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MicroRNAs, a group of non-coding RNA molecules, play essential roles in a wide
range of cellular processes in different molecules, cells, and organisms. In plants,
microRNAs are a class of 20- to 24-nucleotides endogenous small RNAs that repress
gene expression. The microRNA guide strand (miRNA) and its complementary strand
(miRNA∗) both originate from the miRNA/miRNA∗ duplex. Generally, the guide strands
act as post-transcriptional regulators that suppress gene expression by cleaving their
target mRNA transcripts, whereas the complementary strands were thought to be
degraded as ‘passenger strands.’ However, the complementary strand has been
confirmed to possess significant biological functionality in recent reports. In this review,
we summarized the binding characteristics of the miRNA∗ strands with ARGONAUTE
proteins, their tissue-specific accumulations and their biological functions, illustrating the
essential roles of miRNA∗s in biological processes and therefore providing directions for
further exploration.
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INTRODUCTION

MicroRNAs are a group of non-coding RNAs that were first discovered as temporal regulators
of larval differentiation in the nematode Caenorhabditis elegans (Lee et al., 1993); microRNAs
play important roles in the control of diverse cellular pathways and participate in most biological
processes in both plants and animals (Bartel and Bartel, 2003; Stefani and Slack, 2008). In vivo,
the maturation of microRNAs requires a series of complex processes. First, endogenous genes are
transcribed by RNA polymerase II (Pol II) into long primary microRNAs (pri-miRNAs) ranging
from hundreds to thousands of nucleotides in length; pri-miRNAs are polyadenylated, single-
stranded RNA molecules that fold into hairpin-like structures (Cai et al., 2004; Lee et al., 2004).
The pri-miRNAs are then processed by the endonuclease RNase III. The species of RNase III
and the mechanisms of further microRNA processing differ significantly between animals and
plants (Du and Zamore, 2005). Unlike animals, plants lack Drosha homologs. Thus, after the
formation of pri-miRNAs, the RNase III enzyme DICER-LIKE 1 (DCL1) regulates both the first
step, which in animals involves cuts made by Drosha, and the second step, which in animals
is reprocessing by Dicer, with the aid of HYPONASTIC LEAVES 1 (HYL1) and Serrate (SE);
this process produces a miRNA/miRNA∗ duplex in the nucleus (Chen, 2009; Voinnet, 2009).
The mature microRNA duplex consists of the active miRNA strand, called the guide strand,
and the complementary miRNA∗ strand, called the passenger strand. Recently, the liberated
strands have also been defined as miRNA-3ps and miRNA-5ps, according to the 5′ and 3′
arms of the hairpin precursor, after renaming by the miRBase registry (Kozomara and Griffiths-
Jones, 2014; Yaish et al., 2015). The imperfect pairing of the miRNA/miRNA∗ duplex results in
variable stability at the 5′ ends of the two strands. Once liberated from the duplex, the guide
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strands with lower thermodynamic stability at the 5′ end and high
abundance are commonly loaded into specific ARGONAUTE
(AGO)-associated RNA-induced silencing complexes (RISCs)
and guide the RISCs to their targets. Originally, the passenger
strands were thought to be degraded, since the accumulation
of most passenger strands is much lower than that of the
guide strands, and thus miRNA∗s were presumed to be mere
by-products of the miRNA biogenesis pathway (Khvorova et al.,
2003; Schwarz et al., 2003). However, an increasing number
of reports have demonstrated that miRNA∗s may also act as
important regulatory factors in organisms, and a large number
of miRNA∗s have been confirmed to possess DCL1-dependency
as similar to the miRNAs in Arabidopsis and rice (Meng et al.,
2011).

