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Remotely sensing recent growth, herbivory, or disturbance of herbaceous and woody

vegetation in dryland ecosystems requires high spatial resolution and multi-temporal

depth. Three dimensional (3D) remote sensing technologies like lidar, and techniques

like structure from motion (SfM) photogrammetry, each have strengths and weaknesses

at detecting vegetation volume and extent, given the instrument’s ground sample

distance and ease of acquisition. Yet, a combination of platforms and techniques might

provide solutions that overcome the weakness of a single platform. To explore the

potential for combining platforms, we compared detection bias amongst two 3D remote

sensing techniques (lidar and SfM) using three different platforms [ground-based, small

unmanned aerial systems (sUAS), and manned aircraft]. We found aerial lidar to be

more accurate for characterizing the bare earth (ground) in dense herbaceous vegetation

than either terrestrial lidar or aerial SfM photogrammetry. Conversely, the manned aerial

lidar did not detect grass and fine woody vegetation while the terrestrial lidar and high

resolution near-distance (ground and sUAS) SfM photogrammetry detected these and

were accurate. UAS SfM photogrammetry at lower spatial resolution under-estimated

maximum heights in grass and shrubs. UAS and handheld SfM photogrammetry in

near-distance high resolution collections had similar accuracy to terrestrial lidar for

vegetation, but difficulty at measuring bare earth elevation beneath dense herbaceous

cover. Combining point cloud data and derivatives (i.e., meshes and rasters) from two

or more platforms allowed for more accurate measurement of herbaceous and woody

vegetation (height and canopy cover) than any single technique alone. Availability and

costs of manned aircraft lidar collection preclude high frequency repeatability but this

is less limiting for terrestrial lidar, sUAS and handheld SfM. The post-processing of SfM

photogrammetry data became the limiting factor at larger spatial scale and temporal

repetition. Despite the utility of sUAS and handheld SfM for monitoring vegetation

phenology and structure, their spatial extents are small relative to manned aircraft.
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INTRODUCTION

Measurement and monitoring of ecological processes are limited
by what Levin (1992) termed the ‘problem of pattern and
scale’ where linking observations across cells, leaves, plants,
community, and ecosystem require exponential amounts of
information be transferred between fine and broad spatial scale,
short and long temporal scale. Conventional ecological research
studies require tens to hundreds of small quadrats or plots
between 1 and 100 meters square (m2) for enough observations
to ensure statistically significant p-values for testing hypotheses
(Huenneke et al., 2001; Kachamba et al., 2017). This change in
scale from individual plot to ecosystem inventory is perhaps the
most important concept of remote sensing in the life sciences
(Woodcock and Strahler, 1987; Turner, 1989; Turner et al., 1989).

Dryland ecosystems, characterized by sparse or patchy
vegetation and long periods of senescence, are punctuated by
short periods of rapid growth following seasonal precipitation
events. Therefore, characterization of both spatial and temporal
patterns of vegetation abundance requires both high spatial
resolution and temporal repetition over short periods of time.
For instance, landscape-scale models of primary production and
carbon-uptake should be more accurate when the vegetation
abundance is frequently represented at a fine, plant-scale spatial
resolution. Recent advances in sensor and platform technology
appear to bring these resolutions within reach, but better
understanding of detection bias and accuracy are needed, as
well as examining the potential for combining multiple sources
in a data-fusion approach that builds on strengths of one
system to avoid the weakness of the other. For example,
measuring the height and volume of an individual tree or
shrub requires accurate minimum elevation (bare ground),
apical leader, and crown diameter measurements. Given these
requirements, the data may become unusable if bare ground
is obstructed or incompletely illuminated. In these situations,
multiple observations from different platforms may be required
to generate a better estimate.

Light detection and ranging (lidar) is the predominant
technology for measuring vegetation and earth surface
phenomena in three dimensions (3D) (Glennie et al., 2013;
Harpold et al., 2015). Manned aircraft equipped with lidar now
survey local areas to entire ecosystems or countries (Higgins
et al., 2014; Stoker et al., 2016), while terrestrial lidar is used to
collect data at sub-centimeter resolution over hectare size areas.
Critically, the spatial scale needed for managing at landscape
scale can be provided by manned aerial lidar but the scale needed
for monitoring ecosystem process often requires resolution that
can only be provided by terrestrial lidar.

Advancements in computational processing power and
machine vision also allow 3D object reconstruction from nadir
and oblique 2D imagery by so-called structure from motion
(SfM) photogrammetry and multi-view stereo (MVS) methods
(Westoby et al., 2012; Carrivick et al., 2016; Wallace et al., 2016;
Mlambo et al., 2017), hereafter referred to simply as “SfM.”Under
the right conditions small unmanned aerial systems (sUAS) with
SfM can generate sub-centimeter precision point clouds and
create digital elevation models (DEM) and digital surface models

(DSM) (Dandois and Ellis, 2010; Dandios and Ellis, 2013; Cruzan
et al., 2016). Cruzan et al. (2016) give excellent examples of the
capability of small and micro UAS in plant ecology.

In the present study, we compare detection biases amongst
different 3D remote sensing techniques (lidar and SfM
photogrammetry), from three platforms (ground, sUAS, and
manned aircraft) in various dryland ecosystem structural
states. We combine the new and less expensive technologies,
specifically sUAS SfM, with manned aerial lidar to produce more
representative measurements of vegetation height and volume.
The objectives of the paper are (1) to identify detection biases
amongst technologies for four general feature classes: bare earth
(both in barren areas and beneath vegetation), herbaceous plants,
low woody shrubs, tall woody shrubs and trees, and (2) explore
the potential for combining or fusing observations from any
two platforms to overcome the detection bias of another. For
Objective 1, we use point cloud-to-cloud inter-comparison and
raster-based differencing to establish the detection bias. For
Objective 2, we use raster-based differencing and also mesh-
to-point cloud differencing to establish improved accuracy by
combining data sources.

