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Depletion of Arabidopsis
ACYL-COA-BINDING PROTEIN3
Affects Fatty Acid Composition
in the Phloem
Tai-Hua Hu, Shiu-Cheung Lung, Zi-Wei Ye and Mee-Len Chye*

School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong

Oxylipins are crucial components in plant wound responses that are mobilised
via the plant vasculature. Previous studies have shown that the overexpression
of an Arabidopsis acyl-CoA-binding protein, AtACBP3, led to an accumulation of
oxylipin-containing galactolipids, and AtACBP3pro::BETA-GLUCURONIDASE (GUS)
was expressed in the phloem of transgenic Arabidopsis. To investigate the role of
AtACBP3 in the phloem, reverse transcription-polymerase chain reaction and western
blot analysis of phloem exudates from the acbp3 mutant and wild type revealed
that the AtACBP3 protein, but not its mRNA, was detected in the phloem sap.
Furthermore, micrografting demonstrated that AtACBP3 expressed from the 35S
promoter was translocated from shoot to root. Subsequently, AtACBP3 was localised
to the companion cells, sieve elements and the apoplastic space of phloem tissue by
immunogold electron microscopy using anti-AtACBP3 antibodies. AtACBP3pro::GUS
was induced locally in Arabidopsis leaves upon wounding, and the expression of wound-
responsive jasmonic acid marker genes (JASMONATE ZIM-DOMAIN10, VEGETATIVE
STORAGE PROTEIN2, and LIPOXYGENASE2) increased more significantly in both
locally wounded and systemic leaves of the wild type in comparison to acbp3
and AtACBP3-RNAi. Oxylipin-related fatty acid (FA) (C18:2-FA, C18:3-FA and methyl
jasmonate) content was observed to be lower in acbp3 and AtACBP3-RNAi than wild-
type phloem exudates using gas chromatography-mass spectrometry. Experiments
using recombinant AtACBP3 in isothermal titration calorimetry analysis showed that
medium- and long-chain acyl-CoA esters bind (His)6-AtACBP3 with KD values in the
micromolar range. Taken together, these results suggest that AtACBP3 is likely to be a
phloem-mobile protein that affects the FA pool and jasmonate content in the phloem,
possibly by its binding to acyl-CoA esters.

Keywords: acyl-CoA esters, fatty acids, linolenic acid, jasmonate, oxylipins, wounding

INTRODUCTION

To enhance survival, land plants have developed a complex mechanism to cope with wounding.
Early evidence showed that mechanical wounding induces defence-related proteinase inhibitors
and their transcripts from potato (Solanum tuberosum) and tomato (S. lycopersicum) (Graham
et al., 1986; Farmer and Ryan, 1992) and the vasculature plays an important role in signal
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transduction for plant defence (for a review see Shah, 2009).
The vasculature consists of the phloem and the xylem. Water
and mineral nutrients are channelled to the source tissues of
plants through the xylem (for a review see De Boer and Volkov,
2003), while the phloem, consisting of the parenchyma cells, sieve
elements (SE) and companion cells (CC) (for a review see Schulz,
1998), delivers sucrose (Riesmeier et al., 1994), phytohormones
(e.g., abscisic acid, auxins, cytokinins, and gibberellins) (for a
review see Hoad, 1995), ribonucleic acids (Xoconostle-Cazares
et al., 1999), proteins (Hayashi et al., 2000; Yoo et al., 2002;
Carella et al., 2016) and lipids (Madey et al., 2002; Guelette
et al., 2012). Putative lipid-transfer proteins (LTPs), such as
Arabidopsis thaliana DEFECTIVE IN INDUCED RESISTANCE1
(AtDIR1), tomato DIR1 and a putative rice acyl-CoA-binding
protein (ACBP), have been identified in the phloem and likely
participate in lipid trafficking (Maldonado et al., 2002; Suzui et al.,
2006; Mitton et al., 2009). Along with a recent proteomic study
that revealed yet more LTPs with putative roles in lipid-mediated
signalling in the phloem (Barbaglia et al., 2016), the vasculature,
particularly the phloem, shows great potentials for plant scientists
to study the mechanisms of lipid transport in plant defence.

Fatty acids (FAs) are an important source of energy reserve in
all organisms and constitute the primary composition of lipids
(for a review see Ohlrogge and Browse, 1995). In plants, FAs are
also essential for the biosynthesis of jasmonic acid (JA) and its
derivatives (together referred to jasmonate hereafter) which play
many roles in defence (Creelman and Mullet, 1997; Vijayan et al.,
1998; Sanders et al., 2000; Franke et al., 2005). Arabidopsides
are galactolipid derivatives containing an oxygenated jasmonic
precursor, 12-oxo-phytodienoic acid (OPDA) (Stelmach et al.,
2001; Hisamatsu et al., 2003, 2005; Andersson et al., 2006;
Buseman et al., 2006; Kourtchenko et al., 2007), and many
of them have been directly associated with the plant wound
responses (Buseman et al., 2006; Kourtchenko et al., 2007). Upon
wounding, JA production has been reported to increase in locally
wounded and systemic leaves suggesting transport of a systemic
wound signal (Glauser et al., 2008, 2009; Mousavi et al., 2013).
Glauser et al. (2009) also demonstrated that direct vascular
connexions to wounded leaves are crucial to JA augmentation in
systemic tissues.

