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Beans of the species Theobroma cacao L., also known as cacao, are the raw material
to produce chocolate. Colombian cacao has been classified as a fine flavor cacao that
represents the 5% of cacao world’s production. Colombian genetic resources from
this species are conserved in ex situ and in-field germplasm banks, since T. cacao
has recalcitrant seeds to desication and long-term storage. Currently, the collection
of T. cacao of the Colombian Corporation of Agricultural Research (CORPOICA) has
approximately 700 germplasm accessions. We conducted a molecular analysis of
Corpoica’s cacao collection and a morphological characterization of some accessions
with the goal to study its genetic diversity and population structure and, to select
interesting accessions for the cacao’s breeding program. Phenotypic evaluation was
performed based on 18 morphological traits and 4 biochemical traits. PCA analysis
of morphological traits explained 60.6% of the total variation in seven components
and 100% of the total variation of biochemical traits in four components, grouping
the collection in 4 clusters for both variables. We explored 565 accessions from
Corpoica’s germplasm and 252 accessions from reference populations using 96
single nucleotide polymorphism (SNP) molecular markers. Molecular patterns of cacao
Corpoica’s collection were obtained amplifying specific alleles in a Fluidigm platform that
used integrated circuits of fluids. Corpoica’s collection showed highest genetic diversity
[Expected Heterozygosity (He = 0.314), Observed Heterozygosity (Ho = 0.353)] that
is reduced when reference populations were included in the dataset (Hg = 0.294,
Ho = 0.261). The collection was divided into four clusters based on population structure
analysis. Cacao accessions from distinct groups showed some taxonomic concordance
and reflected their geographic origins. For instance, accessions classified as Criollo
were clearly differentiated in one group and we identified two new Colombian genetic
groups. Using a number of allelic variations based on 87 SNP markers and 22 different
morphological/biochemical traits, a core collection with a total of 232 accessions was
selected as a primary genetic resource for cacao breeders.
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INTRODUCTION

Theobroma cacao L. also referred as cacao, is a native plant
of tropical forests of South America (Motamayor et al., 2002)
that belongs to the family Malvaceae. The Amazonian borders
between Brazil, Peru, and the Southern Colombia encompass the
highest genetic diversity of this tree species (Thomas et al., 2012).
Today, cacao is grown with other fruit and commodity crops
throughout the world in the humid tropics. Cocoa is the world’s
third most important agricultural export commodity, after coffee
and sugar. It provides economic benefits to some of the poorest
areas of the world and it is the major foreign income for countries
that dominate production such as Ivory Coast (Guiltinan et al.,
2008). Besides the seeds producing the chocolate, cacao’s fruits
are used to produce sweets, jellies, ice cream, liqueurs, cosmetic
and medicinal products (Donald, 2004; Othman et al., 2007).

In Colombia, the cultivated area reported in 2014 was 160,276
hectares producing around 47,732 tons of cacao beans per year;
placing it as the tenth producing country and area harvested
worldwide; as well as the third in South America below Brazil
and Ecuador. Since 1960, cacao’s Colombian production has not
considerably improved, due in part to old cacao plantings, disease
incidence and monoclonal planting (Garcia-Céceres et al., 2014).
Ex situ germplasm banks have been created with the aim to
support the survival of the species in its natural habitat and
to conserve species diversity to be used in breeding programs
(Guiltinan et al., 2008).

The bank of ex situ germplasm of the species T. cacao,
guarded by the Colombian Corporation of Agricultural Research
(CORPOICA), is located in two research centers (RC) placed in
the Department of Santander (RC La Suiza) and Department of E1
Valle del Cauca (RC Palmira). The collection was initially created
to find a solution to the problems of plant pathophysiology
and production, exploring the Colombian diversity of cacao.
Currently, the germplasm collection of Corpoica has been
partially characterized morphologically and agronomically
(Ballesteros et al., 2015). This characterization based mainly
on phenotypic characters could be directly influenced by
environmental factors, multigenic inheritance, quantitative
inheritance and partial dominance of some characters. In order
to assess cacao’s genetic diversity, it is necessary to characterize
the collection using techniques that are not directly influenced
by the environment. Different molecular markers have been
developed and implemented to characterize cacao germplasm
collections, such as microsatellites (SSR) by Lanaud et al. (1999),
Motamayor et al. (2008), and Thomas et al. (2012). A first
assessment of 100 accessions of Corpoica’s collection based
on molecular markers (isozymes, restriction fragment length
polymorphism (RFLP), random amplification of polymorphic
DNA (RAPDs), and simple sequence repeats (SSR) showed an
adequate genetic diversity (Sanchez et al., 2007).

A reduced and informative set of single nucleotide
polymorphism (SNP) markers was selected as useful to
analyze the genetic diversity and population structure of cacao
based on expressed sequence tag (EST) data (Argout et al., 2008).
A new technology called integrated circuits of fluids (IFC) using
a platform based on a microwell plate-base system has been

used to genotype cacao’s collection using the reduced set of SNP
markers (Singh and Singh, 2015; Cosme et al., 2016; Motilal et al.,
2016). The advantage of this technique is the lower running cost,
the high throughput per run and a simplified setup of reactions
(Xu, 2016). Diversity analyses using this technology indicated
a high genetic diversity of the traditional varieties of cacao
from Honduras, Nicaragua, and Puerto Rico, with an appealing
potential for further studies on intrapopulation variation (Singh
and Singh, 2015; Cosme et al., 2016; Motilal et al., 2016).