Current trends in research are moving toward collaborative
open data and code sharing (Boulton et al., 2011; Kitchin, 2014;
Hampton et al., 2015). Version control systems, like GitHub, offer
common repositories for software and code development. In this
paper, we provide only abbreviated descriptions of the technical
details involving the image processing and point cloud alignment
workflows in our main text, and instead provide those details
in a supplemental public GitHub repository: https://github.com/
tyson-swetnam/srer-wgew. We also provide a quick reference
table for acronyms and abbreviations used in this text in the
supplemental materials (Table S1).

METHODS

Study Areas and Species
The Walnut Gulch Experimental Watershed (WGEW) is a
long-term research site surrounding the town of Tombstone,
Arizona (30.74◦ N, −110.05◦ W) (Figure 1) administered by
the United States Department of Agriculture, Agricultural
Research Service Southwest Watershed Research Center. The
soils in WGEW vary from high in carbonates on the western
lower watershed to sandy gravel loams on the eastern upper
watershed (Keefer et al., 2008; Osterkamp, 2008; Pelletier
et al., 2016). Mean annual temperature in WGEW, measured
in Tombstone at 1,384m a.s.l., is 17.6◦C and mean annual
precipitation is 300mm year−1. The Santa Rita Experimental
Range (SRER) near Tucson, Arizona (31.80◦ N, −110.84◦ W)
(Figure 1) is administered by the University of Arizona (http://
cals.arizona.edu/srer) (McClaran et al., 2003). The SRER soils
are characterized as clay loams, sandy loams, and limey upland
soils (Brekenfeld and Robinett, 1997). Mean annual temperature
and precipitation are 19◦C and 358mm year−1, respectively
(McClaran andWei, 2014). Both study sites are typical of dryland
ecosystems, characterized as regions where evaporation is 2–5
times greater than precipitation (Safriel et al., 2006).
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FIGURE 1 | The Santa Rita Experimental Range and Walnut Gulch Experimental Watershed boundaries are shown in black. In the lower left panel the gray triangle is

the UA-C pasture, in the lower right panel the two black squares are Lucky Hills Shrubland and Kendall Grassland sites.

At WGEW, we worked in two areas: Lucky Hills Shrubland
and Kendall Grassland (Figure 1). Lucky Hills is characterized as
Chihuahuan desert scrub with shrubs as the dominant life form
(Scott et al., 2006; Scott, 2010b). Common species are Larrea
tridentata (creosote), Vachellia vernicosa (whitethorn acacia),
Flourensia cernua (tarbush), Parthenium incanum (mariola),
Rhus microphylla (little-leaf desert sumac), Condalia warnockii
(Warnock’s Snakewood), Ephedra triferca (Mormon tea). The
Kendall Grassland site is characterized as semi-arid desert
grassland with a mixture of shrub, grass and cactus life forms
(Scott et al., 2006; Scott, 2010b). Common species are Eragrostis
lehmanniana (Lehmann’s lovegrass) a non-native grass, and
Prosopis velutina (velvet mesquite), native grasses includeHilaria
belangeri (curly mesquite), Bouteloua eriopoda (black grama),
B. hirsuta (hairy grama), and Aristida hamulosa (threeawn)
(Skirvin et al., 2008), other species includeYucca baccata (Banana
yucca), Y. elata (Soaptree yucca), and Agave palmeri (Palmer’s
agave).

At SRER, we worked in another semi-desert grassland
area with mixture of shrubs, grass, and cactus (Pasture UA-
C). Common species are P. velutina, Opuntia engelmannii
(Engelmann’s prickly pear cactus), Acacia greggii (catclaw

acacia), Mimosa dysocarpa (velvet pod mimosa), and Calliandra
eriophylla (false-mesquite), and many species of perennial grass
(McClaran et al., 2010; Scott, 2010a).

Software, Code, and Computing
Links to the aerial lidar vendor reports, code, and analysis
workflows are maintained in a public GitHub repository: https://
github.com/tyson-swetnam/srer-wgew. Watershed boundaries
and major infrastructure features in WGEW are available from
Heilman et al. (2008), Moran et al. (2008), and the SRER data
portal: https://cals.arizona.edu/srer/.

For the SfM point cloud creation we used proprietary
software packages including: Pix4D (SenseFly, Switzerland)
and Photoscan (AgiSoft, 2017). Analysis of point clouds and
derivative models were also done in open-source CloudCompare
(Girardeau-Montaut, 2011), Point Data Abstraction Library
(PDAL, Hobu Inc., 2017) with Docker Community Edition
(Merkel, 2014; Boettiger, 2015; Docker Development Team,
2017), and QGIS (Quantum GIS Development Team, 2017).
SfM generation of dense point clouds in Agisoft Photoscan took
from 1 to 192 h, depending on the number of images used in
the reconstruction. Point cloud analyses in CloudCompare were
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typically less than 5min per procedure, with large multi-scale
model to model cloud comparison (M3C2, Lague et al., 2013)
analyses required up to 20min.

NSF Jetstream cloud computing service (Stewart et al., 2015)
was used to filter point clouds for outliers and to translate
projections for the aerial lidar and SfM data to common datums
using the Docker version of PDAL (docker://pdal/pdal:1.5).
PDAL and LAStools (Isenburg, 2014) were also used to remove
outliers from the original ∗.las data files and to compress to ∗.laz
format for online data hosting.

