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High-Throughput Phenotyping
of Plant Height: Comparing
Unmanned Aerial Vehicles and
Ground LiDAR Estimates

Simon Madec, Fred Baret?, Benoit de Solan2, Samuel Thomas?, Dan Dutartre3,
Stéphane Jezequel?, Matthieu Hemmerlé?, Gallian Colombeau’ and Alexis Comar?

TINRA, UMR EMMAH, Avignon, France, ? ARVALIS — Institut du végétal, Avignon, France, ° HIPHEN, Avignon, France

The capacity of LIDAR and Unmanned Aerial Vehicles (UAVs) to provide plant height
estimates as a high-throughput plant phenotyping trait was explored. An experiment
over wheat genotypes conducted under well watered and water stress modalities was
conducted. Frequent LIDAR measurements were performed along the growth cycle
using a phénomobile unmanned ground vehicle. UAV equipped with a high resolution
RGB camera was flying the experiment several times to retrieve the digital surface
model from structure from motion techniques. Both techniques provide a 3D dense
point cloud from which the plant height can be estimated. Plant height first defined
as the z-value for which 99.5% of the points of the dense cloud are below. This
provides good consistency with manual measurements of plant height (RMSE = 3.5 cm)
while minimizing the variability along each microplot. Results show that LIDAR and
structure from motion plant height values are always consistent. However, a slight under-
estimation is observed for structure from motion techniques, in relation with the coarser
spatial resolution of UAV imagery and the limited penetration capacity of structure from
motion as compared to LIDAR. Very high heritability values (H2 > 0.90) were found for
both techniques when lodging was not present. The dynamics of plant height shows
that it carries pertinent information regarding the period and magnitude of the plant
stress. Further, the date when the maximum plant height is reached was found to be
very heritable (H? > 0.88) and a good proxy of the flowering stage. Finally, the capacity
of plant height as a proxy for total above ground biomass and yield is discussed.

Keywords: plant height, high throughput, unmanned aerial vehicles, dense point cloud, LiDAR, phenotyping,
broad-sense heritability

INTRODUCTION

Plant height is recognized as a good proxy of biomass (Yin et al., 2011; Bendig et al., 2014; Ota
et al,, 2015; Tilly et al., 2015). Stem height that defines plant height appears to be sensitive to the
stresses subjected by the crop (Rawson and Evans, 1971). It is also one of the input of models
used to evaluate water stress (Blonquist et al., 2009). Plant height is known to make the crop

Abbreviations: DaS, day after sowing; Diowering, date of flowering; Dimay(pm), date of maximum height; GDD, growth degree
day; GSD, ground sampling distance; H?, broad sense heritability; LIDAR, light detection and ranging; RMSE, root mean
square error; Ry, rank percentile; UAV, unmanned aerial vehicle; WS, water stress modality; WW, well watered modality.
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more sensitive to lodging (Berry et al, 2003). Plant height
appears thus a highly appealing trait for plant breeders
within phenotyping experiments, particularly under natural
field conditions. Current methods based on manual evaluation
with a ruler on a limited sample size for each microplot
are labor intensive, low throughput and prone to errors in
the sampling, ruler adjustment, reading and recording the
data. Alternative methods have been developed either from
LiDAR (Light Detection And Range) often called laser scanning
(Hoffmeister et al., 2015), ultrasonic sensors also called sonar
(Turner et al., 2007), or from depth camera also called time
of flight camera (Chéné et al, 2012; Schima et al, 2016),
and finally from RGB high resolution imagery associated with
structure from motion algorithms. Depth cameras are limited
to close range applications (Schima et al., 2016). Ultrasonic
systems are considered as a relatively low-cost solution and user
friendly. However, LIDAR measurements have been generally
preferred for their increased spatial resolution, higher throughput
and independency from air temperature and wind (Tumbo
et al.,, 2002; Escola et al., 2011; Llorens et al., 2011). LiDAR
scanning can be performed from the ground with terrestrial
laser scanner). However, terrestrial laser scanners are conical
scanners that are well suited for vertically developed objects
such as buildings or forests. Their application to crops with
limited vertical extent and a canopy volume densely populated
by leaves and stems or other organs appears limited (Zhang
and Grift, 2012; Bareth et al., 2016): the system needs to be
moved over a high number of places for large phenotyping
platforms. Further, the several microplots may be seen from
different distances and angles with impact on the spatial
resolution and associated bias introduced between microplots.
It seems therefore preferable to observe crops from near nadir
directions.

Several manned or semi-autonomous GPS (Geo-Positioning
System) navigated vehicles, have been developed in the recent
years where vertically scanning LiIDARs have been setup. LIDARs
provide a full description of the profile of interception, either
with single echo (Lisein et al., 2013; James and Robson, 2014)
when the resolution is fine enough, or with full wave form
systems (Mallet and Bretar, 2009) or an approximation of it
with multi-echo systems (Moras et al., 2010). Because of the
penetration of the laser beam into most canopies, nadir looking
LiDAR techniques provide at the same time the digital surface
model corresponding to the top envelope of the crop (called
also crop surface model) and the elevation of the background
surface called the digital terrain model. Plant height is then
simply computed as the difference between the digital surface
model and the digital terrain model. Accuracy on plant height
measurement using such LiDAR techniques were reported to be
better than a few centimeters (Deery et al., 2014; Virlet et al,,
2016). Because of their high accuracy, their independency from
the illumination conditions and therefore their high repeatability,
these LiDAR based techniques are expected to be more accurate
than traditional manual height ruler measurements in the
field.

