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Robust phenotypic data allow adequate statistical analysis and are crucial for any
breeding purpose. Such data is obtained from experiments laid out to best control local
variation. Additionally, experiments frequently involve two phases, each contributing
environmental sources of variation. For example, in a former experiment we conducted
to evaluate production related traits in Pelargonium zonale, there were two consecutive
phases, each performed in a different greenhouse. Phase one involved the propagation
of the breeding strains to obtain the stem cutting count, and phase two involved the
assessment of root formation. The evaluation of the former study raised questions
regarding options for improving the experimental layout: (i) Is there a disadvantage to
using exactly the same design in both phases? (ii) Instead of generating a separate
layout for each phase, can the design be optimized across both phases, such that
the mean variance of a pair-wise treatment difference (MVD) can be decreased? To
answer these questions, alternative approaches were explored to generate two-phase
designs either in phase-wise order (Option 1) or across phases (Option 2). In Option
1 we considered the scenarios (i) using in both phases the same experimental design
and (ii) randomizing each phase separately. In Option 2, we considered the scenarios
(iii) generating a single design with eight replicates and splitting these among the two
phases, (iv) separating the block structure across phases by dummy coding, and (v)
design generation with optimal alignment of block units in the two phases. In both
options, we considered the same or different block structures in each phase. The
designs were evaluated by the MVD obtained by the intra-block analysis and the joint
inter-block–intra-block analysis. The smallest MVD was most frequently obtained for
designs generated across phases rather than for each phase separately, in particular
when both phases of the design were separated with a single pseudo-level. The joint
optimization ensured that treatment concurrences were equally balanced across pairs,
one of the prerequisites for an efficient design. The proposed alternative approaches
can be implemented with any model-based design packages with facilities to formulate
linear models for treatment and block structures.

Keywords: experimental design, two-phase design, mean variance of a pair-wise treatment difference, A-optimal,
dummy analysis, experimental structure, horticultural breeding, Pelargonium zonale

Abbreviations: EU1, the experimental unit in P1; EU2, the experimental unit in P2; IBD, incomplete block design; MVD,
the mean variance of a pair-wise treatment difference; MVD(F), the MVD obtained by the intra-block analysis; MVD(R), the
MVD obtained by the joint inter-block-intra-block analysis; P1, phase one; P2, phase two; VC, variance components.
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INTRODUCTION

Robust phenotypic data from trials that allow an adequate
statistical analysis are of utmost importance for successful varietal
improvement, identification of quantitative loci, marker-assisted
selection, association mapping, and genomic selection. To obtain
such data, trials are laid out to best control local variability
through an experimental design (Federer and Crossa, 2012).
There are situations where the experiment consists of two phases,
e.g., when plant material is grown in the field to obtain the yield
in the first phase and in the second phase chemical analyses are
conducted in the laboratory (Smith et al., 2014), in which case
the environmental conditions in the field trial have an influence
on the response obtained in the second phase of the experiment
in the laboratory. In such situations, two-phase experimental
designs are recommended. All too often, however, both the design
and statistical analyses are less than optimal when the two-
phase nature of the experiment is overlooked, e.g., the change of
observational units from one phase to the other or an overlapping
of phases (Brien et al., 2011). As a result, variation cannot be
broken down into all its components, which leads to a decreased
accuracy of treatment effect estimates (Curnow, 1959).

Two-phase experimental designs can be found in many
research areas, for example in crop breeding programs, where
plants are tested under field conditions during the first phase and
collected material is processed further for chemical analysis; in
clinical studies, where patients are treated first, and specimens are
processed in a laboratory in the second phase; in food processing
studies, when first mixtures are prepared and in a subsequent
phase the mixtures are processed further to produce the final
products (Brien et al., 2011); or when conducting microarray
experiments, where first messenger RNA is derived from subjects
that are exposed to a set of treatments and then the mRNA is used
in a microarray assay to obtain the gene expression (Jarrett and
Ruggiero, 2008). Even if a laboratory phase is not involved, two
phases can be present, as in ornamental breeding, where in the
first phase stock plants are cultivated and in the second phase
harvested plant material is tested for production related traits
(Molenaar et al., 2017). Both phases take place in greenhouses,
which may be in different locations.

Often in planned two-phase experiments, the first phase is
considered in the experimental design, while the second phase
is not considered at all. For example, in cereal breeding, plant
material from the field may be processed further according the
“field order” resulting in a systematic allocation of treatments in
the second phase or all samples of a treatment may be pooled
together in the laboratory (Brien et al., 2011). Already in 1955,
McIntyre (1955) described two-phase experimental designs and
proposed the use of randomization in each phase.

Implementing a conventional two-phase design, where both
phases use optimal designs, can pose some difficulties due to
practical considerations as mentioned in a study on Pelargonium
zonale by Molenaar et al. (2017). In that study, it would have
been prohibitively labor-intensive to follow an optimized pre-
defined layout, because of the elaborate process of planting
thousands of stem cuttings in the second phase. As this was
the first attempt to introduce a two-phase experimental design

in a P. zonale breeding program, a compromise was made, and
randomization in the second phase was carried out on site so that
the requirement of randomization was met, but the design could
not be optimized in view of the design used in the first phase.