In plants, FAs are activated by acyl-CoA synthetase and
converted into acyl-CoA esters (Gerbling et al., 1994). ACBPs
have been suggested to maintain the acyl-CoA pools in plants
(Yurchenko et al., 2009). In Arabidopsis, six AtACBPs have been
postulated to play different roles in phospholipid metabolism and
membrane biogenesis as well as homeostasis (for reviews see Xiao
and Chye, 2009, 2011a; Du et al., 2016; Ye and Chye, 2016).
In Arabidopsis rosettes, the promoter activities of AtACBP1,
AtACBP3, and AtACBP6 are detectable in the phloem besides
other tissues (Zheng et al., 2012; Xue et al., 2014; Ye et al., 2016a).
AtACBP6 is involved in systemic acquired resistance (SAR) (Xia
et al., 2012) and it accumulates in the phloem sap collected from
SAR-induced leaves (Carella et al., 2016). Only AtACBP1 and
AtACBP6 are known to be induced upon abiotic stress treatments
(Chen et al., 2008; Xiao et al., 2008; Du et al., 2010, 2013;
Liao et al., 2014). AtACBP1 and AtACBP6 also play overlapping
roles with other AtACBPs in plant reproduction (Hsiao et al.,

2015; Lung et al., 2017). Recently, AtACBP6 was found to be
wound-inducible and to affect jasmonate composition in the
phloem (Ye et al., 2016a). So far, only the overexpression of
AtACBP3 conferred protection against Pseudomonas syringae
DC3000 in transgenic Arabidopsis besides inducing premature
leaf senescence (Xiao et al., 2010; Xiao and Chye, 2011b).
These phenotypes are likely caused by a shift in lipid
homeostasis in the AtACBP3-overexpressors (AtACBP3-OEs)
because they accumulated higher amounts of C18:3-CoA esters,
phosphatidylethanolamine, lysophospholipids and arabidopsides
with a significant decrease in phosphatidylcholine (PC) (Xiao
et al., 2010). As the phloem exudate of Arabidopsis has been
reported to contain various lipids, such as phospholipids and
free FAs (Madey et al., 2002; Guelette et al., 2012), and
AtACBP3pro::GUS had been detected in the phloem (Zheng et al.,
2012), an investigation was initiated to explore the biological
function of AtACBP3 in phloem lipid homeostasis and the
plant wound responses. Our results suggest that AtACBP3 is a
phloem-mobile and wound-inducible protein that plays a role in
balancing the composition of polyunsaturated C18-unsaturated
FAs and jasmonate in the phloem.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
The Arabidopsis acbp3 mutant (stock no. SALK_012290,
ecotype Col-0) contains a single T-DNA insertion on Southern
blot analysis (Chan, 2004), and it expressed non-translatable
truncated AtACBP3 mRNAs as verified by northern blot analysis
and western blot analysis (Xiao et al., 2010). Arabidopsis
seeds of the acbp3 mutant, AtACBP3-RNAi lines (ecotype
Col-0; Xiao et al., 2010), AtACBP3-OE and wild-type Col-0
were surface-sterilised in diluted bleach (Clorox) solution [final
concentration 1.25% (w/v) sodium hypochlorite] and 1% (v/v)
Triton X-100 for 30 min, followed by several washes in sterile
water. They were subsequently germinated on Murashige and
Skoog (MS) medium. They were stratified for 2 days at 4◦C
in darkness before germination at 21◦C. Plates were incubated in
a tissue culture room and seedlings were subsequently potted in
soil and grown at 23◦C/21◦C (day/night) cycles with a day length
regime of 16-h light and 8-h dark.

Collection of Phloem Exudate
Phloem exudates were collected 2–3 h after the onset of
light as previously described (Guelette et al., 2012). Fifteen
Arabidopsis rosette leaves with petioles from 5- to 6-week-old
plants were excised and the cuttings were immediately immersed
in ethylenediaminetetraacetic acid (EDTA) solution (20 mM
K2-EDTA, pH 7.0). Subsequently, the petioles were recut to
the same length and quickly immersed into 1.3 mL of the
EDTA solution. Leaves were then kept in an opaque and humid
container. After 1 h, petioles were rinsed in sterile water to
remove residual EDTA and returned to the sterile water. Exudates
were collected for 6–8 h under a dark humid condition. Phloem
RNA was prepared by adding 100 U of RNase inhibitor (Roche)
per 1 mL of deionized water before collection of phloem exudates.
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The phloem exudates were flash-frozen in liquid nitrogen,
lyophilised and stored at−80◦C until use.

Reverse Transcription Polymerase Chain
Reactions (RT-PCR) Using Phloem mRNA
Phloem mRNA was extracted using the RNeasy Mini Kit
(Qiagen) to detect AtACBP3 (At4g24230) expression in the
RT-PCR analysis. According to Guelette et al. (2012), the mRNA
of UBC9 (At4g27960) was selected as the positive internal
control, because it is known to be present in phloem exudates.
The negative internal controls were rbcL (AtCg00490) and rbcS
(At5g38410), corresponding to the transcripts of the Rubisco
large and small subunits, respectively. The two transcripts (rbcL
and rbcS) were chosen as negative controls in the RT-PCR
analysis of phloem exudates, as two independent studies (Deeken
et al., 2008; Guelette et al., 2012) have confirmed their absence in
phloem exudates. Total leaf mRNA similarly extracted from the
4-week-old wild type was used as a positive external control in
RT-PCR. Following DNase treatment (Promega), mRNA (200 ng)
was reverse-transcribed using the Omniscript RT Kit (Qiagen).
The cDNA from phloem exudates and leaf mRNA samples was
used as templates in PCR mixes with Taq DNA polymerase
(Promega) for amplification under 40 cycles of 94◦C, 30 s;
53◦C, 30 s, and 72◦C, 30 s using primers of UBC9, rbcL, rbc S,
and AtACBP3 (Supplementary Table S1). Equal volumes of PCR
products were loaded onto a 2% agarose gel for electrophoresis.