The aim of the present study was to determine the genetic
diversity of 565 accessions of cacao from Corpoicas collection
based on SNP markers using Fluidigm. In order, to reach this
purpose we will determine the genetic variability and population
structure among accessions, and select accessions based on the
diversity results to create a core collection that would constitute
the primary resource for Colombian genetic breeding program.

MATERIALS AND METHODS

Plant Materials

A total of 565 accessions of Corpoica’s Genebank (450 accessions)
and a breeding collection (115 accessions) (Supplementary
Table S1) were evaluated. Accessions are currently maintained
in vivo at the research centers La Suiza (7°22'12"/N 73°11'39”"W)
and Palmira (3°30'41"N 76°19'19”W) of the Colombian
Agricultural Research Corporation (CORPOICA). Young or
adult leaves of one individual were sampled by accession; and
kept in hermetically sealed bags, containing about 100 g of silica
gel. Finally, the plant material was transported to Molecular
Genetics Laboratory at the research center Tibaitatd (4°4145'N
74°12'12""W), where it was conserved at —80°C for further DNA
extraction.

DNA Extraction

Total DNA was isolated from young leaves using a modified
CTAB extraction protocol for latex-containing plants (Michiels
etal., 2003). The high levels of polysaccharides and polyphenolic
compounds in cacao leaves can affect the DNA concentration, for
that reason in some samples we used the DNeasy Plant Mini Kit
(QIAGEN, Germany) according to manufacturer’s instructions.
NanoDrop 1000 spectrophotometer (NanoDrop Technologies,
Wilmington, DE, United States), was used to quantified total
DNA. DNA samples showing absorbance ratios above 1.8 at
260/280 nanometre (nm) and above 1.2 at 260/230 nm were used
for marker analysis. Additionally, the DNA quality was inspected
using amplification with the following primers: (NS7) Forward
5'- GAGGCAATAACAGGTCTGTGATGC-3" and (NS8) Reverse
5'-TCCGCAGGTTCACCTACG GA-3' corresponding to 18S
ribosomal RNA gene (White et al., 1990). The DNA was diluted
to a working concentration of 20 ng/pL.

SNP Genotyping and Data Processing

A set of 96 SNP markers, evenly distributed in the 10 cacao
linkage groups, was used in this study. The linkage group and
SNP position information is based according to the consensus
map reported by (Allegre et al,, 2012) (Supplementary Tables
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S2, S3). The selection of the SNP panel was based on the
screening using Illuminas GoldenGate Assay (Michel Boccara,
unpublished data) and the reports in previous research on cacao
(Jietal., 2013; Fang et al., 2014; Lukman et al., 2014). Genotyping
was performed using the Fluidigm 96.96 Dynamic Array IFCs
(Fluidigm, San Francisco, CA, United States) according to the
manufacturer’s protocol (Wang et al, 2009). Specific target
amplification (STA) was performed prior to SNP genotyping
analysis to allow the enrichment of template molecules for
each individual integrated fluidic circuit (IFC) facilitating the
multiplexing. PCR was performed in a 5-)LL reaction containing
at least 20 ng of the DNA sample according to the manufacturer’s
protocol. Thermal cycling conditions were 15 min at 95°C,
followed by 14 cycles of a two-step amplification profile of 15 s at
95°C and 4 min at 60°C. SNP type assays were performed using
STA products diluted 1:20.

After a two-step incubation at 70°C for 30 min and 25°C
for 10 min, a 5-min denaturation at 95°C was performed. Then,
thermal cycling was carried out at 95°C for 15 s, 64°C for 45 s
and 72°C for 15 s with a touchdown of —1°C per cycle from
64 to 60°C, followed by additional (24, 29, 34, or 39 cycles to
allow the group conformation) of 95°C for 15 s, 60°C for 45 s and
72°C for 15 s. Endpoint fluorescent images of the 96.96 IFC were
acquired at 28, 33, 38, and 43 cycles on an EP1™ imager, and data
was recorded with BioMark™/EP1™Data Collection Software
(Fluidigm, San Francisco, CA, United States). Fluorescence
plots obtained for each SNP were analyzed using the Fluidigm
SNP genotyping analysis software. Genotype data was sorted
according to the call rate percentage in order to establish a
threshold for genotyping success and finally a matrix of genotypes
vs. loci was created. A dataset of 252 samples provided by Dapeng
Zhang (USDA) representing different cacao germplasm groups
was included as reference populations, some of them have been
analyzed and reported in previous studies (Ji et al., 2013; Cosme
et al., 2016) (Supplementary Table S1). The dataset including
only Corpoica’s accessions was named “Corpoica” and the dataset
including Corpoica’s accessions and reference populations was
named “Consense.”