This initial approach raised questions regarding options
for further improving the experimental design: (i) Is there a
disadvantage in leaving treatments in the same randomized order
from the first phase when transferring samples to the second
phase of the experiment, i.e., using exactly the same design in
both phases? (ii) Instead of generating a separate layout for each
phase, can the design be optimized across both phases, such that
the MVD can be decreased across both phases compared to two
independent designs?

Therefore, the objective of this study was to explore
potential pragmatic approaches for generating improved two-
phase experimental designs and thereby to answer questions (i)
and (ii). Section “A Two-Phase Experiment in P. zonaleBreeding”
summarizes the former experiment of Molenaar et al. (2017), on
which operational possibilities are modeled. Sections “Option 1 –
Design Generation for Each Phase Separately” and “Option 2 –
Design Generation across the Two Phases” present two options
for generating two-phase experimental designs for each phase
separately or across the two phases considering either the same
or different block structures in both phases. In Section “Results”,
the generated designs are evaluated regarding the MVD. Sections
“Discussion and Conclusion”, give a discussion and conclusion
to identify effective two-phase designs.

MATERIALS AND METHODS

A Two-Phase Experiment in P. zonale
Breeding
In 2013/14, we implemented a two-phase experimental design
in a P. zonale breeding program to assess production related
traits of v = 500 genotypes. In Phase 1 (P1), conducted in
location 1, stock plants of genotypes were cultivated, from which
the stem cutting count was obtained. In Phase 2 (P2), the stem
cuttings harvested from genotypes during P1 were planted to
assess the root formation in location 2. Both phases took place
in greenhouses.

In P1, an α-design with r = 4 replicates, each with b = 167
incomplete blocks of size k = 3, was used. One of the incomplete
blocks in each replicate was only of size two. Each experimental
unit in P1 (EU1) contained a pair of stock plants from the
same genotype, for a total of six plants per incomplete block
of size three. Each cultivation table accommodated a full set of
genotypes, i.e., one replicate.

In P2, randomization was carried out on site as follows: First,
the total experimental space of rooting tables was divided into
four regions. To each region in P2 the replicates of P1 were
systematically assigned. A rooting table held 36 trays and a region
held 72 up to 108 trays, hence, not all trays fit necessarily on one
rooting table. A tray held 39 paper pots arranged in three rows.
Trays were divided into areas representing EU2. Second, all stem
cuttings of a genotype and replicate in P1 were packed in a small
bag to transfer the plant material from location 1 to 2, and were
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randomly allocated to one area in the corresponding region to
which a replicate was assigned in P2. Thus, stem cuttings from
each EU1 were allocated exactly to one EU2. The sizes of areas
for EU2 varied depending on the harvested stem cutting count
per genotypes. The rooting tables and trays in P2 were considered
as post-blocking factors in the analysis, which could be regarded as
incomplete blocks in an IBD, for which the design was previously
not optimized (Figure 1).

Idealized Conditions to Assume the
Same Block Structure in Both Phases
We idealized the experimental conditions in several ways to
different degrees in the designs to be described in this and
the following Sub-section “Different Block Structures in Both
Phases” for comparing different design generation scenarios. This
was done in the interest of focusing on the general principles
implemented in scenarios investigated in this study without
having to focus on intricate specifics of the P. zonale study. First,

we assumed that in each phase the same block structure can
be used. Thus, for each pair of stock plants we presumed that
no stock plants were lost and that the stem cutting counts were
reduced to six stem cuttings per genotype in P1 to assess root
formation in P2. Hence, the EU2 (areas) were assumed to be of
equal size in P2.

Further, the physical unit of a tray should correspond exactly
to one randomization unit in P2, i.e., to an incomplete block of
size six. To consider the same block structure in both phases so
that block units in P1 correspond to block units of the same size
in P2, requires increasing the block size in P1 from k = 3 to
k = 6. These idealized conditions enabled us to assume the same
resolvable IBD design with r = 4 replicates with each b = 84
incomplete blocks having the same block sizes k = 6 in both
phases (Figure 1). We also assumed equal block sizes and the
genotype number was increased from v = 500 to 504. Given
these design properties, two options were considered to generate
the two-phase experimental design (Table 1): Option 1 was to

FIGURE 1 | Modified according to Molenaar et al. (2017): Two-phase experimental design accounting for idealized conditions. In comparison to 2013/14, where an
α-design with four replicates, each with 168 incomplete blocks of block size 3 (one of them was only of size 2), was used to test 500 genotypes in Phase 1 (P1). We
idealized the conditions in such a way, that we could use instead an incomplete complete block design (α-design) with four replicates each having 84 incomplete
blocks of size 6 to test 504 genotypes. In both cases, the cultivation tables comprised a complete set of genotypes placed on 500 and 504 planting positions,
respectively. On each experimental unit, a pair of stock plants was placed. In Phase 2 (P2), when randomization was carried out on site in 2013/14, we divided the
total experimental space of rooting tables into four regions to which the four replicates in P1 were systematically assigned. Regions shaded in gray in rooting tables
in P2 correspond to replicates shaded in gray of cultivation tables in P1. Each rooting table held 36 trays and a tray contained 39 paper pots arranged in three rows.
The trays were divided into areas comprising different numbers of paper pots to which genotypes were randomly allocated. The number of paper pots, i.e., the size
of areas (experimental units in P2), varied depending on the numbers of stem cuttings for a genotype. In accordance with our idealized conditions assuming that only
six stem cuttings of a pair of stock plants and genotype are rooted, we proposed to use a pre-specified IBD with four replicates each having 84 incomplete blocks of
size 6 in P2. Thus, the regions, to which the replicates in P1 were assigned, the incomplete blocks represented by the trays and the EU2 were now of equal size.
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TABLE 1 | Overview of designs with the same block structure in both phases†.