Micrografting of Arabidopsis
Micrografting experiments were carried out according to
Turnbull et al. (2002) with modifications. Seeds of Col-0,
AtACBP3-OEs and the acbp3 mutant were surface-sterilised and
sown onto MS plates. MS plates were orientated vertically at 4◦C
for 4 days for seed stratification, and subsequent germination
was carried out at 23◦C/21◦C (day/night) cycles with a regime
of 16-h light and 8-h dark. The micrografting experiment
was performed using 7-day-old seedlings. Upper hypocotyls of
seedlings containing shoot apical meristem and cotyledons were
excised from whole seedlings with a surgical blade and re-aligned
with lower hypocotyls, which were separated in the same manner.
All grafted plants were examined before planting on soil. Grafted
plants that had adventitious roots at the grafting junctions were
discarded. Grafted plants with no adventitious roots were grown
vertically for 7 days in Petri dishes in a humid environment.
Successful reunions were transferred onto soil and grown as
normal plants. Phloem exudates from 6-week-old scion (rosette
leaf) or rootstock tissues were harvested for protein extraction
after micrografting.

Western Blot Analysis
Phloem exudates collected from the 5-week-old wild type and
the acbp3 mutant were directly used for western blot analysis.
Sterile water was added into the lyophilised exudates. Protein
concentration was determined according to Bradford (1976)
and 30 µg of protein were loaded for sodium dodecyl sulphate
polyacrylamide gel electrophoresis (SDS-PAGE), followed by
protein transfer to polyvinylidene fluoride membranes (GE

Healthcare) using the Trans-Blot Cell (Bio-Rad) at 25 V for
20 min. The rabbit polyclonal anti-AtACBP3 antibodies were
raised against a synthetic peptide corresponding to amino acids
59 to 72 of AtACBP3 (DARVLESQRNFQVV) (Xiao et al.,
2010). The antibodies were preabsorbed overnight in acbp3
mutant protein extract to remove unspecific binding prior to use
(Supplementary Figure S1). The blots were incubated with the
preabsorbed antibodies. Detection of immuno-reactive signals
was performed using the Amersham ECL Prime Western Blotting
Detection Reagent according to the manufacturer’s instruction.

Immunoelectron Microscopy (IEM)
Five-week-old stems were fixed in a solution of 2%
paraformaldehyde and 1.25% glutaraldehyde in 50 mM
piperazine-N,N-bis (2-ethanesulfonic acid) (pH 7.2) for 1 h
under vacuum and then further incubated at 4◦C overnight with
gentle shaking. The tissues were dehydrated in a graded ethanol
series, infiltrated in stepwise increments of London Resin White
(London Resin Company) and polymerised at 65◦C for over 24 h
(His et al., 2001).

Immuno-gold labelling was carried out according to Ye et al.
(2016b) with modifications. Ultra-thin sections (80 nm) were
prepared and mounted on nickel grids. Grids were blocked
on the liquid surface of 30 µL blocking solution droplets
containing 1% bovine serum albumin (BSA) and 1% TTBS
(20 mM Tris, 500 mM NaCl, 0.1% Tween-20, pH7.5) for 1 h at
room temperature and subsequently incubated in anti-AtACBP3
antibodies diluted 1:50 (v/v) at 4◦C overnight. In the negative
controls, the primary antibodies were replaced with blocking
solution or preimmune serum diluted 1:50 (v/v). After three
15-min washes with blocking buffer, the grids were incubated
with a 1:100 dilution of anti-rabbit antibodies conjugated to
10 nm gold (Sigma–Aldrich) at room temperature for 1 h. Grids
were washed twice in TTBS-BSA, once in TTBS and sterile
water, and each rinse lasted 15 min. The grids were subsequently
stained with 2% uranyl acetate for 1 min at room temperature
and photographed under a Philips 100CM TEM immunoelectron
microscope at 80 kV.

Images in Figure 2 and other images collected from the same
experiment were analysed for gold labelling densities in different
cell types according to Lee et al. (2011) with modifications. All
raw images in this analysis are available in Supplementary IEM
Images. Total number of gold particles and total area from each
cell type [CC (n = 7), SE (n = 7) and extracellular space (ES)
(n = 7)] were counted and measured in Adobe Photoshop CC
2015. The density of gold particles from each cell type is equal to
the total number of gold particles divided by its total area (µm2).

Wound Treatment of Plants
Two days prior to any treatment, plants were transferred to 24-h
constant light condition to eliminate the induction of AtACBP3
by darkness (Xiao et al., 2010; Zheng et al., 2012). Wound
treatment was carried out according to Farmer et al. (2013) and
Mousavi et al. (2013). Five-week-old plants were wounded by
gently crushing leaf 8 of the plants with a pair of forceps (Farmer
et al., 2013). Tissues of locally wounded [leaf 8; Mousavi et al.
(2013)] and systemic [leaf 13; Mousavi et al. (2013)] leaves were
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collected 1 h post wounding (hpw), 2 and 4 hpw for relative gene
expression analysis. For quantitative GUS assays, all leaves were
wounded and total proteins were extracted. For quantitative real-
time polymerase chain reactions (qRT-PCR), unwounded plants
(Col-0, acbp3, and AtACBP3-RNAi) were used as baseline control
to monitor the gene expression levels, while gene expression in
wounded acbp3 and AtACBP3-RNAi plants were compared with
those in wounded Col-0 treated under the same conditions.