Instruments and Field Methods
Characteristics of lidar sensors varied among terrestrial, manned
aerial, and sUAS platforms (Table 1). At the Lucky Hills site, the
terrestrial lidar survey (TLS) included nine 360 degree scans on
October 1, 2015; and at the Kendall grassland site, eight scan
and six scan collections were made on September 23, 2015 and
October 8, 2015, respectively. Eight terrestrial lidar scans were
made at the SRERUA-C site onAugust 25th, and September 30th,
2016. The individual terrestrial lidar scans from positions located
around the AOI insured>50% overlap between scans. Individual
scans were mosaicked together during post-processing in Riegl’s
RiScan Pro software to comprise a total scanned area of ∼10 ha
with a focus area of interest of∼2 ha (Riegl, 2017). The individual
terrestrial lidar scans were aligned using 10 cm diameter reflective
cylinder targets mounted on 2m tall poles. Reflective targets
for each scan were centered on rebar driven into the ground
and their locations were measured with a survey-grade Trimble
GPS system in UTM coordinates tied to existing Coast and
Geodetic Survey benchmarks on the watershed (Trimble, 2013).
The Trimble R10 (Trimble, 2012) had a measurement error atop
ground control points (GCP) of ∼5–7mm in the horizontal
and ∼6–16mm in the vertical dimension. At the SRER, stable
rebar GCPs were established at 13 locations and 17 cm diameter
round plastic lids painted black & white in a cross pattern were
temporarily fixed to the rebar rods. We surveyed the GCPs with
a Real-Time Kinematic GNSS on October 7, 2016.

Manned aerial lidar scanning (ALS) data was collected by
Woolpert Inc. over all of WGEW (∼50 km2) on September
16–18, 2015. The lidar was georeferenced and geometrically
corrected using a Real-Time Kinematic GNSS survey as well as a
Rapid-Static GPS survey (see Supplemental Materials). Manned
aerial lidar were gathered at the SRER in April 2011 by Sanborn
Inc.. The SRER data was georeferenced and geometrically
corrected using GNSS Survey (see Supplemental Materials). The
positional accuracy of the manned aerial lidar given by the

vendors was 6.6–8.0 cm RMSEz for bare earth, and 36–50 cm
RMSEz for vegetation (Table 1), meeting the USGS quality level
1 standard (Heidemann, 2012).

An octocopter sUAS (Service-Drone, Germany) equipped
with Velodyne-32 lidar sensor was deployed at the WGEW
in October, 2016 (Velodyne Acoustics, Inc., Morgan Hill, CA)
(Table 1). The octocopter sUAS weighs 5.5 kg and was developed
to carry an additional heavy payload of up to 6.5 kg, for a
maximum takeoff weight of 12 kg (Sankey et al., 2017a,b). The
lidar data were mosaicked together in ENVI v. 5.3 (Exelis Visual
Information Solutions, Boulder CO, 2010).

Characteristics of the cameras used for SfM varied (Table 2).
Collections from hand held photography focused on either
specific individual plants (grasses, cacti, mesquite) or along 30m
transect lines within the SRERUA-C pasture plots. The DJI Osmo
was held on a 1m range pole overhead with the camera pointed
approximately nadir and 20–40◦ oblique. Both still photos and
UHD (4 k) video were recorded along transects. Individual
frames were extracted from the videos using ffmpeg (FFmpeg
Developers, 2016). The rate at which frames were extracted from
video varied, given the forward speed of the collection (∼1–2
m/s). Typically, 3–6 frames per second were enough to ensure
80% overlap between frames (4 k videos were shot at 24 and 30
frames per second). Quadcopter sUAS were flown over the SRER
in summer 2016 using the DJI Phantom 3 and Phantom 4, each
weighing ∼1.5 kg (Gillan et al., 2017). A third party software
Altizure for DJI (Everest Innovation Technology, 2017), was used

TABLE 2 | Structure from Motion, platforms, sensors, image size [megapixels (M)],

estimated Ground Sample Distance (GSD) pixel size, and SfM photogrammetry

points per square meter (ppsm), and the sites of deployments: Santa Rita

Experimental Range (SRER) and Walnut Gulch Experimental Watershed (WGEW).

Platform Sensor Image

size

GSD

(mm)

SfM ppsm Site

Handheld

Sony

Sony Exmor

a6000

24.3M <4 >100,000 SRER

Handheld

DJI Osmo

DJI Micro 4/3 16M <4 >100,000 SRER

sUAS

DJI Phantom 3/4

Sony Exmor 12.4M 10 5,000–34,000 SRER

sUAS

FireFLY6

Sony Exmor

a6000

24.3M 20 1,000–4,000 SRER

sUAS

Ebee

SensFly

multiSPEC 4C

1.2M (4

bands)

150 5–140 WGEW

TABLE 1 | Lidar platforms (TLS-terrestrial lidar scanner, ALS-Aerial lidar scanner, sUAS small Unmanned Airborne System), sensors, collection pulse rate in kilohertz (kHz),

laser divergence (mrad), heigh above ground level (AGL), pulse size (centimeters [cm]), root mean square error (RMSE) in the vertical (z) and horizontal (h) plane (cm), laser

pulse return density per meter square (ppsm), and the sites of deployments: Santa Rita Experimental Range (SRER) and Walnut Gulch Experimental Watershed (WGEW).