Population Structure and Cluster

Analysis

The neutrality test of SNP markers was calculated using Tajima’s
D (Tajima, 1989) by MEGA software v7.0.26 (Kumar et al.,
2016). The estimation of the sub-populations number in both
dataset, a Bayesian model of clustering analysis was carried using
the software Structure v2.3.4 (Pritchard et al., 2000) with the
following parameters: number of populations (K) set from 1 to
14, repeated 10 times, with a burn-in period of 200,000 iterations
and 100,000 Markov Chain Monte Carlo (MCMC) repeats. The
optimum K was selected by the method described by Evanno et al.
(2005), using Structure Harvester (Earl and VonHoldt, 2011).
The software Clumpp v1.1.1 (Jakobsson and Rosenberg, 2007)
was used to line up the cluster labels (K selected) across runs
and to estimate the degree of congruence between independent
runs. Visualization of the results was done with Distruct v1.1
(Rosenberg, 2003). The assignation of each accession in a

determinate cluster was established with a probability upper than
0.6; samples that presented the same probability for all clusters
were not assigned in a specific cluster. Additionally, in order
to recover the reference populations reported by Motamayor
et al. (2008), the sample size of each reference population in the
Consense dataset was simulated to 100 samples using the software
Oncor (Kalinowski et al., 2007a). The analyses described above
were also implemented in this simulated dataset.

The number of sub-populations of the most probable K for
Corpoica and Consense datasets was confirmed with a principal
coordinates analysis (PCA) using GenAlex 6.502 (Peakall and
Smouse, 2012) and a cluster analysis using Neighbor Joining
(NJ) method performed with Phylip 3.2 (Felsenstein, 1989)
and viewed with FigTree software 1.4.2 (Rambaut, 2014). An
analysis of molecular variance (AMOVA) and Wright’s F statistics
parameters (Fis, FT, and Fst) were conducted using the program
Arlequin 3.5 (Excoffier and Lischer, 2010). The simulated dataset
was not used for these analyses because the diversity statistics
could be biased by the number of samples of the reference
populations.

Phylogenetic Analysis

Concatenated alignments using the sequence of the assay for each
sample were created and used for the phylogenetic analyses for
Consense dataset. Maximum likelihood (ML) bootstrap tree was
constructed using PhyML 3.0 program (Guindon et al., 2010)
implemented in the South of France bioinformatics platform’ for
1000 bootstrap replicates.

Genetic Diversity

The genetic diversity results were carried out according to the
population structure (most probable K). The allele frequencies,
observed heterozygosity (Ho), expected heterozygosity (Hg), and
polymorphism information content (PIC) were performed with
GenAlex 6.502 (Peakall and Smouse, 2012) and Cervus 3.0.7
(Kalinowski et al., 2007b).

Phenotypic Data

Phenotypic evaluation of the cacao collection was carried out
at the Research Center La Suiza. One hundred and forty one
accessions were evaluated for morphological characteristics,
based on UPOV’s squash descriptor list (UPOV, 2011).
Morphological descriptors were evaluated in six leaves,
5 flowering stems and 10 fruits per accession (Table 1).
Additionally, biochemical traits (Table 1) were evaluated on
94 accessions at the chromatography - mass spectrometry
laboratory from the Industrial University of Santander.
Theobromine and caffeine contents were determined from an
aqueous, degreased and filtered extract obtained from 80 to
100 g of moist cocoa beans using a high-performance liquid
chromatography (HPLC). The Folin-Ciocalteu method (Kaur
and Kapoor, 2002) was used to measure the total phenolic
content using 100 g of moist cocoa grains. First, the extract
was degreased with n-Hexane and polyphenols were extracted
using a mixture of ethanol-acetone solvents and concentrated

'http://www.atgc- montpellier.fr/phyml/
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TABLE 1 | Description of the qualitative and quantitative morphological variables
recorded in 141 and 94 accessions of Theobroma cacao, respectively.

Trait Coding Characteristic Code
Qualitative Leaf 1-3 Blade size LF-BS
1-4 Blade shape of base LF-BSB
1-3 Blade shape of apex LF-BSA
1-6 Flush leaf color LF-LC
Fruit 1-5 Shape FR-SH
1,3,6,7  Basal constriction FR-BC
1-4 Shape of apex FR-SA
1,3,5 Surface FR-S
3,5,7 Exocarp thickness FR-ET
1-3 Seed shape in longitudinal section  FR-SLS
Flower 1-3 Anthocyanin of pedicel FL-AP
3,5,7 Length of sepal FL-LS
3,5,7 Width of sepal FL-WS
1-4 Anthocyanin of sepal FL-AS
1-3 Color of lugula FL-CL
1-4 Anthocyanin of staminode FL-AST
Fruit 3,5,7 Seed length FR-SL
3,5,7 Seed width FR-SW
Quantitative Theobromine TBR
Caffeine CA
Polyphenols PPS
Ratio theobromine/caffeine REL-
TBR/CA

by rotoevaporation (Kaur and Kapoor, 2002). Mean values and
standard deviation for quantitative data and mode values for
qualitative data were calculated. In XLSTAT software version
2017 (Xlstat, 2017), the mean and mode values were used to
conduct a principal component analysis (PCA) and clustering
analysis (CA) using the Euclidean distance and clustering Ward
method.