Quantitative and Histochemical GUS
Assays
Quantification of GUS activity was carried out by measuring the
cleavage of the substrate (Jefferson et al., 1987). The substrate,
4-methylumbelliferyl-β-D-glucuronide (MUG) was purchased
from Sigma–Aldrich. Tissues were collected into Eppendorf tubes
and frozen in liquid nitrogen, followed by homogenisation.
Subsequently, 1 mL GUS Extraction Buffer (150 mM sodium
phosphate pH 7.0, 10 mM EDTA, 10 mM β-mercaptoethanol,
0.1% Triton X-100, 0.1% sarcosyl) was added, and samples
were gently agitated. The homogenised mixture was centrifuged
at 13000 rpm for 15 min. Two hundred µL of supernatant
from each sample was used for MUG assays and protein
quantification. A 10-µL sample extract and 130-µL Assay Buffer
(GUS Extraction Buffer containing 1.2 mM MUG) were mixed
and the reaction incubated in the dark at 37◦C for 20 min.
Subsequently, 10 µL of the reaction was added to 190 µL
Stop Buffer (200 mM sodium carbonate) in a 96-well plate.
Fluorescence excited at 355 nm was quantified on a plate reader
(BMG LABTECH) at 460 nm. A standard curve corresponding
to 0, 0.25, 0.5, 2.5, 5, 25, and 50 µM 4-methylumbelliferone
(MU) was included for calculation of liberated MU. The
fluorescence assay measurements were normalised for protein
concentration and recorded as nmoles MU min−1 mg−1

protein.
For histochemical GUS assay (Jefferson et al., 1987),

Arabidopsis leaves was submerged in X-Gluc solution [1 mg
mL−1 X-Gluc, 100 mM sodium phosphate, pH 7.5, 2 mM
K3Fe(CN)6, 2 mM K4Fe(CN)6, 0.1% Triton X-100] and
infiltrated by vacuuming for 1 h, followed by a 4-h incubation at
37◦C in darkness. Chlorophyll removal was performed by using
70% ethanol. Samples were then placed above a light-box for
photography.

Two sets of controls were used in both GUS assays; a vector
line (pBI101) was used as a negative control, and unwounded
AtACBP3pro::GUS transgenic plants served as a baseline control
in GUS expression.

Quantitative Real-Time Polymerase
Chain Reactions (qRT-PCR)
Total leaf mRNA was extracted from 5-week-old Arabidopsis
using the RNeasy Mini Kit (Qiagen) followed by DNase
(Promega) treatment. First-strand cDNA was synthesised using
the Superscript First-Strand Synthesis System (Invitrogen).
Subsequently, qRT-PCR were carried out using the FastStart
Universal SYBR Green Master Mix (Roche) on a StepOne
Plus Real-Time PCR System (Applied Biosystems). Primers

FIGURE 1 | Reverse transcription PCR and western blot analysis of phloem
exudates from Arabidopsis. (A) Total RNA was collected from phloem
exudates and rosette leaves of Col-0 to detect AtACBP3 and controls (UBC9,
rbcL, and rbcS) transcripts. Original images of the analysis are available in
Supplementary Figure S2. (B) Western blot analysis using anti-AtACBP3
antibodies on 30 µg total phloem exudate proteins from the acbp3 mutant,
wild-type Col-0 and acbp3 scion grafted on AtACBP3-OE rootstock
(acbp3/AtACBP3-OE) (left). A Coomassie Blue-stained gel loaded with the
same amount of protein in western blot analysis is shown (right). (C) Western
blot analysis using anti-AtACBP3 antibodies on 30 µg total root proteins
collected from AtACBP3-OE/acbp3, Col-0/acbp3, acbp3 (left). A Coomassie
Blue-stained gel loaded with the same amount of protein in western blot
analysis is shown below (right). Arrowheads indicate the 39-kDa
cross-reacting AtACBP3 band. These experiments were repeated twice with
consistent results.

of JASMONATE ZIM-DOMAIN10 (JAZ10), LIPOXYGENASE2
(LOX2), VEGETATIVE STORAGE PROTEIN2 (VSP2), AtACBP3
and ACTIN2 are shown in Supplementary Table S1. Relative gene
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FIGURE 2 | Immunogold localisation of AtACBP3 using anti-AtACBP3 antibodies in transmission electron microscopy of cross sections of apical stems from
5-week-old Arabidopsis. (A) Companion cell. (B) Sieve element. (C,D) Extracellular space. (E) Densities of gold particles were quantified per µm2. Arrowheads
indicate gold particles. Multiple floral stems from different individual plants sectioned and analysed in this experiment showed consistent results. Further images are
available in Supplementary IEM Images. CC, companion cell; ES, extracellular space; SE, sieve element. Scale bar = 0.5 µm.

expression of JAZ10 (1 hpw), LOX2 (2 hpw), VSP2 (4 hpw),
and AtACBP3 (1 hpw) was normalised to the expression of
ACTIN2. The duration of wound treatment for analysis of each
marker gene (JAZ10, LOX2, and VSP2) was according to Glauser
et al. (2009) and Mousavi et al. (2013). Three independent
biological repeats were performed to analyse the relative mRNA
expression.