Platform Sensor Pulse Rate (kHz) mrad (@1/e) AGL (m) Pulse size (cm) RMSEz (cm) RMSEh (cm) ppsm Sites

TLS Riegl VZ-400 1200 0.3 2 ∼ 0.2 ±1 ±1 1 to 110,000 WGEW, SRER

ALS Leica ALS-50 48–104 0.15 900 ∼13.5 ±6.4 ±50 8 to 25 SRER

ALS Leica ALS-70 500 0.15 900 ∼13.5 ±8.0 ±36 8 to 34 WGEW

sUAS Velodyne-32 700 3.0 (h), 1.2 (v) 80 ∼3.0 ±89–169 ±55 35 to 115 WGEW
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to program the flight missions with 80% forward and side overlap
of the imagery.

The fixed-wing FireFLY6 flights were performed at the SRER
UA-C site on March 17, 2016 and June 28, 2016 at an average
flight altitude of 110m AGL with 65 and 75% forward and side
overlap between image tiles. Most of the aerial images were
collected facing approximately nadir because the camera is fixed
to the belly of the FireFLY6. Pitch, yaw, and roll during the flights
resulting in images 0◦–15◦ degrees off nadir.

The eBee is a fixed wing (140 cm wingspan, 750 g mission
weight), electric platform with a single pusher propeller at
the rear (SenseFly, Switzerland). Flights were performed at an
average altitude of 110mAGLwith 80% forward overlap between
successive image and 70% side overlap respectively between
adjacent flight lines at Kendall grassland site on October 8,
2016. The multispectral Sensfly multiSpec 4C camera records
four bands: green (520–580 nm), red (630–690 nm), red edge
(720–750 nm), and NIR (760–820 nm). The geo-located, spatially
paired, and radiometrically calibrated images were combined to
generate an orthomosaic and DSM of the entire flight area in
Pix4D (SenseFly, Switzerland). Separately a 3D point cloud was
generated for each band and then merged together to generate a
single point cloud dataset. The eBee sUAS multispectral images
were processed in eMotion and Pix4D (SenseFly, Switzerland)
and in Photoscan (AgiSoft, 2017).

Post-hoc Point Cloud Registration
Comparing two or more point clouds required alignment using
at least three GCPs shared between datasets. In the case of our
sUAS plots, 10-13 GCPs were needed to ensure high enough
accuracy (<5 cm) to successfully detect vegetation change over
time (Gillan et al., 2017).

We did not establish GCPs for the eBee SfM photogrammetry
in WGEW or the FireFLY6 in SRER. Features that were clearly
identifiable in the terrestrial lidar or manned aerial lidar data,
e.g., eddy-covariance flux towers, water sampling flumes, fence
posts, road features, and small boulders were used post-hoc to
align point clouds in CloudCompare (Girardeau-Montaut, 2011)
with the translation/rotation tool and three-point-picking tool.

Detection Bias
For bare earth analyses locations with barren ground that were
clearly observable by the terrestrial lidar were used as references,
i.e., roadways and bare patches with no herbaceous component.
For the vegetation analyses locations scanned with the terrestrial
lidar with no obstruction of the bare earth at the base of the
reference plant up to its apical leader were used as references.
Terrestrial lidar reference point cloud data were not used in
areas with high incidence of occlusion and shadowing due to
increasing distance from the scanner.

Raster Differencing
We produced DEM of Difference (DoD) (Lane et al., 2003;
Pelletier and Orem, 2014) for the minimum elevation DEMs
and maxima elevation DSMs. DEMs were generated by “cloth
simulation filter (CSF)” (Zhang et al., 2016) and “Rasterization”
tools in CloudCompare (Girardeau-Montaut, 2011). DEMs were

generated using the minimum height function, or bare earth
classified points (Class 2, Heidemann, 2012), in the case of
the aerial lidar. The DSMs use a maximum height function
after outlier points are removed. DEM and DSM rasters were
produced at 0.5m resolution; this was the finest possible
resolution for comparison to the aerial manned lidar given its
ground return point density. DEM and DSM were exported to
QGIS as geotiff (.tif) rasters in their original datum (Table S2).
In QGIS we used the raster calculator to generate (a) bare earth
DoD1: DEM1–DEM2 (Equation 1); and (b) vegetation DoD2:
DSM1–DSM2 (Equation 2) for the different point cloud types.
The DoD assess bias within the AOI by establishing the absolute
difference between each platform; however DoD differences
alone did not intrinsically identify which platform as the source
of the bias.

Cloud-to-Cloud Differencing
Lague et al. (2013) created the direct point cloud-to-cloud “multi-
scalemodel tomodel cloud comparison” (M3C2) tool to compare
change across time in point cloud data. TheM3C2 is successful at
measuring surface and volume differences in geomorphological
applications (James et al., 2017; Midgley and Tonkin, 2017).
M3C2 computes local distances between “core points” from a
“reference” cloud (Lague et al., 2013), we used the terrestrial
lidar as the reference cloud and the other clouds as the “test” for
differencing. M3C2 uses a “normal” flat surface to estimate the
confidence interval based on cloud roughness and registration
error (Lague et al., 2013). The difference between two points
can be measured in the vertical (z) or horizontal (x and y) axis,
or as a linear multi-scale distance based on the normal. In our
analysis we compared the vertical (z) change. The significance of
the measure is based on the registration error for each core point.
Our registration error used the instrument precision of the lidar
(Table 1) and the uncertainty of the RTK GNSS (Table S3).

Mesh Creation and Object Height Measurement
To improve the estimate of vegetation height in a fused data
comparison (Objective 2), we used a cloth simulation filter (CSF)
technique (Zhang et al., 2016) in CloudCompare (Girardeau-
Montaut, 2011), to calculate a minimum elevation (bare earth)
model as a mesh. One benefit of the mesh was that it fills space
beneath large areas of vegetation where no bare earth surface
is remotely sensed. We also used CloudCompare’s rasterization
tool to generate maximum (DSM) models for object heights. To
measure the height of points above the mesh bare earth level we
used CloudCompare’s Mesh-to-Cloud function.