RESULTS
SNP Genotyping

From the initial 96-SNP panel chosen to study genetic diversity,
87 SNP markers generated high call rates (>90%) across T. cacao
samples from Corpoica (Supplementary Table S2). A total of 536
samples from the 565 evaluated accessions had a SNP call rate
percentage higher than the threshold (>90%), when the filtrated
set of 87-SNP were used. Sixteen outgroup individuals from the
species T. bicolor and T. grandiflorum (Copoazu) (Supplementary
Table S1) and 13 accessions from T. cacao were removed from
the analyses because they had a low call rate (~70%). Reference
populations and Corpoica’s accessions shared a total of 78 SNP
markers and were used for the analyses in the Consense dataset
(Jietal., 2013; Cosme et al., 2016).

Population Structure and Cluster

Analysis

In this study, the value of Tajima’s D test was 2.47 indicating
an excess of intermediate frequency alleles that can result

from demographic processes such as population bottlenecks,
population subdivision or migration (Maruyama and Fuerst,
1984). In order to corroborate population subdivision, genotypes
of 536 samples were used to perform the population structure
analysis. The mean posterior probability [InP(D)] approach, used
to find the number of sub-populations of cacao collections,
fluctuated continuously and never reached a plateau (data not
shown). In contrast, the AK analysis provided by the Evanno
method (Evanno et al., 2005) suggested that the Corpoica dataset
can be divided into four clusters (K = 4) (Supplementary
Figure S1A). Most of the clusters obtained using Corpoica dataset
consisted of a mix of accessions of different origin. The cluster
named Corpoica_l consisted mostly of accessions (90) from
Colombia (SC, ICA, SCC, FCM, etc.), with 29 accessions from
Trinidad, Ecuador, Mexico and Costa Rica. Corpoica_2 and
Corpoica_3 clusters (134 and 75, respectively) consisted mostly of
accessions from (Ecuador, Mexico, Peru, United States, Trinidad,
Costa Rica, and Venezuela). In contrast, Corpoica_4 cluster
consisted of Criollo accessions (CRICF and CR) all collected in
Colombia (Figure 1A).

The AK analysis obtained using the Consense dataset
with the simulated data showed that the most probable
population number is K = 4; however, peaks K = 7 and
K = 11 were also identified as probable population numbers
(Supplementary Figure S1B). For K = 4, the populations
are mostly congruent with the groups obtained with the
Corpoica dataset (Supplementary Figure S2A). Consense_1
cluster regrouped only accessions from Corpoica collection of
different countries (Colombia, Peru, Mexico, Ecuador, and Costa
Rica). Consense_2 cluster regrouped reference accessions from
Iquitos, Nanay and Parinari with the accessions from Peru of
the Corpoica germplasm bank. Samples from Amelonado and
Guiana group were also included in the cluster Consense_2.
Cluster Consense_3, consisted of reference accessions from
Curaray, Nacional and EET from Ecuador, Beni from Bolivia,
and Contamana from Peru and Purus from Brazil. In the cluster
Consense_4, 100% of the CRICF accessions were grouped with
the Criollo reference population confirming their classification
as Criollo genotype. The value K = 11 was mostly congruent
to the geographic distribution and the genetic backgrounds
reported previously by (Motamayor et al., 2008) (Figure 2).
The first cluster was exclusively composed by Criollo samples.
The second cluster included most of the samples collected in
Colombia. The third cluster was composed of individuals of
Purus genetic background. The fourth cluster grouped samples
from Contamana and Beni. The fifth cluster included samples
from French Guiana. The sixth cluster contained samples with
a high degree of admixture, mostly samples from Colombia and
some accessions from Ecuador. The cluster 7 grouped accessions
from Iquitos and Nanay Peruvian genetic backgrounds. The
clusters 8 and 9 were composed of individuals from Nacional and
Curaray Ecuadorian genetic backgrounds, respectively. Finally,
clusters 10 and 11 grouped Amelonado and Parinari Brazilian
genetic backgrounds.

The analysis of molecular variance (AMOVA) for the most
probable sub-populations, indicated that the genetic variation for
both datasets mainly occurred within individuals, accounting for
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FIGURE 1 | Inferred population structure of the Theobroma cacao from Corpoica collection. (A) STRUCTURE bar plot for K = 4, (B) principal coordinates analysis,

(C) NJ-tree based on Nei's genetic distances.
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FIGURE 2 | Inferred population structure of the T. cacao from Consense dataset with simulated reference populations. STRUCTURE bar plot for K = 11. The K = 2

and K = 6 are populations from Colombia.

Amelonado Parinari Not

Iquitos — Nanay
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80% (Corpoica) and 52.75% (Consense), of the total variation,
whereas the genetic variation among populations was 25.98 and
32.26%, respectively (Table 2).

Genetic differentiation (Fst) values of Corpoica collection
varied from 0.143 (between population 2 and 3) to 0.520 (between
population 2 and 4), indicating moderate differentiation
among populations. Genetic differentiation (Fsr) values for the
Consense population are slightly higher than Corpoica collection
ranging from 0.214 to 0.540; reference populations increased the
differentiation between populations (Table 3).

The inbreeding coefficient within populations (Fis) per locus
was —0.081 for Corpoica and 0.221 for Consense. These results
indicated an excess of heterozygotes in Corpoica’s collection,
usually explained by the occurrence of outbreeding (random
mating). However, the positive Fig for the Consense population
could indicate an increase in non-random mating added by the
reference populations (Table 2). Furthermore, the inbreeding
coefficient of an individual relative to the total population (Frr)
was 0.199 for Corpoica dataset and 0.472 for Consense dataset

(Table 2). The F statistics suggested the presence of different
degrees of introgression among reference populations.