RGB image-based retrieval of crop height remains, however,
the most widely used approach (Bendig et al.,, 2013) because

of its low cost and high versatility (Remondino and El-
Hakim, 2006). Further, the advances in sensors (smaller,
lighter and cheaper, increased resolution and sensitivity) and
improvements in computer performances along with advances
in algorithms have contributed to the recent success of
such techniques (Remondino et al, 2014). The 3D dense
point clouds are generated by using a large set of high
resolution overlapping images. They are processed using
structure from motion algorithms implemented in either
commercial software (Smith et al, 2015) such as pix4d',
Agisoft photoscan® or in open-source software including mic-
mac (MicMac, IGN, France) or Bundler (Snavely et al,
2006). Nevertheless, accurate retrieval of 3D characteristics of
the canopy from structure from motion algorithms requires
careful completion of the image acquisition that should
provide enough view directions for each point of the scene
and with crisp high resolution images to identify the tie
points used for the 3D reconstruction of the surface (Turner
et al., 2014; Smith et al, 2015). Several factors will thus
influence the quality and accuracy of the dense point cloud,
including flight configuration (altitude, speed, frequency of
acquisitions, trajectory design and sensor orientation) camera
setting (resolution, field of view, image quality), illumination
and wind conditions, the distribution of ground control points
as well as the parameters used to run the structure from
motion algorithm (Dandois and Ellis, 2013; Remondino et al.,
2014).

Because of the spatial resolution of the images used for
the structure from motion algorithms and more importantly
because of the occlusions observed when a single point is to
be seen from two distinct directions, structure from motion
algorithms do not penetrate deeply into dense canopies (Lisein
et al., 2013; Grenzdorffer, 2014; Ota et al., 2015). Structure
from motion technique provides generally a good description
of the digital surface model but accessing the digital terrain
model is only possible when the ground is clearly visible
(Khanna et al., 2015). This is the case for low canopy coverage
or for phenotyping platforms where the ground is visible in
the alleys and between the plots (Holman et al,, 2016). The
identification of ground points can be done directly by the
photogrammetric software such as Agisoft Photoscan (Geipel
et al., 2014). However, this method will depend on the choice of
the classification parameters and the type and stage of vegetation.
(Khanna et al., 2015) used the green index (Gitelson, 2004)
and applied the Otsu automatic thresholding method (Otsu,
1979) over green crops. For senescent vegetation this approach
will not provide good results because of confusions between
senescent crop and bare soil. Therefore, the generation of the
digital terrain model from the dense point cloud appears to
be still a challenge in many situations. The problem could
be solved by using a digital terrain model derived from an
independent source of information (Bendig et al., 2014; Geipel
et al., 2014; Grenzdorffer, 2014), assuming that the digital
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terrain model does not vary significantly during the growing
season.

The objective of this study is to develop a methodology
for estimating plant height of wheat crops from RGB camera
aboard UAV or LiDAR aboard a phénomobile (fully automatic
rover) in the context of high-throughput field phenotyping.
For this purpose, a comprehensive experiment was setup
where the field phenotyping platform was sampled several
times during the growing season with the UAV and the
phénomobile. A definition of the plant height is first provided
from the dense point cloud derived from the LiDAR that
will constitute the reference. The UAV derived plant height
based on the structure from motion algorithm will then
be compared with the LiDAR reference plant height, with
emphasis on the way the digital terrain model is computed.
The flowering date of wheat was estimated from the dynamics
of plant height. Finally, the broad-sense heritability of plant
height and its correlation with yield and biomass were
evaluated.

MATERIALS AND METHODS

Study Area

The field phenotyping platform (Figure 1B) is located in Gréoux
les Bains (France, 43.7° latitude North, 5.8° longitude East,
Figure 1A). The platform is approximately 200 m by 250 m size
and is mainly flat with a 1 m maximum elevation difference.
Wheat was sown on October the 29th 2015 with a row spacing
of 175 ¢cm and a seed density of 300 seedssm~2. It was
harvested on the 6th July 2016. A total of 1173 microplots of
1.9 m width (11 rows) by 10 m long was considered, each
of them corresponding to a given genotype among a total of
550 genotypes grown under contrasted irrigation modalities:
about half of the platform was irrigated (WW) while the other
part was subjected to water stress (WS modality). A moderate
water stress took place in the 2015-2016 season. The cumulated
water deficit was 126 mm for the WS modality and 18 mm for
the WW modality. A subset of 19 contrasting genotypes was
considered here to evaluate the plant height heritability. Each
of those genotypes were replicated three times over the WW
and WS modalities organized in an alpha plan experimental
design.

Plant Height, Biomass and Flowering

Stage Ground Measurements

Plant height was manually measured on 12 microplots: on each
microplot, the average of 20 height measurements was calculated;
each individual sample measurement corresponds to the highest
point of the representative plant within an area of 30 cm radius,
corresponding either to leaf or to an ear.

