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Common bean (Phaseolus vulgaris L.) is the most widely grown grain legume for direct human
consumption and is highly preferred in many parts of Africa and Latin America, as well as in
southern Europe (Broughton et al., 2003; Blair and Izquierdo, 2012). It is an important source of
nutrients for more than 300 million people, representing 65% of total protein consumed, 32% of
energy, and a major source of micronutrients e.g., iron (Fe), zinc, thiamin, and folic acid (Welch
et al., 2000; Broughton et al., 2003; Blair et al., 2010a; Petry et al., 2015). It is known as the “poor
men’s meat,” due to its high protein, minerals, and vitamins content (Blair, 2013). Fe is an essential
micronutrient for almost all living organisms (Bashir et al., 2013), and Fe deficiency is the most
common micronutrient deficiency worldwide, disproportionately affecting the poorest and most
vulnerable populations in resource-limited settings, leading to Fe deficiency anemia (IDA; Stevens
et al., 2013; Finkelstein et al., 2017). IDA is difficult to address through Fe supplementation or
processed foods; therefore, several attempts are beingmade to enhance Fe accumulation into staples
such as rice, maize, wheat, and legumes (Blair and Izquierdo, 2012) using biofortification, which is
the process of breeding or genetic engineering to improve nutrient content in a crop (Blair, 2013).
Biofortification is considered a sustainable and cost effective strategy to address malnutrition in
developing countries because it targets staple foods that are consumed daily (Dwivedi et al., 2012).

Nutritional quality in common beans has been found to be higher than in cereals, with large
amounts of minerals and vitamins accumulated in the seeds (Broughton et al., 2003). Common
bean is estimated to have 4–10 times the amount of Fe, and 2–3 times the amount of Zn compared
to rice (Pfeiffer and McClafferty, 2007). Also, these minerals and vitamins are generally retained
after harvest and processing, while in polished cereal grains the Fe-rich tissues (embryo and
aleurone layer) are lost (Wang et al., 2003). Although the average Fe concentration in beans
is high, many people still suffer from IDA due to an insufficient level of bioavailable Fe in a
monotonous cereal/bean-based diet without meat (Bouis, 2007). For Fe biofortification purposes,
the use of common bean is advantageous because the baseline grain Fe content is high at 55
ppm and variability for the trait is great (Petry et al., 2015), ranging up to 110 ppm, allowing
initial biofortification attempts to start from already high Fe levels (Blair et al., 2012; Blair, 2013).
Another advantage of using common beans in biofortification programs is that seeds are consumed
whole after boiling. Therefore, all major components of the common bean seed could be targets of
biofortification: seed coat, cotyledons, and embryo (Blair et al., 2013).

The target Fe level of HarvestPlus, an international research program supporting the research
and development of biofortified crops, is 94 ppm in whole bean seeds (Blair and Izquierdo, 2012;
Petry et al., 2015). According to Vasconcelos et al. (2017), in order to achieve 30% of the estimated
average daily dietary requirement for Fe on a dry weight (DW) basis, the recommended Fe levels in
whole beans should be 107 ppm. The target level was quickly reached, and in some countries plant
breeders have already developed and released new P. vulgaris bean varieties with Fe concentrations
of about 100 ppm (Petry et al., 2015). These varieties show good micronutrient retention after
processing, and equal or increased agronomic yield (Bouis and Welch, 2010). However, successful
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bean Fe biofortification might be constrained due to the reported
low Fe bioavailability (Ariza-Nieto et al., 2007) associated with
high concentrations of Fe absorption inhibitors, also called anti-
nutrients, such as polyphenols and phytate (Beninger et al., 2005;
Petry et al., 2014). Here we propose multiple, complementary
approaches to increase Fe concentration and bioavailability in
common bean, based on the current knowledge onmodel species.
These approaches are summarized in Figure 1.

DECREASING ANTI-NUTRIENT
CONCENTRATION AND
CO-LOCALIZATION WITH FE IN SEEDS

Short-term human isotope studies indicate that phytate is the
major Fe absorption inhibitor in beans, with polyphenols playing

FIGURE 1 | Summary of proposed strategies to increase bioavailable Fe delivery in common bean (Phaseolus vulgaris) seeds. Different strategies might be used as

complementary, non-excludent approaches for bean biofortification. (A) Schematic representation of common bean seed and its main parts: seed coat, embryo and

cotyledons. In cotyledons, iron (Fe) is shown with phytate (PA), whereas in the seed coat (detail), Fe is shown with polyphenols (PP). Each one act as an Fe absorption

inhibitor in the human gut, with PA being likely a stronger anti-nutrient than PP. (1) Strategy aiming at increasing Fe concentration in the cotyledons to overcome PA

anti-nutrient properties. (2) Strategy aiming at decreasing PA concentration in the cotyledons, making Fe in this tissue more bioavailable. (3) Strategy aiming at

increasing Fe concentration in the seed coat to overcome PP anti-nutrient properties. (4) Strategy aiming at decreasing PP concentration in the seed coat, making Fe

in this tissue more bioavailable. (B) Proposed candidate genes for genetic engineering in common bean, based on previous studies in model species. These genes

are orthologous to genes found in Arabidopsis thaliana based on BLAST searches, except for Phvul.001G012200, which is the best hit using a soybean (Glycine max)