THE COMBINATION PREFERENCES OF
SPECIFIC AGO PROTEINS

In plants, miRNAs are involved in RISCs and induce the
repression of gene expression in either a transcriptional or a
post-transcriptional manner. One difference between animal and
plant miRNAs is that the latter bind to regulatory targets with
highly complementary recognition sites, a general characteristic
of miRNA-guided cleavage actions (Jones-Rhoades et al., 2006;
Voinnet, 2009). Because of relaxed selection pressure, miRNA∗s
are generally less conserved than miRNAs and more often
polymorphic in both animals and plants (Guo and Lu, 2010;
Smith et al., 2015). In recent years, several reports have
also indicated that miRNA∗s take part in gene regulation via
incorporation into AGO-associated RISCs in both animals and
plants (Okamura et al., 2008; Ghildiyal et al., 2010; Zhou et al.,
2010; Zhang et al., 2011).

The AGO family in plants has undergone extensive
diversification, giving rise to plant-specific AGOs (Poulsen
et al., 2013), including 10 AGO proteins in Arabidopsis. Among
them, AGO1 has been demonstrated to be associated with
most miRNAs, forming RISCs to cleave the corresponding
targets (Qi et al., 2005, 2006; Zhang et al., 2011). Furthermore,
AGO1 has a preference for sequences with a uridine nucleotide
at the 5′ terminus (Qi et al., 2006). Some of the other AGO
proteins also have slicer activity. Takeda et al. (2008) analyzed
the roles of AGO2 and AGO5 in Arabidopsis thaliana. AGO2-
and AGO5-associated small RNAs were initially found to have
obvious preferences for the nucleotides adenine and cytosine at
their respective 5′ ends by 5′ labeling of the immunoprecipitated
small RNAs. The two most abundantly cloned small RNAs were
miR163-LL and miR390 in the AGO2 library and miR163-UL
and miR390∗ in the AGO5 library; these molecules could
form the small RNA duplexes miR163-LL/miR163-UL and
miR390/miR390∗. (Note that the small RNAs derived from
the lower left and the upper left of mature miR163 in pre-
miR163 were named miR163-LL and miR163-UL, respectively.)
Furthermore, if the 5′ nucleotides of miR163-LL and miR163-
UL are exchanged, the strand of the miR163-LL/miR163-UL
duplex that is preferentially incorporated into either AGO2
or AGO5 is also exchanged. This result indicates that the 5′

nucleotide plays an important role in guide strand selection
in both AGO2 and AGO5 to form specific AGO-small RNA
complexes in Arabidopsis. This article also provides evidence
that the ‘passenger strand,’ which was previously thought to
have no function, forms a RISC complex by combining with
an AGO protein, functioning as an additional guide strand, as
shown by miR390∗ in AGO5 (Takeda et al., 2008). The other
typical species of AGO2-bound small RNA is miR393b∗, which
possesses an adenine at the 5′ end and mediates disease resistance
by targeting a Golgi-localized SNARE gene, MEMB12 (Zhang
et al., 2011; Zhang Z. et al., 2016). Overall, Arabidopsis thaliana
AGO1 (AtAGO1) prefers sequences with a uridine nucleotide
at the 5′ end, such as miR170a∗, miR171a∗ and miR173∗;
AtAGO2 favors those with a 5′ adenine, such as miR393b∗ and
miR837-5p∗; AtAGO5 has a bias toward miRNA∗s with a 5′
cytosine, such as miR158a∗ and miR390a∗; and AtAGO4 accepts
variable 5′-terminal nucleotides, especially adenine, uridine or
guanine (Figure 1; Mi et al., 2008; Takeda et al., 2008; Meng
et al., 2011; Wang et al., 2011; Zhang et al., 2011, 2015; Manavella
et al., 2012, 2013). However, the 5′-terminal nucleotide is not
the only determinant of miRNA∗ combination with AGO. For
example, the abundant miRNA∗s of miR396a and miR396b
in Arabidopsis are designated miR396a-3p and miR396b-3p,
respectively. Both of these molecules accumulated on AGO2
with a 5′-terminal guanine instead of a 5′-terminal adenine. In
addition, miR396a-3p was also found to accumulate on AGO1
and AGO4 (Jeong et al., 2013).

