter roots would also
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TABLE 3 | Correlation coefficient and slope of the linear regression (in the
parentheses) for the linear regression analysis of element content (upper) and
stoichiometry ratio (lower) between the leaves and roots with four diameters.

Y X C N P

Leaves Finest roots NS (0.533∗, 0.404) (0.479∗, 0.640)

Leaves Finer roots (0.620∗, 0.314) (0.595∗, 0.470) (0.546∗, 0.736)

Leaves Middle roots (0.781∗, 0.370) (0.645∗, 0.609) NS

Leaves Coarse roots (0.635∗, 0.411) (0.469∗, 0.503) (0.717∗, 0.982)

Leaves Whole roots (0.774∗, 0.471) (0.744∗, 0.888) (0.716∗, 1.289)

Y X C:P N:P C:N

Leaves Finest roots NS (0.807∗, 1.694) (0.418∗, 0.252)

Leaves Finer roots (0.550∗, 0.468) (0.715∗,0.007) (0.628∗, 0.246)

Leaves Middle roots (0.462∗, 0.331) (0.498∗, 0.712) (0.633∗, 0.167)

Leaves Coarse roots (0.705∗, 0.311) NS NS

Leaves Whole roots (0.717∗, 0.747) (0.635∗, 1.120) (0.712∗, 0.292)

NS indicates no significant relationship, and ∗ indicates a significant relationship at
p < 0.05 (n = 20). The diameter classes for finest, finer, middle, and coarse roots
are 0–0.5, 0.5–1, 1–2, and >2 mm, respectively.

affect the physiological functions, such as enhance the water
and nutrient uptake, and increase the respiration and turnover
rates of fine roots but not of coarse roots. These changes further
decrease the C allocation of the belowground (Wang and Liu,
2014), thereby altering plant growth strategies (Wang et al., 2013)
and C cycling in the ecosystem (Pregitzer et al., 2002). Chen et al.
(2016) found that N addition exerts the same effects on five-order
roots, which contradicts with our results. In addition, recent
studies have shown that N addition increased the N content of
fine roots but exerted no significant effect on coarse roots (Yu
et al., 2009). These inconsistent results may be related to plant
species, soil initial N content, N addition level, and duration.

Homeostasis is the ability to maintain stable nutrient content
of plant organs despite fluctuation in environmental resources
(Cannon, 1929; Bradshaw et al., 2012). Plant organs vary in
homeostatic ability; thus, different organs have diverse responses
to environmental changes. Plant organ stoichiometry can be an
indicator of environmental change beyond what homeostasis
controls (Schreeg et al., 2014). Two results in the present
study indicated that the stoichiometry of the roots is a more
responsive indicator to N addition than those of the other organs.
First, linear regression analysis showed that most stoichiometric
relationships between the leaves and the roots were significant
(except five relationships, Table 3). Furthermore, the slopes of
the linear regression between the leaves (Y) and the roots (X)
were always less than 1 (except three slopes), indicating that
any change in the element content or stoichiometric ratio of
the leaves in response to N addition was accompanied by larger
changes of the roots. Second, heterostasis can be expressed
as RSD (Minden and Kleyer, 2014), and the RSD of the N
and C contents and C:N ratio of the roots was higher than
those of the other organs across all N addition treatments.
This finding indicates that the variation in C and N contents
and C:N ratio of the roots were greater than those of the
other organs in response to N addition. These two lines of
evidence demonstrate that the stoichiometry of the roots is a

more responsive indicator of N addition than those of other
organs. Our results are consistent with those of previous studies
(Li et al., 2014; Minden and Kleyer, 2014; Schreeg et al., 2014).
An explanation is that the leaves have higher N and P contents
than other organs that are generally metabolic and reproductive.
Thus, the leaves need a higher level of homeostasis than the
roots to ensure key plant physiological activities when soil N
content changes (Li et al., 2014). These findings indicate that
plant C gain needs a more stable and optimal stoichiometric
ratio than the absorbing function (Minden and Kleyer, 2014).
This stoichiometric mechanism is favorable in understanding
plant survival strategies. The stoichiometry of the roots, as
the main organ of nutrient absorption, is more sensitive to N
addition than those of the other organs. However, the sensitivity
of root stoichiometry to N addition did not vary with root
diameter. Further studies are needed in the future to elucidate
the underlying mechanism.

Relationships between RGR and N:P
Ratio
The RGR differed among seedling organs. N addition
significantly increased the RGRs at 0–11.2 g N m−2 year−1

treatments but significantly decreased the RGRs at 22.4 g
N m−2 year−1 treatments. Previous studies found that the
research region is an N-limited region (Wang et al., 2013).
Thus, N addition facilitated seedling growth at 0–11.2 g
N m−2 year−1. However, N addition at 22.4 g N m−2

year−1 decreased plant growth rates, possibly indicating
that the critical value for N saturation is between 11.2
and 22.4 g N m−2 year−1. In addition, the relationships
between RGR and N:P ratio varied among the different
seedling organs, and these relationships were determined by
N addition level. These results partly supported our second
hypothesis.