RESULTS

Feature Class Detection Bias
Bare earth elevation is only clearly resolved by the terrestrial
lidar in barren areas or along roads. The propagated uncertainty
(Supplementary Materials) of any observation of bare earth
derived from manned aerial lidar to a terrestrial lidar fused
measurement was ±8.24 to 9.4 cm RMSEz (Table 3). Aerial lidar
(manned and sUAS) was found to be best at detecting bare
ground, in part because of its unique point of view, penetrating
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TABLE 3 | Vertical (z) differences in point clouds by platform using M3C2 with reference cloud uncertainty of 5 cm; mean ± 99% CI observed difference (cm).

Kendall grassland Santa Rita mesquite

ALS sUAS lidar sUAS SfM† ALS sUAS SfM‡ Hand-held SfM§

Bare ∼0m 2 ± 22 2 ± 73 6 ± 24 5 ± 22 2 ± 16 0 ± 6

Grasses < 1m −25 ± 51 0 ± 25 −4 ± 52 n/a −12 ± 25 −15 ± 15

Shrubs < 2m −15 ± 26 −12 ± 25 −16 ± 25 −16 ± 21 −1 ± 32 0 ± 5

Shrubs > 2m −31 ± 169 −10 ± 14 −25 ± 13 −18 ± 25 −2 ± 52 −4 ± 13

Negative mean values represent systematic under measurement by the test cloud relative to the terrestrial lidar reference cloud. Positive values are associated with the reference cloud

failing to observe elevations at depth, e.g., no returns beneath dense vegetation. n/a value are for no temporal alignment for comparison (Santa Rita). The SfM point clouds derived

from:
†
Sensefly eBee,

‡
DJI Phantom 4, §DJI Osmo.

FIGURE 2 | One meter horizontal width transverse view of four point clouds at the WGEW Lucky Hills Shrub site. Terrestrial lidar is compared to eBee SfM

(A), terrestrial lidar compared to manned aerial lidar (B), and terrestrial lidar compared to sUAS lidar (C).

down through the vegetation. Conversely, the sUAS fails to detect
bare ground beneath grass and shrub vegetation (Figure 2), in
part due to the GSD of the imagery used to generate it. However,
ALS did not always penetrate the canopies of dense leaf-onwoody
shrubs >2m tall, nor does it detect sense the fine branches of the
shrubs or trees (Table 3). The ALS does resolve larger features
on tall woody vegetation (>2m) with typical underestimates of
5–25 cm (Table 3).

The octocopter sUAS lidar had lower positional certainty than
themanned aerial lidar, due in part to the sUAS lidar having lower
quality GNSS (50+ cm RMSEz), and unresolved GPS-IMU drift
aboard the octocopter platform (Sankey et al., 2017a,b).When the
sUAS lidar point cloud was adjusted using fine alignment tools in

CloudCompare its features were comparable to themanned aerial
lidar (Figure 2, Table 3). The sUAS lidar resolved both grasses
and bare surface in herbaceous and shrubs in the Kendall site,
while the manned aerial lidar does not. Despite the increased
point density relative to the manned aerial lidar (8–24 ppsm)
the sUAS lidar (35–115 ppsm) was still too sparse to identify
individual herbaceous plants or shrubs based on only the point
cloud.

The Ebee SfM failed at sensing bare earth elevation for areas
with dense vegetation on the WGEW. This was not surprising
at Kendall Grassland where the herbaceous cover was high.
The eBee SfM also tended to under-predict height of woody
vegetation in the same way as the manned aerial lidar: it failed
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to discriminate diffuse outer branches and maximum tree height
(Figure 2, Table 3). The initial GNSS referenced eBee SfM point
cloud relative to the RTK referenced terrestrial lidar was not
accurate and required realignment using the 3-point-picking and
fine alignment tools in CloudCompare.

The Phantom 3 and Phantom 4 sUAS SfM photogrammetry
also produced point clouds suitable for discriminating large
woody vegetation or herbaceous vegetation. However, the
resultant SfM point clouds were less accurate than the terrestrial
lidar, under-estimating grass height on average by 15 and 4 cm
for the larger woody shrubs (Table 3). SfM photogrammetry
based on the FireFLY6 imagery was not able to accurately
resolve tall woody vegetation (mesquite trees taller than 2m) on
the SRER during the spring leaf-off period, but was improved
during the leaf on period in late summer (Supplementary
Materials).

DEM/DSMs of Difference for Detection
Bias
Our objective #1 was to establish detection bias between point
cloud data and derivatives. In the case of raster data generated
from point clouds we establish the difference between the same
type of measurement for two different platforms, i.e., DEM1-
DEM2 (DoD1) & DSM1-DSM2 (DoD2).

The DoD1 for manned aerial lidar (Figure 3A) vs. terrestrial
lidar (Figure 3B) are ±8.24 cm RMSE in areas immediately
surrounding the terrestrial laser scan locations in the AOI
(Figure 3D). Bare earth elevations are >100 cm different, where
bare ground was not visible to the terrestrial lidar sensor
(Figure 3D). In these locations the manned aerial lidar and SfM

(Figure 3E) are lower (cooler colors) than the terrestrial lidar
estimate of bare ground (Figure 3F).