The above ground biomass was measured over three segments
of 2 m length by two adjacent rows. The first two rows
located at the border of the microplots were not considered
in the sampling to minimize border effects. The samples
were weighed fresh, and a subsample of around 30 plants
taken to measure the water content by weighing it fresh and
drying it in an oven for 24 h at 80°C. Around stage Zadoks
26, 6 microplots were sampled. At the stage Zadoks 32, 54
microplots were sampled, corresponding to one replicate of
27 genotypes both in WW and WS modalities. Finally at
the flowering stage (Zadoks 50), 80 microplots were sampled
corresponding to one replicate of 40 genotypes grown under
the two irrigation modalities. However, due to measurement
errors, the biomass measurement one microplot was missing. The
invasive measurements were taken within less than 4 days from
the closest LIDAR survey.

The yield of all the microplots corresponding to 19 genotypes
times the three replicates in the two irrigation modalities was
measured during the harvest: the weight of harvested grain was
divided by the microplot area and the grain fresh weight was
normalized to 12% relative moisture.

The flowering date was eventually scored visually every 3 days
on one replicate for 19 genotypes grown under both irrigation
modalities. The usual scoring system was used: flowering stage
corresponds to the date when 50% of the ears have their stamina
visible.

LIDAR Reference Measurements

The LiDAR on the Phénomobile

The phénomobile, a ground-based high-throughput phenotyping
robot rover is equipped with a measurement head (Figure 1C)
that is maintained automatically at a constant distance from
the top of the canopy. The system steps over the microplots
with a maximum 1.35 m clearance and an adjustable width
of 2 m + 0.5 m. The phénomobile automatically follows
a predefined trajectory in the experimental field using a

FIGURE 1 | (A) Localization of the platform in France; (B) Aerial view of the experimental field; (C) and the Phénomobile rover robot on which the LIDARSs are fixed.
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centimetric accuracy real time kinetics GPS and accelerometers.
The measurement head is equipped with several instruments
including two LMS400 LiDARs (SICK, Germany) operating at
650 nm and scanning downward with £35° zenith angle in
a direction perpendicular to the rows at a frequency of 290
scans per second (Lefsky et al., 2002). The two LiDARs allow
getting denser sampling of the scene. As the platform moves
forward (Figure 1C) at a speed of 0.3 m-s~! as recorded with
the GPS information, the distance between two consecutive
scans of a LiDAR along the row direction is around 1 mm.
Measurements are taken every 0.2° along the scanning direction.
The size of the footprint will depend on the distance to the
sensor that varies from 2.4 mm X 5 mm at 0.7 m minimum
measuring distance up to 10.5 mm X 5 mm at 3 m maximum
measuring distance. The distance between the sensor and the
target is measured from the phase shift principle (Neckar and
Adamek, 2011). The intensity of the reflected signal and the
distance are recorded at the same time. When the target in the
LiDAR footprint is not horizontal or made of elements placed
at several heights, the distance and the intensity computed by
the LiDAR is approximately the average value over the LiDAR
footprint. The nominal error on the distance is 4 mm under
our experimental conditions. The scan of one microplot takes
about 30 s during which about 3 million points are recorded with
associated intensity and x-y-z coordinates. Each plot was sampled
14 times during the entire growth cycle to describe the whole
season.

Data Processing and Height Definition

A strip of 0.6 m width located in the center of the microplot was
extracted from the 3D point cloud (Figure 2A). This corresponds
roughly to three rows and allows to limit possible border effects
while increasing the probability to get points reflected by the soil
by limiting the scan angle. Noise from the resulting points where
then filtered using the Matlab implementation of the method
proposed by Rusu et al. (2008). This process removed about 1%
of the points. They were mainly located in the upper and lower
part of the regions of interest.

The 0.6 m width strip was further divided into 20 consecutive
non-overlapping elementary cells of 0.5 m length where the
canopy height was assessed (Figure 2A). This allows accounting
for possible variation of the digital terrain model if the microplot
is not perfectly flat. This cell size was large enough to get a
good description of the z profile (Figure 2C) including enough
points corresponding to the ground level used to define the
digital terrain model. The k-means clustering method (Seber,
1984) with two classes was applied to separate the ground
from the vegetation from both the distance and the intensity
values (Figure 2B). The maximum peak in the z-distribution
of the resulted non-vegetation points was assigned as the
ground level. The distance of the ground was subtracted from
the distance of the 3D point cloud for each elementary cell
in the microplot resulting into a distribution of the height
values. The height of the canopy is then defined as the height
value corresponding to a given R, of the cumulated height
distribution of the vegetation points. The R, = 99.5% was
selected here to define the vegetation height at the elementary

cell level. When considering the later stages where a large
heterogeneity of the height is observed at the top layer because
of the presence of ears, this corresponds roughly to the area
covered by 50 ears for each unit ground area, considering
an ear diameter of 1 cm and a typical ear density. The
sensitivity of the height to this percentile value will be later
discussed in the results section. Finally, the median value of the
elementary cells of the microplot was considered as the plant
height.