The N:P ratio of whole seedlings showed no significant
correlation with its own RGR, which does not support the
RGH at the whole seedling level. This result can be attributed
to the phenomenon that N addition exerted no significant
influence on N:P ratios but increased seedling growth at low
N addition and restrained growth at high N addition. Our
results are consistent with the findings of Matzek and Vitousek
(2009), who suggested that the relationships between N:P ratio
and RGR vary. Meanwhile, seedling stem and whole root
N:P ratios had a positive relationship with their own RGR at
low N addition levels. These results are analogous with those
of Yu et al. (2012), who found that plant aboveground and
belowground RGRs are positively correlated with N:P ratio
under N addition treatment. In N-limited regions, whole root
N:P ratios increased with N addition. Meanwhile, N addition
significantly increased RGR, which resulted in the positive
relationship between the RGR and N:P ratio of whole roots.
Similarly, N addition significantly increased the RGR and N:P
ratio of the stems under N-limited growth condition, indicating a
positive relationship. Conversely, under N-saturated condition,
the relationships between the RGR and N:P ratio of the stems
and whole roots were not significant. This result may be due to
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TABLE 4 | Effects of N addition on relative growth rate of whole seedling and organs.

Treatment
(g N m−2 year−1)

Whole plant relative
growth rate

Leaves relative growth
rate

Stems relative growth
rate

Whole roots relative
growth rate

Whole plant biomass
(g seedling−1)

(mg g−1d−1) (mg g−1d−1) (mg g−1d−1) (mg g−1d−1)

CK (0) 1.596 ± 0.056c 1.803 ± 0.086ab 1.639 ± 0.048d 1.090 ± 0.046b 365.41 ± 29.04c

N1 (2.8) 1.746 ± 0.058b 1.809 ± 0.080ab 2.077 ± 0.049b 1.107 ± 0.085b 504.38 ± 40.77b

N2 (5.6) 1.745 ± 0.081b 1.889 ± 0.099a 1.988 ± 0.084c 1.073 ± 0.051b 558.64 ± 63.23b

N3 (11.2) 2.049 ± 0.048a 1.784 ± 0.068ab 2.398 ± 0.040a 2.069 ± 0.039a 837.44 ± 57.06a

N4 (22.4) 1.603 ± 0.033c 1.731 ± 0.032b 1.986 ± 0.048c 0.949 ± 0.010c 316.26 ± 14.50c

Different letters indicate significant difference for a given index among different N additions (p < 0.05). CK, N1, N2, N3, and N4 are 0, 2.8, 5.6, 11.2, and 22.4 g N−2

year−1, respectively.

FIGURE 3 | Relationships between N:P ratio and relative growth rate (mg g−1 d−1) for (A) whole plant, (B) leaves, (C) stems, and (D) roots in P. tabuliformis seedling.

the phenomenon that N addition significantly decreased RGR
but non-significantly decreased the N:P ratio of the stems and
whole roots. Thus, the applicability of GRH to woody plant
organs may be related to N addition level (Yan et al., 2015).
In addition, the relationship between RGR and N:P ratio of
the leaves was non-significant at any N addition level, given
that the RGR and N:P ratio of the leaves were non-significantly
different among the different N addition levels. These results
indicate that GRH is unsupported in plant organs. Peng et al.
(2011) found that the relationship between RGR and N:P ratio
differs between shrub and herbaceous species (significant or non-
significant relationships). Our results proved that the relationship
between RGR and N:P ratio of woody whole plants was different
as well. Not only the relationship between RGR and N:P ratio of
whole plants was different among species but also among plant
organs. These results indicated that the relationship between
RGR and N:P ratio varied among woody plant organs, which

may lead to higher plant GRH controversies. Moreover, the
applicability of GRH to higher plants might be related to N
addition ranges.

CONCLUSION

The responses of stoichiometry to N addition varied among
P. tabuliformis seedling organs, especially among roots with
different diameters. Furthermore, the stoichiometry of the roots
was more responsive to N addition than those of the other organs.
Seedling growth was facilitated at low N addition levels (0–11.2 g
N m−2 year−1) but was restrained at high N addition levels (11.2–
22.4 g N m−2 year−1). A positive correlation between RGR of the
stems and roots with their own N:P ratio was observed at low
N addition levels. These findings are inconsistent with GRH. At
high N addition level, however, the correlations were decoupling.
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Our conclusion are based on the seedling plant, and the studies
on mature tree are needed in the future.
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