FA Analysis by Gas Chromatography-
Mass Spectrometry (GC-MS)
FA analysis was conducted following Carvalho and Malcata
(2005) with modifications. Phloem exudates collected and pooled
from 150 leaves were dissolved in a transmethylation solution
containing 1 mL of toluene, 2 mL of 1% (v/v) sulphuric acid
in methanol together with 5 µL of an internal standard [C19:0
(1 mg mL−1 hexane)]. The transmethylation solution containing
phloem exudates was incubated for 12 h at 50◦C for the
transmethylation of FAs. After several washes with 5% (w/v) NaCl
and hexane, the hexane layer was washed with 4 mL 2% (w/v)
KHCO3 and then transferred into another test tube followed by
vigorous vortexing. Nitrogen gas was passed through each tube
to evaporate the hexane. Then 100 µL of hexane was re-added to
the test tube to concentrate the FA residues. One µL of the hexane
supernatant, containing the FAs, was analysed by Agilent 6890N
equipped with a 5973 Mass Selective Detector (MSD) and a
30 m× 0.250 mm DB-WAX column (0.25 µm in film thickness).
The samples were positioned and then automatically injected
into the column. For sample detection, the oven temperature

was increased from 100 to 230◦C with a rate of 4◦C min−1 and
postrun at 235◦C for 4 min. The GC/MSD On-line Data Analysis
was used for data processing after data acquisition; the FAME
library was used for compound identification. Quantification of
FA species was calculated by comparing the peak area of each FA
to the internal standard, followed by normalisation to ng/leaf.

Isothermal Titration Calorimetry
Assays (ITC)
(His)6-AtACBP3 expressed from plasmid pAT223 in Escherichia
coli BL21(DE3) pLysS cells was purified as previously described
(Leung et al., 2006). ITC assays were performed using a
MicroCal iTC200 system (GE Healthcare). Acyl-CoA esters
(C12:0-, C14:0-, C16:1-, C17:0-, C18:2-, and C18:3-CoA esters)
were purchased from Avanti Polar Lipids. The 600 µM acyl-CoA
ester in the titration syringe was 20-fold higher than the protein
concentration (30 µM) in the reaction chamber. Solutions
of acyl-CoA esters and (His)6-AtACBP3 were degassed under
vacuum. Assays were conducted at 25◦C, and injections were
initiated after equilibration to baseline stability. The acyl-CoA
ester (1.5 µL) was injected 20 times into the reaction chamber
and each injection lasted 3.6 s at an interval of 120 s between
injections. Immediate mixing was ensured by stirring. Raw data
was integrated, corrected for non-specific heat, and analysed
using the ORIGIN software (OriginLab). Dissociation constants
(KD) were calculated by non-linear regression fitting the
isotherm. Each binding assay was performed at least twice
independently.
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RESULTS

AtACBP3, But Not Its mRNA, Was
Detected in Wild-Type Col-0 Phloem
Exudates
Given that AtACBP3pro::GUS was localised in the phloem (Zheng
et al., 2012), phloem exudates were collected from leaf petioles
to verify whether AtACBP3 and/or its mRNA were present
in the phloem sap. In RT-PCR analysis, the positive control
(UBC9) was detected both in the phloem exudates and leaves,
indicating that mRNA extraction and RT-PCR analysis were
properly performed. Two negative controls (rbcL and rbcS)
were only detectable in leaves but not in phloem exudates
(Figure 1A), confirming the collection of phloem exudates
were free from cellular contaminations of other cell types.
Using an AtACBP3-specific primer pair (ML1202 and ML1203)
(Supplementary Table S1), the 174-bp AtACBP3 mRNA was not
detected in phloem exudate (Figure 1A), but western blot analysis
showed a strong 39-kDa AtACBP3 cross-reacting band in
wild-type phloem exudate (Figure 1B). Through micrografting,
a 39-kDa AtACBP3 cross-reacting band was also detected in
root protein extracts of acbp3 rootstock micrografted below
AtACBP3-OE scions while the same cross-reacting band was not
detectable in non-grafted acbp3 roots, indicating that AtACBP3
is mobile from shoot to root (Figure 1C). However, no such
band was detected in the phloem exudates collected from
acbp3 scions micrografted above the AtACBP3-OE rootstocks,
implying that AtACBP3 is not mobile from root to shoot
(Figure 1B).

AtACBP3 Was Immunolocalised to
Companion Cells, Sieve Elements and
the Extracellular Space of the Phloem
To further investigate the localisation of AtACBP3 in the
phloem, IEM was carried out after preabsorption of antibodies
(Supplementary Figure S1). Immunogold particles were localised
in the phloem (Figure 2), particularly in the cytosol of CC
(Figure 2A) and SE (Figure 2B). Immunogold particles were also
detected in ES (Figures 2C,D), but not in the control incubated
with blocking solution (Supplementary Figure S3). A quantitative
analysis of gold particle densities showed that the labelling was
localised more preferably to ES in comparison to CC and SE
(Figure 2E).

AtACBP3 Expression Was Induced by
Mechanical Wounding
To investigate the effect of wounding on the expression of
AtACBP3, AtACBP3pro::GUS plants were utilised in quantitative
and histochemical GUS assays. The results of GUS activity
using 4-week-old transgenic plants, 1–4 hpw, showed that
AtACBP3pro::GUS expression peaked at 3 hpw in comparison
to unwounded AtACBP3pro::GUS (Figure 3A). Histochemical
staining of AtACBP3pro::GUS also confirmed that AtACBP3
expression was induced by wounding with the highest expression

at 3 hpw, while the wounded vector line showed no expression
(Figure 3B).