Plant Height Estimates from the UAV

RGB Camera and UAV Flight

A Sony ILCE-6000 digital camera with a 6000 x 4000 pixels
sensor was carried by a hexacopter with approximately 20 min
autonomy. The camera was fixed on a 2 axes gimbal that
maintains the nadir view direction during the flight. The larger
dimension of the image was oriented across track to get larger
swath. The camera was set to speed priority of 1/1250 s to avoid
movement blur. The aperture and ISO were thus automatically
adjusted by the camera. The camera was triggered by an
intervalometer set at 1Hz frequency that corresponds to the
maximum frequency with which RGB images can be recorded
on the flash memory card of the camera. The images were
recorded in the jpg format. Two different focal lengths were
used: 19 and 30 mm with respectively + 31.0° and £ 21.5°
field of view across track. The flight altitude was designed
to get around 1 cm GSD for both focal lengths (Table 1).
Five measurements were completed from tillering to flowering
(Table 1).

The speed of the UAV was set to 2.5 m/s to provide 90 and
94% overlap between images along the track respectively for the
30 mm and 19 mm focal lengths. The distance between tracks was
setto 9 and 11.8 m respectively for the 19 and 30 mm focal lengths
to provide 70% overlap across track. Two elevations of 10-15 min
were necessary to cover the full area of interest. No images were
acquired during the UAV stabilization over the waypoints. In
addition, images corresponding to the takeoffs and landings were
not used. This resulted in about 600 images for each date. The
typical flight plan is shown in Figure 3.

Ground Targets and Georeferencing Accuracy

A total of 19 ground targets were evenly distributed over
the platform with fixed position for all the flights. They
were made of painted PVC disks of 60 cm diameter where
the central 40 cm diameter disk was 20% gray level and
was surrounded by a 60% gray level color external crown.
These gray levels were selected to avoid saturation and allow
automatic target detection on the images. Their location was
measured with a real time kinetics GPS device ensuring a
1 cm horizontal and vertical accuracy for every flight. Among
the 19 targets, 14 were used in the generation of the dense
point cloud (ground control points) while the five additional
ones were used to evaluate the accuracy of the geo-referencing
(Check Points). The spatial distribution of the targets was
designed to get some even coverage of the field considered
(Figure 3).
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FIGURE 2 | (A) UAV-RGB images of one microplot where a 0.6 m x 0.5 m elementary cell is identified; (B) The 3D LiIDAR points for an elementary cell. Each point
colored with the intensity value of the returned signal [from blue (low intensity) to yellow (high intensity)]; (C) The corresponding z-distribution of the 3-D points.

02 04 0.6
z value (m)

Generation of the 3D Dense Point Cloud from the
RGB Images

The ensemble of RGB images was processed with Agisoft
Photoscan Professional (V 1.2.6) software. The first step consists
in the image alignment performed using the scale invariant
feature transform algorithm (Lowe, 2004). An “on-the-job-
calibration” was applied to adjust the camera parameters within
the structure from motion process. The application of this
method was possible because of the high overlap between images
(Turner et al., 2014) and the suitable distribution of the ground
control points (James and Robson, 2014; Harwin et al., 2015).
The Agisoft software generates in a first step a set of tie points,
each point being associated with a projection error. As advised by
Agisoft, tie points with a projection error higher than 0.3 ground
sample distance were removed. A bundle adjustment is then
applied (Granshaw, 1980; Triggs et al., 1999). Further, points with
a low reconstruction uncertainty (points, reconstructed from

nearby photos with small baseline) were then removed. These
points are generally observed for small overlapping fraction
between images along with a large view zenith angle resulting
in larger ground sample distance. The ground control points
used in this process were automatically identified using a custom
developed pipeline. The check points were not used in the
bundle adjustment, the average accuracy on the check points
reported in Table 1 (ox, oy, and 0z) were in agreement with
the recommendations from (Vautherin et al., 2016): 1-2 times
the ground sample distance in x and y directions, and 2-3 times
the ground sample distance in the z direction. The dense point
cloud is generated from dense-matching photogrammetry using
a moderate depth filtering option and the full image resolution
as implemented in Photoscan 1.2.6. This filtering process results
in more variable density of points of the dense cloud, the mean
density of points in the vegetation part of the study area was 2300
points/m?.

TABLE 1 | Characteristics of the five flights completed over the Gréoux experiment in 2016.

Date (DaS) lllumination Wind speed Focal length Altitude (m) GSD (cm) Overlap (%) ox (cm) oy (cm) oz (cm)
conditions (km/h) (mm)
along across
139 Covered 8 30 75 0.98 90 70 2.4 3.1 5.5
152 Sunny 6 30 75 0.98 90 70 4.5 1.3 3.3
194 Sunny 10 19 50 1.04 94 70 5.1 1.3 3.9
216 Cloudy 7 19 50 1.04 94 70 21 2.9 2.8
225 Sunny 5 30 75 0.98 90 70 5.0 2.6 3.9

oX, oy, 0z, correspond to the standard deviation of the localization of the control points used to quantify the geometric accuracy.
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Ground control points
QO Check points
— UAV flight

FIGURE 3 | The flight plan with ground control points (yellow circles with red outline) and check points (yellow circles).
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Derivation of the Digital Terrain Model