The aerial lidar DSM (Figure 4A) under estimate height of
grass and woody shrubs by 10 to 120 cm when subtracted from
the terrestrial lidar DSM (Figure 4D). There was also a consistent
difference across both the SfM-ALS DoD2 (Figure 4E), due to
the failure of the aerial lidar to sense the herbaceous component.
There was an under prediction of height for SfM-TLS DoD2

(Figure 4F), with the eBee SfM DSM typically 4 to 52 cm lower
than the terrestrial lidar DSM.

Data Fusion Accuracy
The area immediately around the terrestrial lidar scanner had
the most similar bare elevation as aerial lidar DEM (Figure 5A).
The associated histogram below Figure 5A shows a mean of
approximately zero with standard deviation of 25 cm—similar
to the results shown in Table 3 for the M3C2. The weakness of
the aerial lidar in measuring vegetation is apparent in Figure 5B

where the average height of the point cloud is only 10 cm in
grass—an approximate 55 cm under measurement relative to
the terrestrial lidar in the same locations (Table 4), visible in
Figure 5C. The eBee SfM produced DSM was a more accurate
representation of grass height (Figure 5D) when using the aerial
lidar derived DEM, and was only 24 cm lower on average than the
terrestrial lidar scans (Table 4).

Using the mesh-to-cloud height measure in CloudCompare
we produced a point cloud based height value for the terrestrial
lidar (Figure 6). The bare earth mesh was derived from the CSF
(Zhang et al., 2016) (Supplementary Materials). Our anecdotal
example, shown in Figure 6, demonstrates one potential method

FIGURE 3 | DoD1 in minima elevation across Kendall Grassland. (A) Manned aerial lidar DEM, (B) terrestrial lidar DEM, (C) eBee SfM DEM, (D) aerial lidar minus

terrestrial lidar DoD1, (E) eBee SfM minus aerial lidar DoD1, and (F) eBee SfM minus terrestrial lidar DoD1.
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FIGURE 4 | DoD2 in maxima elevation across Kendall Grassland. (A) Manned aerial lidar DSM, (B) terrestrial lidar DSM, (C) eBee SfM DSM, (D) aerial lidar minus

terrestrial lidar DoD2, (E) eBee SfM minus aerial lidar DoD2, and (F) eBee SfM minus terrestrial lidar DoD2.

FIGURE 5 | (A) DoD1 of terrestrial lidar vs. aerial lidar minima also shown in Figure 3, (B) DSM difference of aerial lidar minus aerial lidar DEM, (C) DSM difference of

terrestrial lidar minus aerial lidar DEM, (D) DSM difference of eBee SfM minus aerial lidar DEM, (E) vegetation on Kendall Grassland 9/23/2015, photograph location,

and direction are shown Figure 5A. (F) profile of Lehmann’s lovegrass on Kendall grassland.
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for improving the characterization of vegetation through two
platform data fusion: terrestrial lidar and SfM point clouds
measure vegetation height above ground but fail to sense bare
earth. When they incorporate an aerial lidar point cloud derived
bare earth mesh surface the height measure improves. Note in
Figure 6 the Ebee SfM points are almost entirely along the top
of the grasses and woody shrub (Yucca elata, soaptree yucca) as
scanned by the terrestrial lidar, while the larger diameter black
points from the aerial lidar have few returns in the vertical profile
except for the flowering stalk of the yucca. Also note, terrestrial
lidar has few or no points low in the vertical profile near ground
level. This was due to the flat angle of the horizontal scan profile
being obscured by dense herbaceous cover.

DISCUSSION

No single observation platform solved Levin’s “problem of
pattern and scale” because each had its own limitations in

TABLE 4 | Average (mean ± 95% CI) object height measurements (cm) taken on

the Kendall Grassland site; examples of the aerial lidar (ALS) height model is

shown in Figure 5B, the terrestrial lidar DSM minus the aerial lidar DEM (TLS-ALS)

in Figure 5C, and eBee DSM minus aerial lidar DEM (SfM-ALS) in Figure 5D.

Feature classes SfM ALS TLS-ALS SfM-ALS

Bare ∼0m 5 ± 14 2 ± 16 −1 ± 8 6 ± 8

Grasses < 1m 20 ± 16 10 ± 12 65 ± 26 41 ± 42

Shrubs < 2m 114 ± 112 55 ± 124 178 ± 50 87 ± 45

Shrubs > 2m 27 ± 278 225 ± 24 252 ± 46 177 ± 215

(1) detecting patterns of important objects in the dryland
ecosystem (bare ground, grass, and shrubs), (2) the accuracy
of representing the heights of grass and shrubs, and (3) the
extent of area represented in a typical data collection campaign.
Nonetheless, the combination or fusion of information from
the different platforms appears to make greater progress toward
solving “problems of pattern and scale” than any single platform
alone. Specifically, we suggest the combination of sUAS SfM
and either manned or sUAS aerial lidar as providing the
best solution at large spatial scales amongst the platforms
studied.

To represent spatial and temporal patterns of vegetation,
sUAS SfM provides a high quality representation of the presence
of grass and shrub vegetation at centimeter scale, but fails to
reliably detect bare earth or DEM beneath that vegetation, thus
limiting the ability to represent the height and volume of those
plants. Aerial lidar on the other hand, provides that needed high
quality representation of the pattern of bare earth or DEM. For
scale, manned aerial lidar provides spatial resolutions of 0.25–1.0
m2, and sUAS Velodyne lidar spatial resolution of 0.1–0.25 m2

which is slightly coarser than the terrestrial lidar or sUAS SfM.
However, from the perspective of scale of extent or coverage,
most aerial lidar data collection campaigns represent hundreds
to thousands of km2, and there is less need to frequently repeat
those campaigns because DEM change in dryland ecosystems
are less frequent than the height and volume of grass and
shrub vegetation. On the other hand, the extent of a sUAS SfM
campaign is at least two orders of magnitude smaller than an
aerial lidar campaign, but it is easier and cheaper to repeat several
times per year in specific areas of interest, e.g., eddy-covariance
flux tower footprints.