IPK gene as query (Yuan et al., 2012). For each candidate gene, the type of manipulation is indicated.

a minor role (Petry et al., 2012, 2014). Phytate increases with
the Fe concentration in beans, and both are mainly found in
the cotyledons. It should be possible to simultaneously breed
for high Fe and low phytate since most phytate-related QTLs
are independent of Fe concentration QTLs (Blair et al., 2012,
2013). Two main strategies for phytate reduction in seeds
have been attempted: disruption of its biosynthetic pathway
with knockout/knockdown of inositol pentakisphosphate 2-kinase
(IPK1) in Arabidopsis and rice showing decreased phytate
in seeds and normal yield (Stevenson-Paulik et al., 2005; Ali
et al., 2013), but with possible defects in Pi homeostasis (Kuo
et al., 2014); and mutations on phytate vacuolar transporters
expressed in seeds, which reduced phytate concentration in other
species (Shi et al., 2007; Nagy et al., 2009; Xu et al., 2009).
In common bean, disruption of the orthologous transporter
PvMRP6 resulted in 90% less phytate in seeds and normal
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agronomic performance (Panzeri et al., 2011; Campion et al.,
2013). However, seeds were hard to cook and induced digestive
problems in human subjects (Petry et al., 2016). Thus,
further research is necessary to improve Fe bioavailability by
decreasing phytate while maintaining agronomic performance
and consumer preferences.

Biofortification in beans can target all seed tissues: the thick
seed coat, two large cotyledons and a well-developed embryo
(Blair et al., 2013), which comprise 7–10, 85, and 2–3% of
seed weight, respectively (Ariza-Nieto et al., 2007). Remarkably,
segregating populations derived from crosses between wild
and cultivated parents showed that QTLs for Fe accumulation
in each tissue segregate separately, and the Fe range and
maximum amount observed in seed coat is higher than in
cotyledons (Blair et al., 2013). Seed coat can contribute with
as much as 26% of the total seed Fe, and polyphenols, not
phytate, are the main anti-nutrients in the tissue (Ariza-
Nieto et al., 2007). Thus, exploring seed coat biofortification is
promising, as little is known about which specific polyphenol
molecules reduce Fe bioavailability and how reduction in their
concentrationmight affect plant and seed physiology (Petry et al.,
2015).

FURTHER INCREASING FE
ACCUMULATION IN BEANS

Genetic engineering beans to accumulate higher Fe
concentrations in seeds can benefit from work on model
plants. Vacuolar Iron Transporter (VIT) family members are
likely candidates, since they are involved in seed Fe localization
and/or concentration in Arabidopsis and rice (Kim et al., 2006;
Zhang et al., 2012). AtVIT1 localizes Fe to the provasculature,
and changes in provasculature density have been proposed
as a means to increase Fe content in seeds (Roschzttardtz
et al., 2017). In rice, OsVIT1 and OsVIT2 are involved in
flag leaf Fe pool regulation, and might also have a role in
seed Fe localization (Zhang et al., 2012). Recent work showed
that endosperm-specific overexpression of TaVIT2 increased
Fe concentration in wheat endosperm (Connorton et al.,
2017), indicating that VIT genes can increase tissue Fe sink
strength.

In rice, overexpression of NICOTIANAMINE SYNTHASE
(NAS) genes was shown to substantially increase Fe
concentration in the endosperm, presumably increasing Fe
translocation through the phloem (Johnson et al., 2011). In
addition, OsNAS1 over-expression in rice plants enhance human
Fe bioavailability from the high nicotianamine (NA) grains
(Zheng et al., 2010). NA role in Fe long-distance transport
is likely to be conserved in land plants (Schuler and Bauer,
2011), and therefore a similar approach could be applied
to common bean. Wirth et al. (2009) overexpressed bean
Ferritin, Arabidopsis Nicotianamine synthase, and Aspergillus
fumigatus Phytase genes in rice plants, and detected 6.3-
fold increase in Fe concentration on the polished seeds.
Aluru et al. (2011) used a lpa maize mutant to overexpress
soybean Ferritin gene, and found 2.7-fold increase in seed

Fe concentration. Similar approaches could be certainly
used in common bean plants in order to concomitantly
decrease phytate levels and increase Fe accumulation and
availability.