Option Description Scenario Code in
Supplementary
Presentation 1

Figure in
Supplementary
Presentation 2

1 – Design generation separately for each
phase

Exactly the same design in both phases I 1 A
New randomization of genotypes to IB within replicates of
P2

II 2 B

2 – Design generation across the two
phases

Generating a single design with eight replicates and splitting
these among the two phases

III 3 C

Separation of block structures using phase-specific dummy
coding

IV 4 D

Design generation in two steps: (i) allocating blocks of P2 to
incomplete blocks of P1; (ii) allocating of genotypes to IB of
both P1 and P2

V 5 E1 and E2

† In each phase, an incomplete block design was used with v = 504 genotypes, r = 4 replicates, b = 84 incomplete blocks of size k = 6. Designs were generated for each
phase separately or across phases and for different scenarios within these options.

generate a design for each phase separately (Section “Option 1 –
Design Generation for Each Phase Separately”) and Option 2 was
to generate a design across phases by simultaneously accounting
for the block structure of both phases (Section “Option 2 – Design
Generation across the Two Phases”). During design generation
using either Option 1 or Option 2, the complete replicates from
P1 were kept intact in P2, except for Scenario III.

General Approach
The general approach for generating two-phase experimental
designs by either Options 1 or 2 was model-based. Therefore,
first a treatment model was defined and second a block model
for each of the two phases. Such model-based approaches can
be implemented in various software packages, e.g., dae (Brien,
2017), DiGGer (Coombes, 2009), or OD (Butler, 2013) in R or
the OPTEX procedure in SAS (SAS Institute Inc., 2014). We
implemented our approaches with OPTEX, and provided all
relevant codes (Supplementary Presentation 1).

Option 1 – Design Generation for Each Phase
Separately
Scenario I – Transmitting the experimental layout of P1 to P2
A resolvable IBD was generated for P1 for the specifications given
above (Code 1, Figure A in Supplementary Presentation 2). The
experimental layout of P1 was transmitted exactly to P2. In doing
so, treatments in P2 were left in the same order as used in P1.

Scenario II – New randomization of genotypes to incomplete
blocks within replicates in P2
In contrast to Scenario I, in P2 a separate resolvable IBD was
generated (Code 2, Figure B).

Option 2 – Design Generation across the Two Phases
Scenario III – Generating a single design with eight replicates
and splitting these among the two phases
We generated a resolvable IBD with r = 8 replicates
(Code 3, Figure C), where all other design parameters remained
unchanged (v = 504, b = 84, k = 6), and split these
replicates equally among the two phases. Since genotypes were
randomized to incomplete blocks across the eight replicates,

the design was optimized across the two phases in terms
of the number of concurrences per treatment pair. Each
complete replicate in P1 was transferred intact to one replicate
in P2.

Scenario IV – Separation of block structures using
phase-specific dummy coding
In the dataset defining the block structures across phases, we
defined a factor identifying the two phases (Code 4, Figure D).
In each phase, there were r = 4 replicates and incomplete blocks
were nested within each of the replicates. The records for the two
phases were concatenated in the dataset for design generation
based on a model comprising the block effects for both phases.
The clue for generating the design across the two phases was to set
the factor for incomplete blocks of P1 to a single pseudo level for
incomplete blocks of P2 and vice versa. By this dummy coding,
the pseudo level acted as one additional block level of incomplete
blocks in P1 or P2. The design was then optimized simultaneously
with respect to the assignment of genotypes to the two blocking
systems.

Scenario V – Design generation with optimal alignment of
block units in the two phases
Instead of generating the design in phase-wise order, the
design generation was conducted in replicate-wise order in
two steps (Code 5, Figures E1, E2), optimizing the alignment
of block structures of both phases. First, for each replicate,
the incomplete blocks of P2 were allocated to incomplete
blocks of P1 for each of the four replicates separately to
obtain a block layout of the design across the two phases.
This was achieved by formally considering blocks of P2 as
the “treatment” factor and blocks in P1 as the “block” factor,
thus optimizing the efficiency of block effects estimates in P2,
given the block structure in P1. In this step, the allocation of
genotypes to EU1 and EU2 was not yet considered. Second,
the genotypes were allocated to incomplete blocks within
replicates of both P1 and P2 considering all four replicates
simultaneously. At this stage, the alignment of blocks in P1
with blocks in P2 was fixed at the configuration obtained
in the first step, and this alignment was used as the block
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model to generate an allocation of treatments to EU1 and EU2
simultaneously.

Different Block Structures in Both
Phases
The assumption of a common block structure in both phases is
rather idealized as in practice the phases of the experiments take
place in totally different locations and different environmental
conditions prevail in each phase (Molenaar et al., 2017). To
account better for the environmental conditions in location 1,
two different post-blocking factors were considered in the former
analysis, which are now further considered in generating designs.