The NJ and PCA analysis were carried out for confirmation of
sub-populations (Figure 1B). The PCA analysis showed that the
first two coordinates explained 56% of the total variation within
the Corpoica collection. No clear clustering was found compared
to populations found in Structure, except for the consistent
group formed by Criollo accessions. NJ analysis showed similar
results of PCA analysis where the most differentiated group
was comprised of Criollo accessions (Figure 1C). The Criollo
accessions provide potential sources of differentiated genes for
breeding programs. Similar results for PCA and NJ analysis were
found for the Consense data set (Supplementary Figures S2B,C).

Phylogenetic Analysis

The ML phylogenetic analysis was conducted using Consense
dataset. Bootstrap values are very low indicating low support
for the nodes of the ML tree. However, the phylogenetic
analysis could in general recover the cacao reference populations
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(Figure 3). In the ML tree, Colombian samples are distributed
among branches of the tree indicating that Corpoica’s collection
is diverse and has a good representation of different cacao
genotypes. An individual from the species T. grandiflorum
(Copoazu) was used as outgroup to root the tree.

The Curaray genetic group belonging to the Curaray
Ecuadorian river had a basal position followed by the Nacional
group also from Ecuador. A separate clade contained accessions
from Ecuador (EET). A large clade containing the majority
of accessions divided in two clades in which two Amazonian
groups are distinguished. One regrouped Colombian accessions
with the reference groups, Ucayali-Contamana, Purus from Peru
and Beni from Bolivia, regions located at the South of Amazon
Basin. In the second clade, four clades are distinguished one
with the Upper Amazon reference groups (Parinari, Maraiion,
and Iquitos from Peru) regrouped with Colombian accessions, a
second group with only Colombian accessions, and the last one
that regrouped Criollos accessions and Amelonado accessions.
As in previous analysis, Corpoica’s accessions classified as Criollo
(CRICF and CR) were regrouped with the Criollo reference
population supporting again their classification as Criollos.
Colombian Criollos were collected in Cesar, North region of
Colombia.

Genetic Diversity
Summary statistics for the markers showed Hg values that ranged
from 0.112 (for the TcSNP437 locus) to 0.550 (for TcSNP510 and

TcSNP632 locus) and an overall Hop average of 0.371. Expected
Heterozygosity (Hg) ranged from 0.121 for the TcSNP1383 locus
to 0.521 for the TcSNP915 locus and averaged 0.427. Polymorphic
information content (PIC) ranged from 0.113 for TcSNP1383 to
0.460 for TcSNP709 (Supplementary Table S3).

The genetic analysis was carried out according with the
population structure for each of the datasets. The diversity indices
show that the T. cacao population from Corpoica used in the
present study have a high level of genetic diversity with a mean
value of Hg = 0.314 and Hp = 0.353, that are reduced when the
reference populations are included (Hg = 0.294 and Hpo = 0.261)
(Table 4).

At the subpopulation level, the highest genetic diversity was
found in subpopulation Corpoica_1 (Hg = 0.559), whereas the
lowest was detected for Corpoica_4 (Hg = 0.040). The highest
genetic diversity for Consense subpopulations was found for
Consense_3 (Hg = 0.363), whereas the lowest was detected for
Consense_4 (Hg = 0.055) (Table 4).

Phenotypic Data

Phenotypic evaluation was performed in 141 accessions for 18
qualitative traits related with morphological characteristics. The
color of the leaf seems to be a distinguishing character because
only 4.5% of accessions present shades of green. The predominant
fruit shapes were the elliptical and oblong with 46 and 40%,
respectively; only 14% corresponded to the obovate form. An
important descriptor is the exocarp thickness that is associated

TABLE 2 | Summary of statistics of Analysis of Molecular Variance (AMOVA) for Theobroma cacao L. germplasm bank of Corpoica including reference genetic groups

(Consense) and without them (Corpoica).

Analysis Source of variation Variance components Percentage of variation (%) F-statistics p-value Nm?

Corpoica Among populations 5.21 25.98 Fst = 0.259 0.00000 -
Among individuals within populations —-1.21 —6.03 Fis = —0.081 1.00000 -
Within individuals 16.05 80.04 Fir =0.199 0.00000 -
Total_Corpoica 20.06 100 - - 0.46

Consense Among populations 6.25 32.26 FsT =0.322 0.00000 -
Among individuals within populations 2.90 14.97 Fis = 0.221 0.00000 -
Within individuals 10.23 52.75 Fir =0.472 0.00000 -
Total_Consense 19.39 100 - - 0.52

aNm: Gene flow or Number of migrants.

TABLE 3 | Pairwise genetic differentiation (Fst) values between subpopulations of Theobroma cacao L. germplasm bank of Corpoica including reference genetic groups

(Consense) and without them (Corpoica).

Analysis Subpopulation Corpoica_1 Corpoica_2 Corpoica_3 Corpoica_4

Corpoica Corpoica_1 0.000 - - -
Corpoica_2 0.157* 0.000 - -
Corpoica_3 0.190* 0.143* 0.000 -
Corpoica_4 0.350* 0.520* 0.393* 0.000

Consense Consense_1 0.000 - - -
Consense_2 0.236* 0.000 - -
Consense_3 0.294* 0.214* 0.000 -
Consense_4 0.460* 0.540* 0.430* 0.000

*p < 0.00000.