CHARACTERISTICS OF miRNA∗

ACCUMULATION

In the past, it was generally believed that the accumulation
of miRNA∗s in organisms was much lower than that of
miRNAs. Nevertheless, several studies have demonstrated that
many miRNA∗s have abundances similar to or higher than
their corresponding miRNAs in specific biological processes, in
specific tissues and at specific times. For instance, miR156a∗,
miR164b∗, and miR535∗ of Betula luminifera; miR82∗ of Morus
notabilis in leaf tissue; miR166∗, miR159∗, and miR171∗ of Orchis
italica; miR171c∗, miR369a∗, and miR2612a∗/b∗ of Medicago
truncatula; and miR169h∗, miR408∗, and miR529a∗ of rice were
all more abundant than their corresponding miRNAs (Devers
et al., 2011; Peng et al., 2011, 2013; Aceto et al., 2014; Jia et al.,
2014; Yan et al., 2014; Zhang J. et al., 2016). However, these
miRNA∗s did not necessarily maintain this trend at all times.
For example, rice miR1425∗ accumulation was lower than that
of miR1425 at the later grain filling stage, indicating that it
played an important physiological role in rice grain filling (Peng
et al., 2013). Some miRNA∗s also show similar abundance to
their partners, such as Morus notabilis miR166∗, miR76a-2∗,
and miR82∗ in male flowers; miR172∗ and miR399c∗/j∗/k∗ of
Medicago truncatula; and miR162c∗, miR162b∗, miR157a∗ and
others ofBrassica oleracea (Devers et al., 2011; Lukasik et al., 2013;
Jia et al., 2014).

The tissue specificity of miRNA∗s is reflected in their
different patterns of abundance. Some preferentially accumulate
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FIGURE 1 | The biological process of the miRNA∗ in plants.

in specific tissues. In rice, miR169g∗, miR169p∗, and miR396c∗
were dominantly distributed in seedlings; miR396a∗, miR396b∗,
and miR2121a∗ were accumulated in the roots; miR5159∗ and
miR1423b∗ were highly accumulated in shoots; miR1428f∗ was
highly expressed in the inflorescences; and miR166e∗, miR1433∗,
and miR5533∗ were expressed in the panicles, indicating their
potential activities in rice development (Shao et al., 2013;
Hu et al., 2014). Similarly, in Arabidopsis, miR396a∗ was
nearly undetectable in roots but was detected in flowers, and
miR172b∗ was detected in leaves; meanwhile, miR2111a∗ and
miR2111b∗ accumulated in seedlings (Meng et al., 2012; Jeong
et al., 2013). Manavella et al. (2013) have confirmed miR171a∗
as important for normal development in Arabidopsis; this
miRNA∗ triggers silencing of SU(VAR)3-9 HOMOLOG8 in
specific tissues such as the shoot apical meristem, the tops of
anther filaments, the bases of young leaves, and the stomata.
Interestingly, in Medicago truncatula, miR169d∗/l∗/m∗/e.2∗
target MtBcp1, which is localized in the plasma membrane and
shapes the plasma membrane to the perihyphal membrane;
these species were more abundant in mycorrhizal roots than
in non-mycorrhizal roots, indicating that they played a role
in mycorrhizal symbiosis by causing the roots to become
more conducive to the absorption of nutrition (Pumplin
and Harrison, 2009; Devers et al., 2011). Furthermore, the
formation of some miRNA∗s is related to the growth phases
of plants, such as miR172∗ and miR390∗ in cotton. These
miRNA∗s were up-regulated in seedlings but down-regulated
in other growth stages, while cotton miR171∗, miR2949∗
and others were regulated in the opposite manner (Xie
and Zhang, 2015). Therefore, miRNA∗s can be specifically
expressed in different tissues to maintain the steady state of the
organism.