Adding a Column Factor in the First Phase
A column factor was added to the randomization-based model,
representing columns of 84 experimental units per replicate on
tables in the greenhouse. Accommodating this column factor
means that different block structures are used in both phases.
Hence, the operational approaches derived in Section “Option 1 –
Design Generation for Each Phase Separately” were modified,
using in P1 a row-column design to test v = 504 genotypes in
r = 4 replicates, each arranged in k= 84 rows and s= 6 columns,
whereas in P2 the resolvable IBD used previously was employed
(Table 2).

Blocking Factor to Account for Induced Variations
by Workers in the First Phase
Molenaar et al. (2017) found that in most cases the largest
variance was the residual error variance, while in P1 the
incomplete block variance was estimated to be zero, indicating
that there was no correction due to that block factor during
the estimation of effects when modeled as random. In search of
sources of variation that were not explicitly taken into account
so far, we found that workers harvesting the stem cuttings in
P1 induced some effect. Considering that a worker can harvest
stem cuttings from approximately 125 stock plants per day, an
additional post-blocking factor “worker-day” was defined, which
comprised eight levels (blocking strategy a). Levels one to eight
corresponded to the positional numbers from 1 to 63, 64 to 126,
127 to 189, 190 to 252, 253 to 315, 316 to 378, 379 to 441 and 442
to 500 in the layout of EU1 in each replicate (Figure 2). However,
during cultivation within the first 5 months stock plants were lost
at random. Hence, less than 125 stock plants per “worker-day”
were grouped together for analysis. Therefore, two other block
strategies (b and c) in terms of the number of planting positions
visited by a worker per day were defined. We further considered
this additional block factor within a row–column design, but also
as the only block factor in P1, for generating designs using either
Options 1 or 2 (Table 2).

The Mean Variance of a Treatment
Difference as a Selection Criterion
Designs generated by the procedure OPTEX are optimized for
D-efficiency (OD or DiGGer packages provide algorithms for
generating A-optimal designs). In plant breeding A-optimal or
A-efficient designs are preferred as optimizing this criterion
minimizes the average variance of genotype differences (MVD)

(Hinkelmann and Kempthorne, 2005). Thus, the precision
of estimates of genotype differences is increased and better
phenotypic selection and varietal improvement can be achieved.
Both D- and A-optimality usually lead to similar designs for
comparative experiments with a single treatment factor (John
and Williams, 1995), so the procedure OPTEX was a useful tool
for our purposes, despite its focus on D-optimality. Thus, we
computed the MVD obtained by linear mixed models either
by intra-block or joint inter-block-intra-block dummy analyses
(Piepho, 2015), in which the information about the precision
of genotype parameters is contained in the variance-covariance
matrix (Mead, 1988). Generally, the design showing the lowest
MVD was preferred.

Resolvability
We ensured that all designs were resolvable, meaning that the
b incomplete blocks containing k plots (EUs) can be grouped
to a complete r replicate of the v treatments. Resolvability
of all designs generated was verified by frequency tables for
the genotype-by-replicate classifications in each phase. For a
resolvable IBD, all entries in the table must be unity. If necessary,
resolvability of the two-phase designs was enforced by defining
effects for incomplete blocks as random effects, tuning the
variance so that resolvability was achieved. Defining a block effect
as random essentially allows tuning its influence on the treatment
information matrix. The smaller the variance, the smaller the
influence on the treatment information matrix. In OPTEX, the
variance of an effect is tuned via the PRIOR option (see Pereira
and Tobias, 2015, for more details). For design generation in each
scenario we set the prior for replicates to zero. For all remaining
block effects, the prior was set to 2016, the value corresponded
to the total number of experimental units in the experiment
(504 × 4 = 2016 EU1 = EU2). If resolvability was not achieved
the prior was increased until resolvability was achieved.

Model Set-up for Design Evaluation
As mentioned above, our approach generally requires
specification of the treatment model on the one hand and
the model for block effects on the other hand. The model
notation used here is universally applicable in any design package
allowing the specification of linear models.

We illustrate this general model set-up for either Options 1
or 2 by considering a two-phase design having the same block
structure in both phases. The treatment model, representing the
‘randomized-tier’ (Brien and Demétrio, 2009), was

GEN, (1)

where GEN denotes the genotypes.
When the designs were generated for each phase separately

(Option 1), then the randomization-based block model for design
effects was set up for each phase separately. The P1 block model
was

REP+ REP.IB1+ REP.IB1.PAIR (2)

and the randomization-based model for P2 was

REP+ REP.IB2+ REP.IB2.AREA (3)
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FIGURE 2 | Schematic representation of the “worker-day” blocking strategy a. One replicate in P1 consisted of 504 planting positions. On each position a pair of
stock plants of a genotype was placed. By blocking strategy a, it is assumed that a worker visits 63 positions to harvest the stem cuttings of 126 stock plants a day
represented by the blocks 1 to 8, which are arranged in a 4 × 2 layout on a cultivation table.

TABLE 3 | Full models in Scenarios I to XIV, including treatment effects, design effects in Phase 1 (P1) and Phase 2 (P2) and error terms used to estimate MVD for design
evaluation.