Two methods were used to derive the digital terrain model. The
first one is simply based on the collection of the coordinates
of the points recorded during sowing by the sowing machine
equipped with a centimetric accuracy Real Time Kinematic GPS.
The second approach is based on the extraction of ground
points from the dense point cloud and interpolation between
them to generate the digital terrain model. The phenotyping
platform (Figure 3) was split into 13 m x 13 m cells with a
75% overlapping (50% in both x and y directions). The size of
the cell is a compromise between a small one that allows to get
of finer description of digital terrain model variations, and a
large one that will ensure to get at least few background points
from the dense cloud points. Similarly to the LiDAR processing,
a k-means clustering (Seber, 1984) with 2 classes is applied
using the z-value and the red and green color associated to each
point of the dense cloud. This k-means clustering is iterated
over the previous background class if the standard deviation
in the background class, o}, is lower than 0.14 m. However,
if op > 0.14 m after the 4th iteration the iteration process is
stopped and no background z-value is assigned to the considered
cell. The o > 0.14 m value corresponds approximatively to
the background roughness expected over the 13 m x 13 m cell
and was defined after several trial and error tests. Then, ground
point cloud was filtered using (Rusu et al., 2008) algorithm to
regularize the z-values over each cell. Finally, a natural neighbor
interpolation (Owen, 1992) was applied to compute the z value
for each microplot. Note that here the microplot is assumed to
be flat.

Plant Height Estimation

For each plot, the z-values of the dense cloud points were
subtracted from the z-value of the digital terrain model assigned
to the microplot. Finally, the microplot is divided into 20
consecutive non-overlapping elementary cells of 50 cm x 60 cm
similarly to what was achieved for the LiDAR data. The median
value of plant height corresponding to a given R, of the
cumulated z distribution is finally computed and considered as
the microplot crop plant height. The selection of the value of the
Rp, used to define plant height will be discussed later in the Section
“Results.”

Date When the Maximum Plant Height Is
Reached

The flowering date appears roughly when the vegetative growth
is completed, i.e., when the stems reached their maximum height.
This stage could thus be tentatively estimated using the plant
height time course. This requires obviously frequent observations
as completed in this study with the LIDAR while the plant height
monitoring with the UAV was too sparse. As a consequence, only
the LiDAR measurements will be used here for estimating the
flowering stage. When expressing the time in GDDs the plant
height temporal profile can be approximated by a vegetative
growth phase, followed by a plateau during the reproductive
phase. The plant height corresponding to the plateau was simply
defined by the maximum plant height value over the whole cycle.
A second-order polynomial regression was used to describe the
plant height during the vegetative growth. The vegetative growth
period was assumed to start for GDD = 1000°C.day. It was
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then incrementally extended by including additional observation
dates for GDD > 1500°C.day if the corresponding plant height
elongation rate does not decrease by more than 60% than that
of the previous value. The intersection of the elongation curve
with the plateau provides the date when plant height reaches its
maximum.

RESULTS AND DISCUSSION

LiDAR Measurements of Plant Height

The LiDAR plant height defined using R, = 99.5% were
compared with the available manual measurements in the field.
Results show a strong agreement with a low RMSE of 3.47 cm
and small bias (bias = 1.41 cm) (Figure 4).

The impact of the R, value on plant height was further
investigated using the difference APH = PHy — PHgg 5 where
PHy and PHyg 5 represent the plant height values respectively
for R, = x% and R, = 99.5%. Results (Figure 5A) show that
very high values of R, = 99.99% increases plant height by more
than APH = +5 cm in most situations. Conversely, R, = 99.0%
decreases plant height by more than APH = —5 cm. The absolute
difference APH increases rapidly with plant height for PH < 0.1
(Figure 5A). Then, APH increases only slightly with plant height
(Figure 5A), with, however, significant scatter for the larger
plant height values and when R, is different from the nominal
value (Rp = 99.5%). The variability of plant height across the 20
elementary cells within a microplot (Figure 5B) shows that it is
minimum for R, = 99.5% with STD = 3.1 cm. It increases rapidly
either for R, < 99.5% or for R, > 99.5% although the STD value
keeps relatively small (STD < 3.7 cm for R, = 99.99% or for

100 7
[ ]
RMSE = 3.47 cm
T o5l Bias = 1.41 cm . e |
— R2=0.90
o
g .
3 .
E og0f .
2
=
p=d
)
=
€ 85f 1
5
o .
[ ]
[ ]
80 b
[ ]
80 85 90 95 100
Plant height from manual measurements (cm)

FIGURE 4 | Comparison between plant height derived from LIDAR
measurements with plant height measured manually in the field (n = 14). Solid
line is the 1:1 line.

Rp = 90%). The use of the median values computed over the 20
elementary cells provides in addition a better representativeness
of the plant height of a microplot. This appears more important
at the tillering stage where the plant height variability within a
microplot is the largest. These results confirm that R, = 99.5%
provides an accurate and precise plant height estimation.

Derivation of the Digital Terrain Model

with Structure from Motion Algorithm

The digital terrain model extracted from the dense point cloud
for each of the 5 flights were compared. In addition, the digital
terrain model generated from the real time kinetics GPS placed
on the sowing machine during sowing was also used. A mean
altitude value of the ground level for the 1173 microplots was
then computed for the 7 digital terrain models. Results show
that the correlation between the altitudes computed from all
the digital terrain model combinations is always very high with
R? > 0.97 (Table 2). This indicates that all the digital terrain
models were capturing consistently the general topography of the
experimental platform.