The acbp3 Mutant Was Less Responsive
to Wound in Local and Distal Leaves
The role of AtACBP3 in the wound response was investigated by
comparing wild type, acbp3 and AtACBP3-RNAi leaves in qRT-
PCR assays examining JAZ10, LOX2 and VSP2 expression, as they
are deemed to be robust wound-responsive JA marker genes (Bell
et al., 1995; Liu et al., 2005; Yan et al., 2007). The expression of
JAZ10, LOX2, VSP2 was drastically elevated 1, 2, and 4 hpw in the
wild type (Figures 4A–C), while their expression was significantly
reduced in acbp3 and AtACBP3-RNAi (Figures 4A–C and
Supplementary Figure S4). Furthermore, the expression of
the marker genes was higher in wild-type than either acbp3
or AtACBP3-RNAi distal leaves, indicating that the wound
response was adversely affected in acbp3 and AtACBP3-RNAi
lines. Another line of evidence on the wound-inducibility
of AtACBP3 was reflected in the upregulation of its mRNA
(approximately five times higher at 1 hpw in locally wounded
leaves), in comparison to little expression in the distal leaves
(Figure 4D).

The differences in expression of the three marker genes
before and after wounding were also investigated in an acbp3
complemented line [acbp3-C1; generated using a 35S::AtACBP3
construct as verified by Xiao et al. (2010)]. However, acbp3-C1
did not show the same extent of induction of the three
marker genes in wounded leaves as in the wild type, and the
induction of JAZ10 and VSP2 was significantly upregulated only
in distal leaves (Supplementary Figure S5). When comparing
the innate expression level of JAZ10, LOX2, and VSP2 between
acbp3-C1 and wild type, it was noted that the expression
of JAZ10 in unwounded acbp3-C1 was 15 times that of
the wild type. However, the expression of LOX2 and VSP2
decreased when compared to the wild type (Supplementary
Figure S6).

Reduced Levels of Defence-Related FAs
Accumulate in acbp3 Mutant and
AtACBP3-RNAi Lines
GC-MS analysis of phloem exudates from the wild-type Col-0,
the acbp3 mutant as well as the AtACBP3-RNAi lines revealed
that C16:0- and C18:0-FAs were the major FAs in all genotypes
(Figure 5). Levels of defence-related C18:2-FA and C18:3-FA
decreased in acbp3 and AtACBP3-RNAi in comparison to the
wild type (Figure 5). Also, a decrease in methyl jasmonate
(MeJA) in both acbp3 and AtACBP3-RNAi and an accumulation
of saturated C12- and C14-FAs in acbp3 were observed in
comparison to the wild type (Figure 5).

Recombinant (His)6-AtACBP3 Binds
Defence-Related Acyl-CoA Esters
In Vitro
ITC assays were next performed to expand on the in vitro
binding profile of AtACBP3 with acyl-CoA esters. A range of
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FIGURE 3 | GUS activity assays of transgenic Arabidopsis AtACBP3pro::GUS plants following wounding. (A) Four-week-old AtACBP3pro::GUS transgenic plants
were wounded with a pair of forceps and harvested at 1, 2, 3, and 4 h post wounding (hpw) for quantitative GUS activity measurements. Vector
(pBI101.3)-transformed plants were analysed at 1 hpw and served as a negative control, while unwounded AtACBP3pro::GUS plants were used as a baseline control.

(Continued)
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FIGURE 3 | “∗∗” indicates statistically significant difference (P < 0.01, n = 3 by Student’s t-test) in comparison to unwounded samples collected at the same time
point. Error bars represent standard deviations. (B) A representation of histochemical staining of wounded 4-week-old leaves from AtACBP3pro::GUS and vector
(pBI101.3)-transformed (VC) Arabidopsis. These experiments were repeated twice with consistent results. Scale bars = 0.8 cm.

FIGURE 4 | Relative expression of AtACBP3 and marker genes in the Arabidopsis jasmonate pathway after wounding. Rosette leaves harvested from 5-week-old
Col-0 and acbp3 were leaf 8 (wounded locally) and leaf 13 (distally wounded at leaf 8). Numbering of rosette leaves was according to Farmer et al. (2013).
(A) Relative expression of JAZ10 1 h post wounding (hpw) following Mousavi et al. (2013). (B) Relative expression of LOX2 (2 hpw) following Glauser et al. (2009).
(C) Relative expression of VSP2 (4 hpw) following Mousavi et al. (2013). (D) Relative expression of AtACBP3 1 hpw. Error bars represent standard deviation in each
analysis. Square brackets indicate which two groups were compared using the Student’s t-test. ∗∗P < 0.01, n = 3; ∗P < 0.05, n = 3; NS, not significant, n = 3;
Local, wounded leaf 8; Distal, leaf 13 distal to wounded leaf 8. These experiments were repeated twice with consistent results.

medium- and long-chain acyl-CoA esters corresponding to the
FAs identified in the phloem exudates were selected for analysis.
The binding isotherms of recombinant (His)6-AtACBP3 titrated
with C12:0-, C14:0-, C18:2-, and C18:3-CoA esters at 25◦C
are displayed in Figures 6, 7. ITC assays were carried out at
two different pH values, pH 7.0 (Figures 6A,C, 7A,C) and pH
6.4 (Figures 6B,D, 7B,D), because AtACBP3 is expected to be
subjected to an acidic pH when targeted to the apoplast and the
phloem (Gao et al., 2004; Leung et al., 2006; Hijaz and Killiny,
2014). All four acyl-CoA esters were shown to bind (His)6-
AtACBP3 in vitro, with KD values in the micromolar range
(Figures 6, 7). The assays using C12:0- and C18:3-CoA esters
also indicated lower KD values at pH 6.4 in comparison to pH
7.0 (Table 1). However, (His)6-AtACBP3 did not bind MeJA
(Supplementary Figure S8), suggesting that AtACBP3 is not likely
to transport MeJA directly in the phloem.