Scenario Model‡‡‡ Treatment effect Design effects§ ERROR

P1 P2

I 2 GEN REP REP.IB1 REP.IB1.PAIR

II–V 4 GEN REP REP.IB1 REP.IB2 REP.IB2.AREA

VI, IX, X 5 GEN REP REP.ROW REP.COL REP.IB2 REP.IB2.AREA

VII, XI, XII† 6 GEN REP REP.ROW REP.COL REP.WORK REP.IB2 REP.IB2.AREA

VIII, XIII, XIV† 7 GEN REP REP.WORK REP.IB2 REP.IB2.AREA

†For each scenario all blocking strategies a–c of “worker-day” were considered.
‡Model (2): IBD, which was transmitted from P1 to P2; Model (4): IBD in P1, IBD in P2; Model (5): IBD in P1 with the additional post-blocking factor column, IBD in P2;
Model (6) a–c: IBD with the additional post-blocking factor column and “worker-day”, where a to c indicate the different blocking strategies to account for the different
numbers of positions that can be met by one worker per day. Model (7) a–c: Considering only the “worker-day” block in P1, and an IBD in P2.
§REP is the replicate effect, REP.WORK is the “worker-day” effect, REP.IB1 is the incomplete block effect in the first phase, REP.ROW is the row effect in the first phase,
REP.COL is the column effect in the first phase, REP.IB2 is the incomplete block effect in the second phase, ERROR is the residual error.

where REP denotes the replicates, REP.IB1, the incomplete blocks
nested within replicates in P1, REP.IB1.PAIR, the residual error in
P1, i.e., the EU1, on which a pair of stock plants was placed and
represented the observational unit. Further, REP.IB2 denotes the
incomplete blocks within replicates in P2 and REP.IB2.AREA, the
residual error in P2, i.e., the EU2, from which the root formation
of stem cutting was assessed. It is noted, that in model (2) and
(3), REP was considered as a fixed effect, whereas incomplete
blocks and the residual error were considered as random effects
for generating designs.

The full model for design evaluation was obtained by
augmenting the treatment model with both phase-specific
randomization-based block models,

GEN+ REP+ REP.IB1+ REP.IB2+ REP.IB2.AREA (4)

As the replicates were kept intact from P1 to P2, only one effect
was needed to define the replicates. Defining the experimental
unit of the full model, the EU1 effect REP.IB1.PAIR did not need
to be added explicitly either as it was implicitly accounted for
by the EU2 effect REP.IB2.AREAS. This is because one EU1 was
allocated to one EU2 and hence, effects of EU1 and EU2 are
confounded.

When designs were generated across phases (Option 2), the
block model for design generation was

REP+ REP.IB1+ REP.IB2+ REP.IB2.AREA (5)

The full model corresponds to model (4), except for Scenario
III, where the design was generated across the two phases by
increasing the replicate number from four to eight. The model for
design generation in this case was model (1), but after splitting
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the eight replicates among the two phases and recoding the
incomplete blocks for P1 and P2 as IB1 and IB2, respectively, the
model for analysis was model (4).

Considering different block structures in both phases, e.g.,
in P1 a row-column design, a row-column design with the
additional block factor “worker-day” or only the “worker-
day” and in P2 still utilizing a resolvable IBD, the block
factor of P1 (IB1) in models (2) and (4) was replaced by
rows nested within replicates (REP.ROW), columns nested
within replicates (REP.COL) and “worker-day” (REP.WORK),
respectively (Table 3).

The Estimation of Variance Components (VC)
Variance components (VC) were required for the dummy
analyses in the next step in Section “Intra-block or Joint Inter-
block–Intra-block Dummy Analysis”. Hence, for each block
effect, including the residual error, the VC were estimated from
Models (4) to (7) (Table 3) and the experimental data 2013/14
by taking all block effects as random. Because of the idealized
conditions, IB2 was equivalent to the post-blocking factor TRAY
in P2, whereas the other post-blocking factor TABLE in P2 of the
past analysis (Molenaar et al., 2017) was neglected in the current
analysis, because of confounding with the replicate effect (REP).

Intra-block or Joint Inter-block–Intra-block Dummy
Analysis
The MVD was obtained from models (2) to (7) by a dummy
analysis (Supplementary Presentation 3) taking block effect
either as fixed or as random for each two-phase designs

implemented in each scenario. The analysis with fixed blocks
utilized the intra-block information and the obtained MVD(F)

depended only on the residual error variance (fixed at the value of
residual error variance obtained in the previous experiment) and
the design, whereas random blocks allowed also the recovery the
inter-block information (John and Williams, 1995). The variance
of random block effects was set to estimated VC (Table 4)
to obtain the MVD(R). Now, the MVD(R) depended not only
on the residual error variance and the design, but also on the
block variances estimated from the previous experiment. Further,
the MVD was also obtained from the previous experiment
applying the same models for the intra- and the joint inter-
block–intra-block analysis to illustrate on the one hand the
gain in precision by using the two post-blocking factors column
and “worker-day” in the first phase, and, on the other hand,
to compare the precision of the former experiment with
its improved modifications implemented in each scenario. In
analyzing Scenario I, the VC of IB1 and IB2 estimated by the use
of model (4) (Table 4) were summarized and assigned to model
(2) with VC of the replicate effect and residual error, estimated
from model (4) too, to obtain the MVD(R).

RESULTS

Resolvability
In all scenarios resolvability was achieved by setting the prior
value for incomplete block effects in the block model specification

TABLE 4 | Variance components of each model effect and corresponding proportions of the total variation attributable to each effect for Models (4) to (7).