Frontiers in Plant Science | www.frontiersin.org 6

November 2017 | Volume 8 | Article 1994


https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Osorio-Guarin et al.

Colombian Cacao Genetic Diversity

CRIOLLOS,

%,
/’OJ\

accessions from the Colombian germplasm.

50
' = | curaray

PARINAR!
MARANON

FIGURE 3 | Maximum Likelihood Phylogenetic tree of T. cacao from Consense data. Bootstrap values higher than 50% are shown in nodes. Violet branches indicate

&
<

2,
[
%,
%

CONTAMANA

S alINaCIONAL
80

7

e .
e

with the size and number of seed that may contain the cacao
fruit. It is expected that fruits having thin exocarp present big
seminal cavity. From 141 accessions, 52% of the accessions
presented a medium caliber of the exocarp and 18% of the
genotypes presented a thin exocarp. The basal constriction is
another important attribute to distinguish the cultivars, 15% does
not present this characteristic. Slight constriction predominated
in 47% of the evaluated genotypes, 34% of genotypes presented
a moderate basal constriction and only 4% had a strong
constriction. Seed length ranged from 1.85 to 2.86 cm and width
from 0.75 to 1.56 cm (Supplementary Table S4).

The first seven components of PCA analysis of morphological
characterization explained 60.6% of the total variability. In
total 18 components were needed to explained 100% of the
variability. The first, second, and third components accounted for
15.1, 9.8, and 8.6%, respectively. The correlation of qualitative

variables and its contributions were in order: anthocyanin of
pedicel (0.760), seed length (0.691) and seed width (0.670). The
cluster that grouped more accessions was cluster III (Figure 4),
whereas cluster IV included only 18 accessions. Cluster I was
characterized to present large and wide seeds with medium
caliber of the exocarp. Accessions in cluster II were characterized
by small and short seeds. In cluster II we found more accessions
with thinner exocarp than that of those in cluster I. Accessions in
cluster III were characterized to present medium longitude and
width compared with the other groups. The species included in
clusters IV, presented slightly wider exocarp and the seeds were
almost as longs as the cluster L.

In terms of biochemical traits, 94 accessions for 4 quantitative
traits were characterized. Theobromine ranged from 7.62 to
21.04 mg/g per dry sample. The caffeine content ranged from 0.67
to a maximum of 9.32 mg/g per dry sample. The ratio between
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theobromine and caffeine fluctuated from 1.69 to 25.42. Total
polyphenols fluctuated between 8.66 and 46.13 mg gallic acid/g
sample (Supplementary Table S5).

The first four components of PCA analysis of biochemical
characterization explained 100% of the total variability. The first,
second, and third components accounted for 45.4, 33.5, and
15.5%, respectively. The correlation of quantitative variables was
in order: caffeine (0.903), theobromine (0.774), and polyphenols
(0.629). For the cluster analysis of the biochemical traits we used
the first three components (Figure 5). Cluster I was characterized
to present accessions with high levels of theobromine (> 14 mg/g)
and higher mean value of polyphenols (31.7 mg gallic acid/g).
Accessions in cluster II were characterized by present lower
levels of mean values of theobromine (10.9 mg/g), caffeine
(2.4 mg/g) and polyphenols (22.4 mg gallic acid/g). Accessions in
cluster IIT were characterized by high mean content of caffeine
(5.12 mg/g), additionally similar results when we compared
the mean value of theobromine (14.6 mg/g) and polyphenols
(29.1 mg gallic acid/g) with clusters IV (theobromine 14.2 mg/g
and polyphenols 29.8 mg gallic acid/g) were found. However,
in cluster IV we found the best values concerned with relation
between theobromine/caffeine.

The genetic groups identified using the molecular and
phenotypic data were used to select the accessions that
should conform the core collection. These accessions were
distinct genetically from each other based on the results of
the phylogenetic and structure analyses. Morphological and
biochemical data was used to confirm the differentiation among
individual of each genetic cluster. Additionally, the experience of
the Corpoica’s cacao breeder and curator of the germplasm bank
was also consulted to select materials for the conformation of this
core collection.

DISCUSSION

Wide diversity of shapes and colors present in cacao plantations
has been representing Colombian fine and aromatic cocoa

since 1945. Targeted crosses between collected material from
Amazonian and Trinitario materials were done to produce
commercial hybrid materials that increase yield and resistance to
the disease witches caused by Moniliophthora perniciosa. Since
2006, sampling effort done around the country have increased
the germplasm conserved in genebanks and also permitted to
define that cacao Criollo is clearly cultivated and native from the
northern region of the country (Aranzazu et al., 2009).

Based on diversity studies and reconstruction of suitable
habitats for the species, it is expected high cacao genetic diversity
in Colombia (Motamayor et al., 2008; Thomas et al., 2012).
The Amazonian regions of Peru, Colombia, and Ecuador have
been considered the geographical origin of the species, because
there are the regions with the highest genetic diversity of cacao
(Thomas et al, 2012). So far, few studies using part of the
germplasm available have explored Colombian cacao diversity
(Sanchez et al., 2007; Ballesteros et al., 2015). The present study
showed that 450 cacao accessions conserved in the National
Germplasm Bank and 115 accessions from Corpoica’s breeding
collection conformed a rich and diverse collection supported by
molecular and phenotypic data.