Results show further that the RMSE values are between 2.6 and
6.8 cm (Table 2), except for DaS 152 that shows larger values.
No clear explanation was found for the degraded performances of
DaS$ 152. However, better consistency seems to be observed when
using a shorter focal length (comparison between DaS 194, DaS
216 and Sowing).

Comparison of Plant Height Derived

from Structure from Motion and LiDAR

The LiDAR was more frequently sampling the platform along the
growth season as compared to the UAV flights (Table 1). Plant
height derived from the LiDAR were thus interpolated to the
dates of the UAV flights. However, if the LiDAR acquisition of
a microplot differs by more than a week from that of the UAV
flight, the corresponding microplot was not considered in the
comparison. This resulted in a total of 2076 couples of structure
from motion and LiDAR plant height. The plant height from
structure from motion was first derived using the same Ry, as that
used for the LiDAR (R, = 99.5%). Results (Figure 6) show that
structure from motion plant height are strongly correlated with
LiDAR reference plant height across the 5 UAV flights available.
This corroborates previous results reported (Bareth et al., 2016;
Fraser et al, 2016; Holman et al., 2016). The same level of
consistency is observed for plant height derived from a digital
terrain model computed from the same dense cloud (R* = 0.97,
RMSE = 7.7 cm) as compared to using the digital terrain model
derived from the sowing (R?> = 0.98, RMSE = 8.4 cm). The
correlations are generally weaker for the early stages due to the
limited range of variation of plant height (DaS 139, DaS 152).
Further, using the 30 mm camera focal length (DaS 139 DaS$
152 Da$ 225) tends to decrease the plant height consistency
with the reference LiIDAR derived plant height as compared to
the 19 mm focal length (Table 3). The 19 mm focal length
increases the disparity in the view configurations which may
help the structure from motion algorithm to get more accurate
estimates of the z component in the dense cloud as earlier

Frontiers in Plant Science | www.frontiersin.org

November 2017 | Volume 8 | Article 2002


https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Madec et al. High-Throughput Phenotyping of Plant Height

A B
25 37
*  99.99%-99.5% : = ;
20 * 99.9%-99.5% sy + ;
o 99%-995% et 3, 36 11
T +  95%-99.5% 2t 1 '
S \ !
LY ]
s e
= £ \ '
& E | 8 i
° 8 34T ) '
£ B S .
=g © \ +
2 Easf X 2
- a” \ ¢
c =t \ e
L}
: . \ ¥
o 32T ) z
< \ ’
g + ‘
- 2 +
N
s e
25 3
0 02 04 06 08 1 12 90% 95% 98% 99% 99.5% 99.75% 99.9% 99.95% 99.99%
LiDAR plant height with Rp =99.5% Rp

FIGURE 5 | (A) Difference in plant height estimates using several R, z-values (Rp) against estimate using R, = 99.5; (B) Standard deviation of plant height (STD
intraplot, in cm) computed within a microplot between the 20 elementary cells as a function of the Ry value selected to define plant height.

TABLE 2 | Correlation (R2, bottom triangle) and RMSE (top triangle) values between the digital terrain models computed over the 1173 microplots for the 5 flights as well
as that derived from the real time kinetics GPS on the sowing machine.

R2 RMSE (cm) Sowing Das 139* DasS 152 DaS 194 DaS 216 DasS 225
Sowing — 2.6 7.2 3.4 2.6 6.0
DaS 139* 1.00 - 72 45 2.9 5.0
Das 152* 0.96 0.95 - 9.2 7.4 9.8
DaS 194 0.99 0.99 0.95 - 3.8 6.8
DasS 216 0.99 0.99 0.96 0.99 . 6.0
Das 225+ 0.97 0.97 0.91 0.97 0.96 -

*Indlicates that the camera was equipped with the 30 mm focal length instead of the 19 mm one.
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FIGURE 6 | (A) Plant Height computed from the background points identified over each date; (B) Plant height computed from the digital terrain model derived from
the sowing machine. Each color corresponds to a flight date (DaS). *Indicates that the camera was equipped with the 30 mm focal length instead of the 19 mm one.

Frontiers in Plant Science | www.frontiersin.org 8 November 2017 | Volume 8 | Article 2002


https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Madec et al.

High-Throughput Phenotyping of Plant Height

TABLE 3 | Agreement between LIDAR and structure from motion derived plant height when the digital terrain model used come either from the same dense cloud or

from the Sowing.

Digital terrain model from the dense cloud

Digital terrain model from Sowing

DaS R2 RMSE (cm) Bias (cm) R2 RMSE (cm) Bias (cm)
139* 0.76 5.0 —4.4 0.50 6.8 —5.6
152* 0.31 9.2 -8.6 0.45 9.0 -9.0
194 0.84 11.0 —9.4 0.80 9.9 7.7
216 0.92 5.1 -3.9 0.91 6.2 —-5.0
225* 0.59 8.7 —-0.38 0.63 9.8 -54
All 0.97 7.7 5.1 0.98 8.4 —6.5

*Indlicates that the camera was equipped with the 30 mm focal length instead of the 19 mm one.

reported (James and Robson, 2014). This result also confirms the
ability of Agisoft to model the radial lens distortion of wide field
of view lens. However, the calibration of the camera from the
bundle adjustment requires an even distribution of a sufficient
number ground control points (James and Robson, 2014; Harwin
et al., 2015) and a high overlapping between images as done in
this study.