Model effect††† Model‡‡‡

4 5 6, a 6, b 6, c 7, a 7, b 7, c

REP 2.6469 2.6378 2.6406 2.5939 2.5796 2.6192 2.5743 2.5621

REP.WORK – – 0.2569 0.3204 0.3097 0.3131 0.3542 0.3352

REP.IB1 0.1303 – – – – – – –

REP.ROW – 0.0505 0.0443 0.0418 0.0172 – – –

REP.COL – 0.2043 0.0823 0.0568 0.0497 – – –

REP.IB2 0.5066 0.4378 0.4518 0.4516 0.4616 0.4892 0.4780 0.4854

ERROR 3.7806 3.7315 3.5895 3.5767 3.6381 3.6524 3.6360 3.6729

Sum VC 7.0744 7.0619 7.0654 7.0412 7.0559 7.0739 7.0425 7.0556

REP 37.5565 37.3526 37.3738 36.8388 36.5595 37.0263 36.5538 36.3130

REP.WORK – – 3.6360 4.5503 4.3892 4.4261 5.0295 4.7508

REP.IB1 1.8419 – – – – – – –

Proportion in % REP.ROW – 0.7151 0.6270 0.5934 0.2442 – – –

REP.COL – 2.8930 1.1644 0.8072 0.7039 – – –

REP.IB2 7.1610 6.1995 6.3946 6.4137 6.5420 6.9156 6.7874 6.8796

ERROR 53.4406 52.8399 50.8041 50.7966 51.5611 51.6321 51.6294 52.0565

Total 100% 100% 100% 100% 100% 100% 100% 100%

†REP is the replicate effect, REP.WORK is the “worker-day” effect, REP.IB1 is the incomplete block effect in the first phase, REP.ROW is the row effect in the first phase,
REP.COL is the column effect in the first phase, REP.IB2 is the incomplete block effect in the second phase, ERROR is the residual error.
‡Model (4): IBD in P1, IBD in P2; Model (5): IBD in P1 with the additional post-blocking factor column, IBD in P2; Model (6) a–c: IBD with the additional post-blocking
factor column and “worker-day”, where a to c indicate the different blocking strategies to account for the different numbers of positions that can be met by one worker
per day. Model (7) a–c: considering only the “worker-day” block in P1, and an IBD in P2.
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to the total number of experimental units, 2016, except for
Scenarios V, X, XII a–c and XIV a–c. Resolvability was realized
for those scenarios by increasing the prior value to 106.

VCs of Random Effects
The largest VC was the residual error variance with a proportion
of 53.44% of the total variance, followed by the replicate effect
with 37.56 % (Table 4). By comparison, the variance of the
incomplete block effect in P1 was small (1.8%). After adding
the column post-blocking factor to the first phase and still
using a resolvable IBD in P2 [model (5)], the residual error
variance could be reduced from 53.5 to 52.8%. The proportion
of variation explained by the rows was below 1%, whereas the
proportion of variation explained by columns was 2.8%. The
residual error variance was further reduced by accounting for the
block factor “worker-day” in P1 to 50.8%, where simultaneously
the proportion of variation explained by row and column
effects was reduced to below 1% [model (6) a–c]. Subsequently,
scenarios were considered, where the “worker-day” was the only
block factor in P1 and the resolvable IBD was retained in P2
[model (7) a–c]. By doing this, the proportion of variation
explained by the replicate effects was retained, the proportion
of variation explained by the “worker-day” effect in P1, and the
proportion of variation explained by the incomplete block effect
in P2, were maximized. However, the proportion of variation
captured by the residual error was increased again by 1%
compared to model (6) a–c.

The Precision of the Two-Phase Design
in 2013/14
In post hoc analysis of the previous experiment, the greatest
MVD(F) and MVD(R) were observed generally in all conducted
dummy analyses for model (4) (Table 5). By adding a column
factor in the first phase [model (5)], a reduction of MVD(F)

was achieved by more than 50%, whereas the reduction in
MVD(R) was rather small. By considering the “worker-day” factor
[model (6) a–c] in addition to the column factor, the reduction
in MVD was about 0.04. When only the “worker-day” factor in
the first phase [models (7), a–c] was considered, the reduction in
MVD(F) was below 3.0, whereas the MVD(R) was slightly higher
than the MVD(R) obtained by models (6), a–c (Table 5).

The Precision of Alternative Approaches
Two-Phase Designs Containing the Same Block
Structure in Both Phases
By using the same pre-defined design in both phases, the
smallest MVD(F) and MVD(R) were obtained for Scenario I
(experimental layout was transmitted from P1 to P2) (Table 6).
The MVD(R) were quite similar, especially between Scenario II
to IV, whereas values of MVD(F) showed a wider range (2.4 to
3.3). Comparing the alternative approaches with the former two-
phase experimental layout, the MVD(F) of designs implemented
in each scenario was greater than the smallest MVD(F) obtained
by model (7) a–c, except for Scenario I (Tables 5, 6). Generally, a
reduction in MVD(R) of over 0.5 was realized by every alternative
two-phase design compared to the previous one (Tables 5, 6).

Relevant differences in MVD between options generating the
design in phase-specific order (1) or across phases (2) were not
observed, except for Scenario I.