Although studies based on SSR markers reported other cacao
collections more diverse than Corpoica’s (Boza et al., 2013; Pokou
et al., 2014; Bidot Martinez et al., 2015), it appears, more diverse
when compared with studies based on SNP markers. According
to Botstein et al. (1980), PIC can be used to evaluate the level
of gene variation, the value is equal or greater than 0.5 which
suggested high informative with a SSR marker loci. The PIC
values for bi-allelic SNP markers range from 0 to 0.5, whereas
for multi-allelic SSR markers, the PIC value can be as high as
0.5-1.0. However, for this reason, it is not possible to compare
the results between SSR and SNP markers. For instance, level of
gene variation of Colombian collection evaluated by PIC values
(PIC > 0.4) is higher than values reported for Puerto Rico’s
naturalized populations (PIC < 0.375) (Cosme et al. (2016). It
also appears to be highly polymorphic when compared with other
studies (Ji et al., 2013; Takrama et al., 2014; Cosme et al., 2016).
Colombian accessions appeared to be highly diverse; Corpoica_1

TABLE 4 | Summary of genetic diversity of Theobroma cacao’s germplasm bank of Corpoica including reference genetic groups (Consense) and without them

(Corpoica).

Analysis Subpopulations N2 HoP (Mean + SD) He® (Mean + SD) F9 (Mean + SD)

Corpoica Corpoica_1 119 0.559 (0.042) 0.338 (0.024) —0.477 (0.042)
Corpoica_2 190 0.275 (0.014) 0.329 (0.017) 0.139 (0.018)
Corpoica_3 131 0.494 (0.013) 0.427 (0.008) —0.149 (0.017)
Corpoica_4 59 0.040 (0.005) 0.077 (0.008) 0.348 (0.042)
Not assigned 37 0.393 (0.018) 0.402 (0.014) 0.029 (0.024)
Total_Corpoica 536 0.353 (0.013) 0.314 (0.009) —0.030 (0.018)

Consense Consense_1 134 0.447 (0.045) 0.336 (0.024) —0.213 (0.065)
Consense_2 307 0.226 (0.013) 0.314 (0.018) 0.255 (0.025)
Consense_3 226 0.293 (0.014) 0.363 (0.014) 0.196 (0.028)
Consense_4 77 0.048 (0.008) 0.055 (0.009) 0.075 (0.026)
Not assigned 43 0.293 (0.017) 0.403 (0.013) 0.267 (0.036)
Total_Consense 787 0.261 (0.012) 0.294 (0.010) 0.120 (0.020)

aNumber of samples, ®Observed Heterozygosity, °Expected Heterozygosity, Sinbreeding coeficient; SD, standard deviation.
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cluster containing mostly accessions from Colombia presented
the highest Ho = 0.559. An excess of heterozygotes was found in
Corpoica’s collection, probably due to hybrid and foreign cacao

germplasm (25% of foreign accessions). In contrast, a deficit of
heterozygotes (Ho < Hg) was found when reference populations
were included probably because these populations are mostly
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homogenous, particularly Criollo and Amelonado well known
by their highly homozygous genomes and their ability to
self-fertilize (Argout et al, 2011; Motamayor et al., 2013). As
confirmation of this hypothesis the population Consense_2
(Amelonado majority) and the population Consense_4
(Criollo majority) also presented deficit of heterozygotes
(Table 4).

A molecular study based on SSR markers showed that
cacao diversity is classified in 10 different genetic groups from
the Upper Amazon, Lower Amazon, Orinoco and Guyana
(Motamayor et al., 2008). Criollo genotype appeared as a
separated group being the most genetically differentiated group.
However, the present study could not recover the 10 genetic
groups even when reference populations were included. The
collection was divided only in four clusters with significant
genetic variance among and within the populations revealed by
AMOVA. It is probably necessary to include more markers in
order to recover the reference clusters. However, Ji et al. (2013)
reported that a reduced set of SNP markers (~26 SNP) could
provide 99.99% confidence to identify an individual cacao tree.
In the present case, 87 SNP markers were used giving high
confidence to the results. Another explanation could be that
SNP markers are less powerful compared to SSR markers in
terms of relative kinship estimation and population structure
analysis (Van Inghelandt et al., 2010; Yang et al., 2011). In fact,
SSR markers have higher allelic diversity than SNP markers
(Filippi et al, 2015). A recent study using a similar set of
SNP markers reported that Puerto Rican cacao fit into four
(Criollo, Trinitario, Amelonado, and UAF) genetic backgrounds
(Cosme et al, 2016). In contrast, this study identified two
populations composed mostly by Colombian samples (Figure 2).
This result would support the idea that Colombia has unique
genetic backgrounds and is one of the diversity centers of
cacao.

The phylogenetic tree recovered the recognized genetic groups
and, Colombian accessions were distributed in clades with
different reference groups, showing they were representative
of cacao diversity. Different analyses indicated Criollo group
as the most genetically differentiated group with the highest
Fgr values (Table 3) as reported earlier by Motamayor et al.
(2008). This result would support the subdivision of T. cacao
in two morpho-geographic subspecies, ssp. cacao and ssp.
sphaerocarpum (Cuatrecasas, 1964; de la Cruz et al, 1995),
which correspond, respectively, to the two main genetic groups
“Criollo” and “Forastero” (de la Cruz et al., 1995). Criollo group
probably evolved in sympatry with Forastero populations but
with reduced genetic flow and was introduced later by the
man to Central America (Motamayor et al., 2013). However,
further work to confirm the origin of Criollo genotype is
necessary.