RESPONSES TO STRESS

With further research into miRNA∗s, more of them have
been confirmed to respond to many stresses. As an example,
miR399b-5p in barley, which was defined as the passenger
strand, showed a much higher increase in expression under
P deficiency than that of the guide strand (Hackenberg
et al., 2013). An inverse result was found for miR169g∗
and miR172b∗ in tomato leaves; they were down-regulated
under Pi deficient conditions compared with Pi sufficiency
(Gu et al., 2010). Recent studies have indicated that nitrate
significantly affects the expression of several miRNA∗s, such
as miR169i∗/j∗/k∗ and miR528a∗/b∗ in maize roots (Trevisan
et al., 2012). MiR169∗ possesses a large number of targets
in sugarcane. Specifically, Elongation Factor 1-alpha (EF 1-
α), which was encoded by the majority of miR169∗ targets,
has been identified in response to abiotic stress such as water
depletion. Thus, many miRNA∗s participate in regulating more
than one stress response. In addition, miRNA∗s also respond
to other stresses, such as gamma irradiation and high salt
(Table 1).

The roles of miRNA∗s in the regulation of biological stresses
(Figure 1) have mainly been studied in Arabidopsis and
rice to date. Arabidopsis miR825∗, a 22-nt small RNA that
can potentially initiate the production of secondary siRNAs
(Zhai et al., 2011; Li et al., 2012), targets toll-interleukin-like
receptor (TIR)-nucleotide binding site (NBS) and leucine-rich
repeat (LRR)-type resistance (R) genes to enhance resistance
to Pseudomonas syringae pv. tomato (Pst) DC3000 infection
in a manner strictly dependent on Bacillus cereus AR156
pretreatment (Niu et al., 2016). In Rice stripe virus (RSV)-infected
rice plants, many miRNA∗s were also found to accumulate at
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higher levels than in normal plants; these miRNA∗s include
the miR160∗, miR166∗, and miR396∗ families (Seo et al.,
2013).

CO-REGULATION

miRNA∗s are more divergent than miRNAs, but there is
no doubt about their importance to biological functions
(Smith et al., 2015; Jain and Das, 2016). miRNA∗s cannot
only function independently in biological processes, moreover,
some miRNA∗s and their corresponding miRNAs act together
to regulate intracellular activity (Hsieh et al., 2009; Zhang
et al., 2011; Hu et al., 2014; Niu et al., 2016; Liu and
Sun, 2017). Zhang et al. (2011) explored the function of
miR393/miR393∗ in Arabidopsis, showing that miR393 is loaded
into AGO1 and mediates pathogen-associated molecular pattern
(PAMP)-triggered immunity (PTI) by negatively regulating auxin
signaling pathways, whereas miR393∗ is loaded into AGO2
and mainly regulates plant effector-triggered immunity (ETI)
responses by suppressing MEMB12 and promoting the exocytosis
of antimicrobial PR proteins; thus, both strands contribute to
antibacterial responses in a synergistic manner (Navarro et al.,
2006). Analogously, miR825 and miR825∗ were significantly
down-regulated in Pst DC3000-infected Arabidopsis plants after
Bacillus cereus AR156 pretreatment, and both of them were

confirmed suppressing genes involved in bacterial pathogen
defense (Niu et al., 2016). In addition, other experimental
results have shown that miRNA and the corresponding
miRNA∗ cannot only regulate a common biological pathway
but also cooperate to cleave a single target gene. Luo et al.
(2012) found that both miR1511 and miR1511∗ in soybean
cleaved the target gene GmRPL4a, which belongs to the 60S
ribosomal protein L4 family and shows a greater than 80%
similarity to the RPL4A and RPL4D proteins in Arabidopsis.
Therefore, they suggested that miR1511/1511∗ may function
in regulating the development of soybean leaves (Luo et al.,
2012).

Furthermore, because of the high complementarity between
miRNA and miRNA∗ sequences, certain miRNA∗s could
potentially act as anti-miRNAs to inhibit the binding
of their homologous miRNAs to the target transcripts,
subsequently reducing the activities of those miRNAs (Ma
et al., 2015). Meanwhile, the accumulation of the miRNA∗
might regulate the mature miRNA or the precursor itself
(German et al., 2008; Li et al., 2010; Meng et al., 2010).
In addition, base mutations of one strand in the duplex
may result in binding to a different AGO protein (Zhang
and Zhang, 2012; Zhang et al., 2015). However, little
research exists on the self-regulation of miRNA∗, and
thus, this aspect needs to be further explored to deepen our
understanding.