Another approach would be to explore genes that regulate
Fe concentration. Over-expression of AtbHLH039 results in
constitutive Fe deficiency response and increased Fe levels in
leaves and seeds (Naranjo-Arcos et al., 2017). Interestingly, the
bean genome has only one gene similar to all four subgroup
Ib from Arabidopsis, which are known to be involved in
Fe deficiency response (Brumbarova et al., 2015). Work in
Arabidopsis and rice has shown that the negative regulators of
Fe deficiency response BRUTUS/HRZ-like proteins could lead
to increased Fe concentration in seeds of knockout/knockdown
plants (Kobayashi et al., 2013; Hindt et al., 2017). Three
BRUTUS/HRZ-like genes are found in the bean genome.
Although promising, manipulation of regulatory proteins should
be performed with caution, since plants might display undesired
phenotypic changes besides increased Fe in seeds.

Common bean genetic transformation protocols are lengthy
and of low reproducibility, while in vitro plant regeneration is
especially difficult (Veltcheva et al., 2005; Rech et al., 2008).
The Agrobacterium rhizogenes system allow for bean root
transformation and could be used for characterization and
selection of candidate genes for stable transformation (Estrada-
Navarrete et al., 2007). Another solution is CRISPR-Cas9-
mediated genome editing, which does not necessarily require
transformation (Malnoy et al., 2016; Wolt et al., 2016) and could
circumvent the problem in the near future. However, using this
method, it would be easier to knockout a specific gene than
overexpress it.

EXPLORING BEAN NATURAL VARIATION
AND WILD RELATIVES

The wide genetic Fe variability of beans has enabled plant
breeders to develop varieties with twice Fe compared to normal
beans (Blair et al., 2010b). Common bean is native to Latin
America, and is one of the five cultivated species of the
Phaseolus genus. It has two main genetic pools: Andean (large
seeds) and Mesoamerican (small seeds). Andean and inter-
gene-pool hybrids have higher Fe concentrations compared
to Measoamerican ones, although the range of variation is
similar (Blair, 2013). Large germplasm collection screenings for
high Fe genotypes conducted in local and wild varieties of
P. vulgaris have reported up to 110 ppm Fe. However, early
analyses on closely related species such as P. coccineus and P.
dumosus have found up to 127 ppm Fe, indicating that wild
relatives might be useful (Blair et al., 2013). Even considering
that high Fe wild genetic material showed poor agronomical
performance (and introgression might not be straightforward
in interspecific crosses), further screening of wild genotypes
is promising. Moreover, wild beans accumulate more Fe in
seed coats and less in cotyledons compared to domesticated
genotypes, indicating that they can contribute differently for
tissue-specific biofortification (Blair et al., 2013).
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QTL studies show that multiple genes regulate seed Fe levels
(Blair and Izquierdo, 2012; Blair et al., 2013). Interestingly,
Fe concentration inheritance seems to be associated with Zn
concentration, as found in other crops, indicating that similar
genes are involved in micronutrient loading in seeds and that
breeding for both minerals simultaneously is feasible (Blair et al.,
2013). Based on QTL localization, Fe and Zn concentration
might be associated with the seed storage protein Phaseolin,
whereas the Fe storage protein Ferritin was also associated with
a QTL (Blair et al., 2009). Indeed, engineering for increased
Ferritin expression in endosperm of Poaceae species have been
a relatively successful strategy (Sperotto et al., 2012), and thus
Ferritin-associated QTLs are interesting candidates. Fe-chelate
reductase, which is important for Fe uptake in roots, has
also been suggested as a possible candidate gene (Blair et al.,
2013).

WHERE TO FOCUS NEXT?

Biofortification for any crop will benefit from multiple
approaches, which can improve one another to achieve target
Fe seed levels. For common bean, bioavailability tests are key
due to the high level of anti-nutrients. The Caco-2 cell in vitro
model has been widely used, with better results than previous
in vivo absorption models (Ariza-Nieto et al., 2007; Blair et al.,
2013; Petry et al., 2016). Recently, a new model using poultry
(Gallus gallus) combined with Caco-2 cells showed that they can

be used as a robust, cost-effective two-step system to evaluate Fe
bioavailability, which should be mandatory to generate as well as
to monitor biofortified crop seeds after their release (Tako et al.,
2016).

Another focus should be to independently increase Fe in
cotyledons and in seed coat, and understand the physiological
roles of phytate/polyphenols and the effects of their reduction
on seed viability and seedling establishment. Fe in cotyledons
accumulates at the vascular bundles (Cvitanich et al., 2010),
similar to Arabidopsis where it depends on Vacuolar Iron
Transporter (VIT1; Kim et al., 2006). Phytate is also likely
to accumulate in vacuoles, based on the activity of MRP
transporters (Nagy et al., 2009; Panzeri et al., 2011). It
remains to be determined if the same cells accumulate Fe and
phytate, and if the vacuole is the main site where phytate-
bound Fe is localized. Thus, analyses of cellular and sub-
cellular distribution of Fe and phytate (using phosphorous
as a surrogate) will be key for advances in cotyledon
biofortification (Punshon et al., 2013). Moreover, understanding
how polyphenols affect Fe homeostasis and how their levels
could be manipulated will indicate new approaches for seed coat
biofortification.
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