Two-Phase Designs Containing Different Block
Structures in Both Phases
Alternative two-phase designs considering in each phase a
different block structure achieved a reduction especially in
MVD(R) from about 2.09 to 1.99 in comparison to alternative
approaches using the same block structure in both phases,
where the minimum MVD(R) was about 2.09. (Tables 6, 7). The
reduction in MVD(F) was only from 2.41 to 2.35 when in the
first phase the only block effect was the “worker-day” (Scenario
XIII a–c). Comparing the options to generate two-phase designs
in phase-specific order (1) or across the phases (2) considering
different block structures in each phase, the smallest MVD were
always found for Option 2 and with the approach using of a single
pseudo level for incomplete blocks of P1 and P2 (Table 7).

DISCUSSION

We investigated several options for generating two-phase designs
using a model-based design package. These options were
explored for the case of an experiment with P. zonale, but our key

TABLE 5 | Different models for evaluating MVD for two additional blocking factors
where MVD is obtained either by assuming blocks to be fixed or random.

Model††† MVD(F) MVD(R)

4 9.4238 2.6767

5 4.55164 2.6147

6, a 4.51763 2.5499

6, b 4.41603 2.5270

6, c 4.51641 2.5399

7, a 2.78311 2.5541

7, b 2.74511 2.5303

7, c 2.74876 2.5425

†Model (4): IBD in P1, IBD in P2; Model (5): IBD in P1 with the additional
post-blocking factor column, IBD in P2; Model (6) a–c: IBD with the additional
post-blocking factor column and “worker-day”, where a to c indicate the different
blocking strategies to account for the different numbers of position that can be met
by a worker and a day; Model (7) a–c: considering only the “worker-day” block in
P1 and an IBD in P2.

TABLE 6 | Two options for evaluating MVD across five scenarios where MVD is
obtained by assuming blocks either to be fixed or random in Model (4)† and
setting block variances to values of estimated VCs‡ to obtain the MVD(R).

Option Scenario MVD(F) MVD(R)

1 I 2.41303 2.08430

II 3.34630 2.11680

2 III 3.32754 2.11686

IV 3.33052 2.11687

V 3.37687 2.11794

† Model (4): IBD in P1, IBD in P2;
‡The VCs which were listed under the Model (4) in Table 5 were used as block
effects and residual error for random terms to obtain the MVD(R).
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TABLE 7 | Two options for evaluating MVD across five scenarios where MVD is
obtained by assuming blocks either to be fixed or random and setting block
variances to values of estimated VCs† to obtain the MVD(R).

Option Model‡‡‡ Scenario MVD(F) MVD(R)

1 5 VI 3.36418 2.06195

6, a VII - a 3.27783 2.00898

6, b VII - b 3.25169 1.99296

6, c VII - c 3.29339 2.00670

7, a VIII - a 2.38759 2.01776

7, b VIII - b 2.36051 1.99974

7, c VIII - c 2.36826 2.01205

2 5 IX 3.33725 2.06106

5 X 3.39264 2.06423

6, a XI - a 3.24335 2.0075

6, b XI - b 3.21642 1.99175

6, c XI - c 3.26363 2.00558

6, a XII - a 3.32675 2.01238

6, b XII - b 3.29614 1.9959

6, c XII - c 3.33943 2.00878

7, a XIII - a 2.37642 2.01637

7, b XIII - b 2.35226 1.99852

7, c XIII - c 2.36343 2.01112

7, a XIV - a 2.39635 2.01995

7, b XIV - b 2.36992 2.00176

7, c XIV - c 2.37746 2.01321

†Variance components are given in Table 5. Those VCs were used as block effects
and residual error for random terms to obtain the MVD(R), which were listed under
the respective models in Table 5.
‡Model (5): IBD in P1 with the additional post-blocking factor column, IBD in
P2; Model (6) a–c: IBD with the additional post-blocking factor column and
“worker-day”, where a to c indicate the different blocking strategies to account
for the different numbers of position that can be visited by a worker on a day;
Model (7) a–c: considering only the “worker-day” block in P1 and an IBD in P2.

findings are applicable to other crops and two-phase experiment
settings, especially with large treatment numbers in breeding. We
used the OPTEX package of SAS, but other packages can be used
as well.

Our results show that there is great potential for improving
the two-phase design in P. zonale considering additional blocking
factors such as “worker-day”, using computer generated designs
in both phases rather than conducting the randomization on-site,
including equal block sizes in the second phase and extending the
generation procedure across phases.

In detail, reductions in MVD were obtained by the use of
additional block factors accounting better for environmental
variation. For example, a reduction in MVD(F) from 9.42 to 4.41
or in MVD(R) from 2.67 to 2.52 was achieved by considering a
column factor and the “worker-day” in P1 (Table 5). The MVD
varied according to the chosen level of the “worker-day” factor to
define the number of plants a worker may visit per day. For the
b strategy, the smallest MVD was always obtained independently
of the options, indicating that this strategy best represented a day
of a worker (Tables 5–7).

Further differences in options were identified when different
block structures in both phases were considered. In particular, the
approach using a single pseudo level for incomplete blocks of P1

and P2, and different block structures in the two phases, realized
always the smallest MVD.

The MVD as the Evaluation Criterion
For the interpretation of the reduction in MVD when comparing
the alternative approaches with the two-phase design in 2013/14,
the idealized conditions need to be acknowledged. The reduction
in the number of incomplete blocks leads to an increased number
of direct genotype comparisons within incomplete blocks which
also reduces the MVD.