Corpoica accessions regrouped with Criollo reference
population were mostly collected in the North of the country,
in areas of influence of the Serrania del Perija (Swisscontact,
2014) and Sierra Nevada de Santa Marta corresponding to
geographical distribution of Criollos (Aranzazu et al., 2009).
These cacao materials were collected from a region located
in average conditions to 832 masl, 24.8°C of temperature and

73.4% humidity. Their adaptation to the conservation conditions
from the research center La Suiza located at 530 masl, with even
higher temperature and relative humidity, has hampered fruit
and flower production. Thus, phenotypic characterization was
difficult in those genotypes; only vegetative characteristics were
recorded for few accessions. Those accessions present green
tones of the leaves distinctive to the Criollo genotype (UPOV,
2011).

To establish core collections to be used in breeding programs,
it is necessary to fully characterize the collection genetically and
phenotypically. The SNP markers (87) used in combination with
22 phenotypic data were effective to construct a core collection
with the aim to conserve phenotypic and genetic variability
(Supplementary Table S1).

One important characteristic to select genotypes is the
bean or seed size because it determines the lipid content,
an important quality index for cocoa producers. In general,
bean mean size of Corpoica’s collection measured in length
(2.33 cm) and width (1.22 cm); low values compared to other
studies. Santos et al. (2012) reported an average value for seed
length of 2.72 cm and seed width of 1.40 cm for the Brazilian
germplasm collection of the Centro de Pesquisas do Cacau
(CEPEC). While Vasquez-Ovando et al. (2015) reported averages
of 2.60 and 1.82 cm for seed length and width, respectively,
for material collected in cacao farms in Mexico. Differences are
probably due to the size of the sample collection; they used 15
and 45 accessions of T. cacao, respectively, compared to 141
accessions used in the present study. Variation in bean attributes
(shape, length, width, thickness, and weight) in T. cacao, has
been related to the genetic origin (Clement et al., 2003). For
instance, Ballesteros et al. (2015) analyzing Tumaco native
materials (South West region of Colombia) found in general
small bean sizes; 1.78 cm and 1.16 cm for seed length and
width, respectively. The variation in fruit characteristics could
probably be a consequence of genetic differentiation or to the
domestication process (Motamayor et al., 2002; Clement et al,,
2010).

Chemical composition is also an important attribute to select
genotypes because it determines cacao flavor (Kongor et al,
2016). Cacao beans are rich in polyphenols (about 15% of dry
bean weight) (Krihmer et al., 2015) which confer astringent
and bitter sensations and contribute significantly to the green
and fruity flavors of cocoa liquors (Noor-Soffalina et al., 2009).
One study from Venezuela using fermented cocoa from Mérida
and Ghana from two localities found total polyphenol contents
ranging from 24.09 to 53.23 mg gallic acid/g. In this study, we
found polyphenol contents ranging from 8.7 to 46.1 mg gallic
acid/g.

The ratio between theobromine and caffeine (T/C) is a
measure associated to the quality of cacao and to the genotype.
T/C values less than or equal to two correspond to Criollo type,
values between two and six correspond to the Trinitario type, six
to eight to miscellaneous and from eight onward to Forastero type
(Davrieux et al., 2003; Zambrano et al., 2010; Aprotosoaie et al.,
2016). Based on this ratio, Corpoicas collection would mostly
consist of Trinitario (69%) and miscellaneous cacaos (17%) with
few accessions of Forastero type (9%) and Criollo type (3%).
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Highest ratios in Colombian accessions were from genotypes
(830714, 830721) from South of Colombia (Narifio). Colombian
accessions 830758, Chocolate_2 and Choco_774 from the Choco
region (North Western Colombia), presented the lowest ratios
and are closed related to the Criollo clade (Figure 2). This trend
would support the denomination that 80% of Colombia’s cocoa
is fine with aroma and flavor. Additionally, as noted earlier,
most of Colombian accessions forming the Criollo group do not
have chemical data because they did not produce fruits to make
the analyses. Additionally, this result could indicate that exists
an association between genotype and T/C ratio. Results from
Trognitz et al. (2013) showed a relationship between T/C ratio
and genotype in Nicaraguan cacao. Nevertheless, Trognitz et al.
(2013) also inferred that T/C ratio and polyphenol content is
influenced by post-harvest procedures.

CONCLUSION

Establishing the genetic diversity of Colombian cacao collection
will enhance the proper utilization of genetic resources. In the
present study, based on population structure and morphological
characterization, a core collection of cacao was constructed using
87 SNP markers and 22 different traits. This core collection will
serve as a primary source for further genetic association and
functional analyses for novel genes as well as for developing
cacao’s breeding program. The results found in the present
study suggest that, despite containing commercial materials,
Corpoica’s collection has a significant level of genetic diversity.
Based on the results of the present study, Colombia would have
unique genetic populations and would be a center of cacao
diversity.
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