A systematic overestimation of the plant height derived from
structure from motion is observed as compared to the reference
plant height derived from the LiDAR. This agrees with results
from other studies (Grenzdorffer, 2014; Bareth et al., 2016; van
der Voort, 2016) who found that structure from motion lacked
the ability to reconstruct accurately the top of the canopy. This
is partly due to the spatial resolution difference between the
LiDAR (3-5 mm) and the RGB camera (10 mm) as compared
to the size of the objects at the top of the canopy (on the
order of the cm). However, increasing the spatial resolution
will lead to more noisy dense cloud with more gaps over
vegetated areas as reported by Brocks et al. (2016) and as was

4.2
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80% 90% 95%

FIGURE 7 | Impact of the rank percentile (Rp) used to defined plant height
from the dense cloud derived from structure from motion on RMSE and bias
(left y axis) and the variability of plant height along the microplot (right y axis).
The reference plant height used here is that derived from the LIDAR with

Rp =99.5%.

experienced also in this study (results not shown for the sake of
brevity).

The principles of height measurement are very different
between the LiDAR and structure from motion: the structure
from motion algorithm uses two different directions to build the
dense cloud, limiting the penetration capacity because of possible
occultation; conversely LIDAR uses only a single direction with
much better penetration in the canopy. As a consequence, the
z profiles are expected to be different between LiDAR and
structure from motion. The impact of the R, value used to define
plant height from the dense cloud derived from structure from
motion was thus further investigated on the 2076 couples of
measurements. As expected, increasing the R, value decreases
the bias and thus RMSE with the reference LiDAR plant height
(Figure 7). However, the decrease seems to be limited after
Ry > 99%, reaching 8 cm difference for R, = 99.99% Note
that the 99.99% percentile corresponds to very few points in
the dense point cloud since the cell of 0.5 m x 0.6 m contains
around 1000 points. Increasing R, reduces the variability of
plant height between the 20 elementary cells within a microplot
up to R, = 99.9% (Figure 8). This simple sensibility analysis
shows that best consistency with the LiDAR reference plant
height is obtained for 99.5% < R, < 99.99% with actually small
improvement for Ry, larger than 99.5%. This justifies a posteriori
the R, = 99.5% value used for plant height estimation from
structure from motion.

Plant Height as a Reliable Trait for Wheat

Phenotyping

Broad Sense Heritability

The H? quantifying the repeatability of the plant height
trait estimation was computed as the ratio between the
genotypic to the total variances (Holland et al, 2002).
A linear mixed-effects statistical model was applied on
each date to quantify the genetic variance. The ‘1m4 R
package applied to our experimental design (alpha design)
was used here (Bates et al, 2014). The soil water holding
capacity that was carefully documented was used as fixed
effect in the model. We write the model (random terms
underlined) as:

Y=pn+S+G+L+CH+LC+e
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expressed in Growing Degree Days (GDD, °C.day).

Where S is the soil water holding capacity. G is the random
effect of the genotypes. L and C are, respectively, the random
lines and column effects in our alpha design plan and L:C is the
random sub-block effect. | is the intercept term (fixed) and ¢ the
random residual error.

The plant height trait derived from the LiDAR shows a high
H? up to Da$S 210 (Figure 8) for the WW modality. It drops
dramatically at the end of the growth cycle in relation to lodging
that was affecting differently the replicates. Conversely, the WS
modality keeps relatively stable during the whole growth cycle
because no lodging was observed. However, when the water stress
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FIGURE 10 | Comparison between the date expressed in Growing Degree
Day (GDD) of the maximum plant height growth with the flowering date visually
scored (expressed in GDD) (n = 114).

starts to impact crop growth around DaS$ 180, a small decrease of
the H? is observed: residual environmental effects not accounted
for by the alpha experimental plan and the soil water holding
capacity were slightly degrading the H? value.

The H? values computed over the WW modality from
structure from motion are close to those observed for the
LiDAR, with, however, a slight degradation of the performances.
Conversely, the H? values computed on the WS modality from
structure from motion show the smallest H? values. On Da$ 194,
the H? is low for the WS modality. A detailed inspection shows a
noisy dense point cloud in the WS part of the field that impacted
the height computation and thus H2. At this specific date and
location, the phénomobile was operating during the UAV flights
which induces artifacts and problems in the dense point cloud
generation from structure from motion.

Plant Height as a Proxy of the Flowering Stage

Due to the reduced observation frequency of the UAV, flowering
time was only assessed using the LiDAR plant height. The
date when the maximum plant height is reached, Dpax(pH), is
considered as a proxy of the flowering stage. Figure 9 shows
that Dyax(pr) is well identified based on the simple algorithm
presented in the methods section. Further, it appears that
Dinax(ph) is little dependent on the environmental conditions:
WW and WS modalities are very close and for the WS modality,
there is no difference due to the soil water holding capacity
although differences in max(PH) are observed.