DISCUSSION

AtACBP3 Is Likely an Apoplastic
Phloem-Mobile Protein
As mature SEs are enucleated, it is likely that the AtACBP3
protein which was detected in phloem exudates on western blot
analysis (Figure 1), is synthesised in the neighbouring CCs or
immature SEs and subsequently exported to mature SEs. Indeed,
IEM localised AtACBP3 to both cell types (Figure 2). Detection of
AtACBP3 in the apoplast is consistent with previous observation
that AtACBP3 is targeted extracellularly (Leung et al., 2006).
Together with the detection of AtACBP3 in wild-type phloem
exudate (Figure 1B) and the promoter activity of AtACBP3
in the root vasculature of transgenic Arabidopsis seedlings
(Supplementary Figure S9) and 32-day-old mature plants (Zheng
et al., 2012), the detection of AtACBP3 in the roots of grafted
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FIGURE 5 | Quantitative gas chromatography-mass spectrometry analysis of
fatty acids from phloem exudates of 5-week-old wild-type Col-0 Arabidopsis,
acbp3 and AtACBP3-RNAi lines. Error bars represent standard deviation
(n = 3) in each analysis. The Student’s t-test was used for statistical analyses.
“∗” indicates a statistically significant (P < 0.05) elevation or reduction in
comparison with the wild-type Col-0. “∗∗” indicates a very statistically
significant different (P < 0.01) elevation or reduction in comparison with the
wild-type Col-0. These experiments were repeated twice with consistent
results.

plants is not surprising and further suggests that AtACBP3 can
be transported from shoot to root (Figure 1C).

Proteins previously identified in the phloem include signalling
molecules in flowering time regulation and plant defence
(Corbesier et al., 2007; Mathieu et al., 2007; Champigny et al.,
2013; Carella et al., 2016) as well as a sucrose/H+ symporter,
AtSUC2 (Srivastava et al., 2008). Phloem LTPs have been
postulated to participate in systemic transport related to SAR
in the phloem (Champigny et al., 2013; Barbaglia et al., 2016).
AtDIR1 is an apoplastic phloem LTP that was reported to
function in long-distance transport related to SAR in the phloem
(Maldonado et al., 2002; Champigny et al., 2013). Its ability to
interact with lipids was confirmed by observation of its binding
to two lysophosphatidylcholines with KD values in the nanomolar
range (Lascombe et al., 2008).

The movement of proteins via plasmodesmata into SEs has
been demonstrated by Balachandran et al. (1997) and Ishiwatari
et al. (1998). More recently, PLASMODESMATA-LOCALISED
PROTEIN5 (PDLP5) was reported to mediate cell-to-cell
communication (Lee et al., 2011), and the overexpression of
PDLP5 affected the long-distance movement of AtDIR1 (Carella
et al., 2015). Although AtDIR1 localises to the apoplast, it may
access the phloem via the plasmodesmata, either after cleavage of
its signal peptide or from a cytosolic or ER pool, such that AtDIR1
protein accesses the phloem via plasmodesmata during SAR
(Champigny et al., 2011). Given the demonstrated association
of AtACBP3 with the ER/Golgi complex as well as its apoplastic
localisation (Xiao et al., 2010) and involvement in SAR (Xiao and
Chye, 2011b; Xia et al., 2012), it is possible that some AtACBP3
protein may be transported symplastically via the plasmodesmata
similar to AtDIR1. In fact, another AtACBP, AtACBP6 has been
shown to interact with plasmodesmata-localised protein, PDLP8
(Ye et al., 2017) and is localised to the plasmodesmata in the

phloem (Ye et al., 2016a). Taken together, these data suggest
that an intracellular pool of AtACBP3 may access SEs via the
plasmodesmata for long-distance transport in the phloem.

AtACBP3 May Participate in Jasmonate
Production after Wounding
In this study, AtACBP3 was demonstrated to be locally wound-
inducible at 2 hpw and peaked at 3 hpw as shown in Figure 3.
Depletion of AtACBP3, however, impaired the induction of
wound-responsive JA marker genes in both local and distal
leaves after wounding (Figure 4). However, a similar level
of induction in marker gene expression was not detected in
the complementary line (acbp3-C1) (Supplementary Figures S4,
S5). This observation in acbp3-C1 may be attributed to the
use of the 35S promoter driving AtACBP3 resulting in an
increased amount of endogenous salicylic acid (SA) (Xiao and
Chye, 2011b) which may have interfered with JA biosynthesis
(discussed in Caarls et al., 2015). Furthermore, C18:3-FA and
MeJA accumulation was lower in the phloem exudate of acbp3
and AtACBP3-RNAi excised leaves in comparison to the wild
type (Figure 5). The rapid accumulation of jasmonate in distal
leaves after wounding has been well characterised (Glauser et al.,
2008, 2009). But the mechanism(s) on how these wound signals
are mobilised systemically remains to be resolved. In tomato
and Arabidopsis, it has been suggested that jasmonate itself
is a systemic signal (Li et al., 2002; Thorpe et al., 2007; Sato
et al., 2011; Chauvin et al., 2013; Gasperini et al., 2015). On the
other hand, a competing theory suggests that JA-related leaf-to-
leaf wound signalling and the systemic biosynthesis of JA are
facilitated by electric signals known as wound-activated surface
potential changes (Mousavi et al., 2013).