FIGURE 6 | An example of the fusion of three point clouds (two lidar, one SfM photogrammetry) with cloth simulation filter (CSF) mesh (Zhang et al., 2016) to establish

bare earth and object height. The terrestrial lidar colored blue to red for height above bare ground, was measured from the lower aerial lidar derived mesh. The upper

mesh (transparent green) with the smaller diameter black points are derived from the eBee SfM point cloud. Note, there are no eBee SfM points low in the profile.
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Point Cloud Bias amongst Platforms
The availability of high density lidar point clouds, particularly
terrestrial lidar, allowed us to carefully examine differences
amongst sUAS lidar, manned aerial lidar, and SfM
photogrammetry point clouds. We found the manned
aerial lidar, sUAS lidar, and sUAS SfM data all tended to
underestimate herbaceous vegetation height in the grassland and
shrub areas.

The accuracy of the terrestrial lidar measurements are over
an order of magnitude finer than the manned aerial lidar.
When comparing the various point clouds to the terrestrial lidar
data it was apparent large biases (positional shifts) had been
introduced by the various GNSS for both the aerial lidar and
SfM photogrammetry. It was also apparent that terrestrial lidar
had difficulty resolving bare earth elevations along flat trajectories
further away from the scan locations when dense herbaceous
vegetation was present (Figures 5, 6). The sUAS lidar was able
to penetrate the grass to bare earth elevations and characterize
the grass vertical profile, similar to that observed in the terrestrial
lidar, but was unable to segment individual plants due to lower
density. The manned aerial lidar was not suitable for measuring
or monitoring herbaceous grass and small shrubs, as highlighted
in Figure 5B. Most of the WGEW manned aerial lidar data are
single return at the near ground level in herbaceous grasses
(Figure 6). It is likely the ∼13.5 cm footprint of the aerial lidar
meant smaller features such a grass panicles and small diameter
woody stems were not large enough to be detected or were not
at the threshold level for discretization from the full waveform
data. The largest woody plants, e.g., leaf-on mesquites were
detected, but their diffuse branches were not, resulting in an
overall 10 to 25 cm height under-estimate of tree height relative to
the terrestrial lidar (Figure 5B, Table 4). These results are similar
to Luscombe et al. (2014), who comparedmanned aerial lidar and
terrestrial lidar and found similar under-estimates in height for
taller vegetation.

In bare ground areas, sUAS SfM data were equivalent to aerial
lidar and terrestrial lidar, which is consistent with other recent
studies (Lucieer et al., 2012; Westoby et al., 2012; Anderson
and Gaston, 2013; Fonstad et al., 2013; James et al., 2017). In
dense herbaceous cover SfM photogrammetry point clouds failed
to accurately resolve bare ground elevations beneath vegetation
accurately. Error in sUAS SfM point clouds are attributed in parts
to (1) barrel or pin cushion lens distortion (James and Robson,
2014), and (2) algorithm error when interpreting between bare
earth and vegetation (James et al., 2017).

Influence of Canopy Cover on DEM
generation
We found the sUAS SfM point cloud M3C2 values (Table 3)
were all within the uncertainty of the aerial lidar for bare ground
(±9.6 cm RMSEz) and large woody vegetation (±18 cm RMSEz).
In the case of the sUAS Phantoms and Osmo SfM, values are
within the range of uncertainty of the terrestrial lidar for bare
ground (Table S3). Our results were essentially the same as
Nouwakpo et al. (2015), who compared soil texture and elevation
differences between ground-based SfM and terrestrial lidar and

were able to stay within 5mm RMSE for bare earth patches but
not in areas of vegetation with >50% canopy cover.

The sUAS SfM (eBee, Phantoms, Firefly6) data could not
be used to generate bare earth elevations beneath herbaceous
vegetation (grasses and low shrubs) with any confidence. Another
problem in densely vegetated herbaceous sites such as the
WGEW Kendall Grassland and the SRER UA-C, occurred when
attempting to generate bare earth models with imagery from
time periods of vegetation senescence. The resultant models were
more likely to be biased because the senescent vegetation cannot
be differentiated from soil, such as during the dry season (e.g.,
the March 2016 Firefly6 flights at UA-C). Standard attempts at
removing vegetation using a filter or masking technique, such
as NDVI (Cunliffe et al., 2016; James et al., 2017), can only be
executed during the leaf-on rainy season in these areas when
canopy cover is highest and is spectrally responsive to NDVI.

Influence of Canopy Cover on DSM
Generation
Many recent SfM research papers (Cruzan et al., 2016; Cunliffe
et al., 2016; James et al., 2017) report on how SfM does very
well in areas with low vegetation cover. In our study, the sUAS
SfM was not as accurate at sensing the maximum herbaceous
vegetation height as the terrestrial lidar, rather the SfM tended
to under predict max heights of the fine herbaceous and woody
component. However, SfM at high resolution in hand-held
DJI Osmo or low flying Phantoms, was capable of resolving
fine herbaceous features and woody stems (Supplementary
Materials). Kato et al. (2015) compared SfM vs. terrestrial lidar for
tree canopy structure and reported a strong correlation between
canopy shape for both technologies. We found similar patterns
where the sUAS and handheld SfM reconstruct the shape of large
woody canopy shrubs, but are unable to penetrate deeply into the
canopy of individual trees to reveal their internal structure.