As expected, the MVD(R) was always smaller than the MVD(F)

as the estimation of MVD(R) is based not only on the within-
block genotype differences (i.e., intra-block information) to
obtain adjusted means like for the MVD(F), but also on the
information of block sums (i.e., the inter-block information).
This stresses the importance of considering the joint inter-
block–intra-block analysis (Mead et al., 2012), which can be
implemented by taking blocks as random, during the design
evaluation (Möhring et al., 2015). Note that, when instead of the
VC of the former experiment, very large values are used for the
variance of block effects, while leaving the value of residual error
variance unchanged during the dummy analysis, i.e., there is no
inter-block information, then values of MVD(R) and MVD(F)

coincide. Further, the MVD(R) varies depending on the values
of VCs for block effects considered in dummy analyses, but
the ranks of scenarios remained unchanged in the cases we
investigated (Supplementary Presentation 4).

The Need for Randomization
Randomization is conducted to avoid systematic effects and other
biases in single-phase experiments (Piepho et al., 2013). In two
phase experiments, these problems exist in both phases and
therefore randomization should be carried out in both phases.
In Scenario I, we omitted randomization in the second phase
and increased thereby the efficiency of analysis, because only
one incomplete block adjustment was needed to estimate the
genotypes effects across the two phases [compare Model (2) and
Model (4)]. That is why Scenario I showed the smallest MVD
compared to the other designs assuming in each phase the same
block structure. In conclusion, it is actually advantageous to
transmit the experimental layout from one phase to the other
whenever possible.

Best Options for Generating Two-Phase
Designs and Application to Other
Breeding Trials
Two-phase designs should be generated across phases (Option 2)
rather than in phase-wise order (Option 1) to guarantee the
smallest MVD, which was most frequently obtained for Option 2.
The only exception was Scenario I. A reason for the better
performance of Option 2 is that the block structure in both phases
is taken into account simultaneously when sets of genotypes are
allocated to them. Thus, treatment concurrences occur equally
often or only once across phases in an optimized two-phase
design (Supplementary Presentation 4), which is known to be
optimal in single phase experiment (John and Williams, 1995).
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Further, we demonstrated in the Scenarios XIII to XIV under
Option 2 that our proposed approaches for generating two-
phase designs across phases can be adjusted to any block size
in each phase if necessary, making our approaches relevant to a
broad range of applications. For the generation of a two-phase
design with eight replicates (Scenario III) a similar MVD(R) or
even a smaller MVD(F) was found than for the approach using
a phase specific dummy variable (Scenario IV). But Scenario
III was not further considered, as this approach restricts block
structures to be the same in both phases. However, Scenario III
represents an option for estimating of VCs for design effects in
each phase is of interest when the structure in both phases is the
same.

Examples for the application of our approaches in other
ornamental species are the evaluation of rooting in P1 and other
phenotypic traits in P2 in Osteospermum or the evaluation of
germination rate and flowering time in the first and second phase
in Dianthus ssp. (Selecta one). In the former example, in each
phase the same block structure was considered, whereas in the
latter example, in each phase a different block was assumed.

Consideration of Worker-Days as a Block
Factor
The greatest reduction in MVD was obtained when we accounted
for the worker-induced variation by blocks in post hoc analysis of
the previous experiment by models (6), a–c to (7), a–c (Table 5),
although the reduction of error variance was relatively small
(Table 4). This shows that workers are a source of variation and
reaffirms the recommendation that known sources of variation
should be captured by blocking and considered before the
experiment is conducted, as precision of genotype comparisons
will be increased (Mead et al., 2012).

Idealized Conditions in Practice
The notable reduction in MVD(F) and MVD(R) realized by the
alternative approaches justifies the implementation of idealized
conditions in the P. zonale breeding program, especially the
use of a pre-defined layout in the second phase. Under these
idealized conditions, the breeder needs to randomly select six
out of the total of harvested stem cuttings per pair of stock
plants and genotypes in P1, which shall be rooted in P2. The
procedure of packaging genotypes remains essentially the same
as in the previous experiment, where the harvested stem cuttings
of each genotype and replicate are packed in small bags such
that each bag contained the six randomly selected stem cuttings
from the EU1 in the first phase. However, the bags are now
ordered according to the planting positions in P2 and then
packed into cartons, where genotypes are grouped by replicate.
In P2, an efficient workflow is ensured and hence, plant quality is
maintained as workers plant genotypes onto trays according the
planting number.

CONCLUSION

With respect to the considered options, our results show that
two-phase designs should be generated across phases (Option 2)

rather than in phase-wise order (Option 1) to guarantee the
smallest MVD, which was obtained for Option 2 with different
block structures in both phases and the approach using a single
pseudo level for incomplete blocks in P1 and P2. Increase in
efficiency can be expected when the experimental layout is
transmitted from P1 to P2.

With our pragmatic approaches, we could improve the
present two-phase design in P. zonale breeding, which yields
a reduction in the MVD obtained by intra-block analysis
from 9.42 to about 2.35 or obtained by combined inter-
block–intra-block analysis from 2.67 to approximately 1.99 by
using computer generated designs in both phases rather than
conducting the randomization on-site, additional block factors
in P1, and extending the generation procedure across phases.
This significant reduction in MVD justifies the consideration
of idealized conditions in P. zonale breeding and indicates
that the on-site randomization approach is sub-optimal. The
proposed alternative approaches can be transferred to other
studies that involve two-phase experimental set-ups and they
can be implemented in any model-based design package with
facilities to freely formulate linear models for treatment and block
structures.
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