The flowering dates are well correlated with Dyaxph)
(Figure 10) (R*= 024, RMSE = 76, Dpaxen)y = 0.7
Dflowering + 541). However, the best linear fit shows that the
earlier genotypes reach the maximum plant height about 100
GDD after the flowering stage, which corresponds approximately
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to 7 days. The late genotypes show less differences, around 20
GDD corresponding to 1 or 2 days after flowering. Dmax(pH)
appears thus to be a reasonable proxy of the flowering stage
considering that the accuracy of its visual scoring date is
around 2-3 days. Nevertheless, some genotypes show significant
differences from the main relationship as illustrated in Figure 10.

The heritability of Dyaxpr) was very high, H? = 0.96 and
H? = 0.88, respectively for the WW and WS modalities. This
confirms the small influence of the environment for the genetic
expression of this trait.

Relationship with Above Ground Biomass and Yield
Correlations between plant height and biomass along the
growing season are very strong (Figure 11) both for the LIDAR
(R?> = 0.88, RMSE = 112.2 g/m?) and the structure from motion
(R> = 091, RMSE = 98.0 g/m?). These good relationships
confirm observations by several authors (Yin et al., 2011; Bendig
et al., 2014; Ota et al,, 2015; Tilly et al., 2015). However, these
correlations are mainly driven by the variability across stages
along the growth cycle. For a given stage, little prediction power
of the biomass is observed from plant height (Figure 11). The
correlation at the flowering stage is relatively low (R* = 0.5)
for both methods. Other variables such as the basal area should
be used to improve the correlations. Yield is poorly correlated
with maximum plant height both when derived from LiDAR
(R? = 0.22, RMSE = 149.6 g.m’z) and structure from motion
(R*> = 0.13, RMSE = 152.3 g.m~2). This is consistent with the
poor correlation with biomass observed for a given growing stage,
assuming that the harvest index varies within a small range.

DISCUSSION AND CONCLUSION

Since crop surface is very rough, an important point addressed
in this study was to propose a definition of plant height from

the 3D point cloud retrieved from LiDAR or structure from
motion techniques. The 99.5% percentile of the cumulated
z-value was found to be optimal for comparison with ground
ruler measurements while minimizing the spatial variability over
each microplot. However, this definition will probably slightly
depend on the canopy surface roughness. As a consequence, the
99.5% percentile used as a reference for wheat should be checked
and possibly adapted for other crops as well as a function of
the spatial resolution used. LIDAR measurements are based on
a single source/view configuration allowing to penetrate into the
canopy and reach the ground reference surface. Plant height
could then be directly measured because of the availability of
ground reference points within a microplot. Conversely, the
penetration capacity of structure from motion methods based
on the combination of distinct view directions from the UAV is
limited because of possible occultation that will increase when the
canopy closes. In these conditions, two strategies were compared:
(1) either find ground reference points over the whole 3D dense
point cloud and interpolate these points to get the digital terrain
model; or (2) use and ancillary digital terrain model, that was in
this study derived from real time kinetics GPS acquired during
the sowing of the crop. The first approach might be limited in the
case of a terrain presenting a complex topography when only few
ground points are identified. Note that the ground control points
could be used as ground level points if the distance to the ground
is precisely known. Results show that both methods reach the
same level of accuracy. For the two approaches investigated here
to define the digital terrain model and extract the plant height
of each microplot, the methods presented here were designed
to process automatically the original imagery. This includes
automatic and direct extraction of the microplots as well as
of the digital terrain model from the dense cloud as opposed
to earlier studies where plant height was derived from a crop
surface model generated from the dense cloud (Bareth et al.,
2016).
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The comparison between plant height derived from LiDAR
and structure from motion shows a very high consistency
with strong correlation (R* ~ 0.98) and small RMSE values
(RMSE = 8.4 cm). Most of the RMSE was explained by a
significant bias, the plant height being underestimated. This
may be partly due to the differences in the spatial resolution
of the two systems (about 4 mm for LiDAR and 10 mm for
UAV imagery) as well as in differences in canopy penetration
capacity. However, plant height derived from structure from
motion is systematically lower than that of the LiDAR. Our
results further indicate that larger field of view with shorter
focal lengths would generate more accurate 3D dense point
clouds from structure from motion and thus plant height
because of the increased disparity between the several view
points. However, complementary study should investigate more
deeply this effect as well as the impact of a degraded spatial
resolution.

High H? (repeatability) of plant height was observed both
for LiDAR and structure from motion. The water stress
experiment over which the LiDAR and structure from motion
techniques were evaluated shows that plant height is a
very pertinent trait to characterize the impact of drought
before flowering stage: plant height not only quantifies the
magnitude of the stress, it allows also to date precisely
when the stress started to impact plant growth if sufficiently
frequent observations are available. In addition, the date when
plant height reaches its maximum was demonstrated to be
a reasonable proxy of the flowering date with, however,
some slight variability between genotypes. The heritability
of the Dpaxrpny reached was very heritable since it was
demonstrated to be very little dependent on the water stress
experienced by the plants in this experiment. The phasing
difference between the end of the vegetative growth period
and the flowering date might be investigated by breeders
as a new trait of interest. Finally, plant height provides
obviously a very easy and convenient way to identify plant
lodging either based on the temporal evolution of the
microplot, or from the variance between the 20 elementary
cells considered in each microplot. All these results make
the plant height trait very interesting for plant breeders.
However, very low correlation with total above ground biomass
and yield were observed for a given date of observation
while high correlations are found across stages. Additional
variables should be used such as the basal area to get the
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