Raster Differencing (DoD) vs.
Cloud-to-Cloud Comparison (M3C2)
The DoD show vertical change in both the bare elevation
and maximum height of vegetation in the two surface models
(Figures 4, 5); meanwhile theM3C2was able to diagnose changes
in multiscale and horizontal distance both beneath vegetation
and across canopy (Table S3). M3C2 was able to more clearly
diagnose errors of horizontal change than the DoD which must
be inferred by looking at rasters for distinct vertical changes
around the vegetation.

Both methods have utility: DoD rasters are useful in eco-
hydrology applications, while the M3C2 maybe more useful
for geomorphology (bare elevation change), and monitoring
of vegetation dynamics (growth, mortality, abundance and
composition). Notably, the computational overhead required
for M3C2 is orders of magnitude greater than for raster based
modeling but is reduced by the use of GPU computing.

Data Management
Our large data sets created a computing challenge when
comparing the largest point clouds (>50 GB) in a single
computing instance. Cyberinfrastructure storage, such as the
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CyVerse.org DataCommons (http://datacommons.cyverse.org,
Walls, 2017), the NSF lidar repository OpenTopography.org,
and USGS National Map are available to users who wish to
publically archive processed point clouds. The original images
(.JPG or.TIF files) generated by sUAS or handheld collection
should be archived at the highest resolution possible, with
associated time of flight mission metadata, i.e., GNSS location
and camera specifications. One benefit of retaining the imagery
for SfM photogrammetry over delivered (i.e., processed discrete)
lidar data are their availability for reanalysis with new versions of
SfM software which have improved optimization techniques as
well as camera and lens correction algorithms. Lidar data, both
discrete and full waveform, available in their raw (time-of-flight)
format should similarly be stored for future reanalysis.

To help with processing we used CyVerse Atmosphere and
NSF Jetstream (Stewart et al., 2015) virtual machine instances.
We found the largest instances were ideal for large distributed
jobs running point cloud analyses (without GPU). For users
who are not able to purchase workstation class PCs, access to
cloud or HPC solutions are ideal alternatives at a fraction of
the initial start-up cost. We expect the availability of cloud
computing and cyberinfrastructure to become more common as
computing technology further develops. At the same time, we
expect the volume of high-resolution 3D data to increase, as
sUAS technology becomes more widely used by geoscientists and
ecologists.

Fusion of point cloud data from different sensors and formats
presents a problem for ensuring data standards and metadata
attribution continue through the life cycle of data. Currently,
lidar point cloud data are managed under the LAS standard
developed from the American Society for Photogrammetry
and Remote Sensing (ASPRS). SfM point clouds, stored
as LAS/LAZ files, have fundamental differences from lidar
LAS/LAZ, including the lack of scan angle, intensity, or return
number.

Costs (Time, Human, Computing)
The SfM point cloud generation became prohibitive with very
large image collections (250–5,000 high quality images) requiring
from 12 to 192 h to generate the ultra-high resolution point
clouds, also maxing out the available RAM on the workstations
without chunking the data into tiles and further increasing
processing time. In addition, the photogrammetrist typically had
to work with individual images to geo-locate ground control
points from anywhere between 4 and 16 h for each model.
Conversely, the terrestrial lidar required only a few hours of
post-processing by the technicians to resolve the ground-control,
typically being completed within 24 h of the initial collection.
Aerial lidar data require a significant investment, however that
step was shouldered by the contracted vendor and was reflected
in the cost of the aerial lidar collection.

FUTURE OUTLOOK

The scale of remotely sensed 3D data from hand held platforms,
sUAS, and manned aircraft allows us to ask new questions which

25 years ago were unassailable for Levin (1992). However, we
must recognize the strengths and weaknesses inherent to the
technology and the data when applying them to themeasurement
of ecological features. We found aerial lidar from both sUAS
and manned aircraft to be more accurate at sensing bare ground
elevation than terrestrial lidar or sUAS SfM in dense vegetation,
but less accurate at measuring fine and woody herbaceous
vegetation. By using the aerial lidar to derive an accurate
bare earth model and a second technology (terrestrial lidar,
sUAS SfM photogrammetry) to measure herbaceous vegetation
height and structure, we were able to better characterize
vegetation than by any single technology alone. Quantifying
propagation of uncertainty when fusing or combining point
cloud (Supplementary Materials) or derivative data is likely
to be one of the most important steps researchers take when
attempting to make ecologically important measurements.

Newer constellations of “dove” satellites which form “flocks”
and record the entire global surface at weekly to daily
time scale solve a temporal limitation to remote sensing
at scale, with nominal spatial resolution (1–3m) similar to
aerial orthophotography (Butler, 2014; McCabe et al., 2016;
Zimmerman et al., 2017). In the United States, nationally
available lidar data sets (Stoker et al., 2016) provide bare
earth models at 1–2m resolution. Our methods show how
these data could be used for more accurately measuring dense
vegetation cover, height, and volume from sUAS derived lidar
or SfM photogrammetry data and scaling out spatially with
satellite products. Despite the utility of sUAS for monitoring
vegetation phenology and structure at orders of magnitude
higher resolution, the overhead of computational processing
of these imagery can became a limiting factor at progressively
larger spatial and temporal resolution, suggesting the need for
distributed HPC and cloud based solutions like those provided
by Stewart et al. (2015).

Keeping pace with innovation and the breadth of remotely
sensed information available for conducting ecological research
can be challenging for any single field ecologist, particularly
for those looking to add new skills or maintain technical
proficiency. Establishing where the limitations of these new
remote sensing technology are was one goal of this research.
We hope to have revealed a few useful, scalable solutions to
these problems through data fusion, and provided insight into
improved monitoring programs in dryland ecosystems.
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