TABLE 1 | Biological function of miRNA∗s in plants.

Species miRNA∗s in abiotic stress//biotic stress//
development

Cited Reference

Arabidopsis miR169∗, miR172b∗, miR778∗,
miR2111∗, miR399∗, miR396b∗//
miR393∗, miR825∗//
miR171a∗

(Pant et al., 2008; Hsieh et al., 2009;
Barciszewska-Pacak et al., 2015; Kim
et al., 2016; Du et al., 2017)//
(Zhang et al., 2011; Niu et al., 2016)//
(Manavella et al., 2013)

Rice miR1320∗, miR1425∗, miR160a∗//
miR160a∗-f∗, miR166a∗-e∗/g∗-l∗/n∗,
miR167a∗/c∗-e∗/h∗/i∗, miR171c∗-f∗/i∗,
miR396a∗-c∗/e∗/f∗, miR1318∗, miR1425∗,
miR159a∗, miR168∗, miR172d∗, miR390∗,
miR444b.2∗, miR528∗//

(Hu et al., 2014)//(Du et al., 2011)//

Rapeseed miR398a∗, miR399a∗, miR399c∗,
miR399d∗, miR399f∗, miR778∗,
miR2111a∗, miR2111b∗//

(Pant et al., 2009)//

Barley miR399b∗, miR399c∗, miR528b∗// (Hackenberg et al., 2013;
Liu and Sun, 2017)//

Cotton //miR172∗, miR390∗, miR171∗, miR2949∗,
miR3954∗, miR164∗

//(Xie and Zhang, 2015)

Birch //miR396c∗// //(Zhang J. et al., 2016)//

Tomato miR169g∗, miR172b∗// (Gu et al., 2010)//

Maize miR533a∗, miR169i∗/j∗/k∗, miR528a∗/b∗// (Trevisan et al., 2012; Casati, 2013)//

Sugarcane miR169∗, miR396∗, miR399∗// (Thiebaut et al., 2014)//

Chinese cabbage miR1885b.3∗, miR1885b.2∗// (Yu et al., 2012)//

Switchgrass miR169∗// (Hivrale et al., 2016)//

Populus miR396e∗// (Chen et al., 2015; Ren et al., 2015)//

Barrel medic //miR169d∗/l∗/m∗/e.2∗ //(Devers et al., 2011)

Soybean //miR1511∗ //(Luo et al., 2012)
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CONCLUSION

miRNA∗, the passenger strand of the miRNA/miRNA∗ duplex,
was generally thought to be degraded after the formation
of mature miRNAs. However, all studies of miRNA∗ have
shown that the abundance of miRNA∗s and their biological
functionality are not an occasional event but are universal
in plant species. Based on the discoveries to date regarding
the characteristics of miRNA∗ accumulation in specific tissues,
immune responses to biotic and abiotic stresses, regulation of
growth and development and co-regulation with mature miRNA,
the miRNA∗ mediating mechanism represents a complex system
of gene expression regulation. Although the binding of both
miRNAs and miRNA∗s to AGO proteins has a 5′-terminal
nucleotide preference, a few miRNAs and miRNA∗s still do not
conform to this general rule. In addition to the 5′-terminal
nucleotides, many other factors may also affect RNA binding
to different AGO proteins, such as secondary structure and
nucleotide sequence length. Furthermore, several miRNA∗s,
such as ath-miR393b∗, osa-miR810a∗, and osa-miR1433∗, are

expressed in various tissues and organs but not just in
special tissue, indicating their widespread activities in plants
(Shao et al., 2013). While some areas remain to be explored,
the exploration of miRNA∗ characterization and function to
date has further enriched our knowledge of the complex
regulatory networks of microRNA systems and provided
important clues for research into organism gene expression and
regulation.
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