To this end, there are two possibilities on the role of AtACBP3
in jasmonate biosynthesis in the phloem. In Arabidopsis, PC
homeostasis is crucial for plastidic galactolipid biosynthesis
(Warwick et al., 1986; Wang et al., 2014). Upon wounding, free
C18:3-FA is released from plastid membranes (Narváez-Vásquez
et al., 1999; Ishiguro et al., 2001) and its content increases in
leaves (Conconi et al., 1996), thereby providing the precursors
for JA biosynthesis (for a review see Koo and Howe, 2009).
AtACBP3-OEs have been reported to have markedly lower PC
but higher galactolipid, including arabidopside, content than
the wild type (Xiao et al., 2010), suggesting that AtACBP3
may participate in the transition of extraplastidic lipids from
PC to galactolipids. Depletion of AtACBP3 in the phloem in
Arabidopsis rosettes supports its involvement in the homeostasis
of extraplastidic lipid exchange (Xiao et al., 2010) in the phloem
and production of JA upon or after wounding (Figure 5).
Another possibility is that AtACBP3 regulates arabidopsides in
the phloem as they have been widely postulated to function in
wounding and JA production (Stelmach et al., 2001; Hisamatsu
et al., 2003, 2005; Andersson et al., 2006; Buseman et al., 2006;
Kourtchenko et al., 2007). Wounding and insect infestations
can trigger the accumulation of arabidopsides and other 9-
LOX–derived oxylipins in Arabidopsis (Buseman et al., 2006;
Nalam et al., 2012), and AtACBP3-OEs have been shown to
overaccumulate arabidopsides (Xiao et al., 2010).
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FIGURE 6 | Binding isotherms of recombinant (His)6-AtACBP3 titrated with C12:0- and C14:0-CoA esters at 25◦C in isothermal titration calorimetry. The panel
shows raw data of 30 µM recombinant (His)6-AtACBP3 titrated with 600 µM of C12:0-CoA ester, pH 7.0 (A); C12:0-CoA ester, pH 6.4 (B); C14:0-CoA ester, pH 7.0
(C) and C14:0-CoA ester, pH 6.4 (D). Each assay had three technical repeats and was repeated at least twice, each using independently prepared (His)6-AtACBP3.

A recent study also demonstrated that blockage of plastidic
galactolipid biosynthesis causes overproduction of arabidopsides
and leads to abnormal phloem cap lignification in Arabidopsis
(Lin et al., 2016). Although little is known about the exact
functions of these oxygenated galactolipids in relation to
the biosynthesis of free oxylipins at a cellular level, the
accumulation of MeJA in phloem exudates collected from excised
leaf petioles (Figure 5) and arabidopsides in AtACBP3-OEs

(Xiao et al., 2010) strengthened the role of arabidopsides in
wounding and jasmonate biosynthesis. Although it would be
interesting to investigate the jasmonate content in phloem
exudates collected from excised leaf petioles after wounding
the leaves, transcripts of rbcS and rbcL can be detected
in the phloem exudates collected after wounding (data not
shown), indicating the phloem exudates collected after wounding
contained cellular contamination from the wounded tissues,
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FIGURE 7 | Binding isotherms of recombinant (His)6-AtACBP3 titrated with C18:2- and C18:3-CoA esters at 25◦C in isothermal titration calorimetry. The panel
shows raw data of 30 µM recombinant (His)6-AtACBP3 titrated with 600 µM of C18:2-CoA ester, pH 7.0 (A); C18:2-CoA ester, pH 6.4 (B); C18:3-CoA ester, pH 7.0
(C) and C18:3-CoA ester, pH 6.4 (D). Each assay had three technical repeats and was repeated at least twice, each using independently prepared (His)6-AtACBP3.

thereby preventing the analysis of jasmonate content in phloem
exudates after wounding.

C12:0- and C14:0-FA accumulation in acbp3 phloem exudates,
but not in the AtACBP3-RNAi lines or the wild type (Figure 5),
may have arisen from complete loss of AtACBP3 function in
acbp3 but a partial loss in the AtACBP3-RNAi lines [as verified
in northern blot analysis by Xiao et al. (2010)]. In canola plants,
sublethal UV irradiation caused an 11-fold increase in C12:0-
FA and moderate accumulation of C14:0-FA in the phloem

(Madey et al., 2002). Herein, the accumulation of C12:0- and
C14:0-FAs in acbp3 phloem exudates bears resemblance to similar
accumulation following response to UV irradiation in canola
phloem sap (Madey et al., 2002).

AtACBP3 Potentially Binds
Fatty-Acyl-CoA Esters in the Phloem
Previous in vitro Lipidex binding assays had shown that
(His)6-AtACBP3 binds to C16:0-, C18:1- and C20:4-CoA esters
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TABLE 1 | Dissociation constants between (His)6-AtACBP3 and acyl-CoA esters.

Acyl-CoA esters pH KD (µM) n (kcal/mol)

C12:0 7.0 33.1 ± 13.0 1.0 ± 0.3

C12:0 6.4 6.1 ± 0.9 1.0 ± 0.0

C14:0 7.0 4.0 ± 0.6 1.5 ± 0.0

C14:0 6.4 3.3 ± 0.8 1.2 ± 0.0

C16:1 7.0 5.1 ± 1.9 1.2 ± 0.1

C16:1 6.4 9.7 ± 2.1 1.63 ± 0.0

C17:0 7.0 21 ± 4.7 1.8 ± 0.1

C17:0 6.4 3.7 ± 1.1 2 ± 0.0

C18:2 7.0 13.4 ± 1.4 0.5 ± 0.0

C18:2 6.4 6.4 ± 1.0 0.9 ± 0.0

C18:3 7.0 8.6 ± 2 0.6 ± 0.0

C18:3 6.4 9.0 ± 0.1 0.7 ± 0.0

Each assay had three technical repeats and was repeated at least twice using
(His)6-AtACBP3 that was independently prepared. Standard deviations were
calculated based on readings of three technical repeats.

(Leung et al., 2006). In this study, ITC demonstrated that (His)6-
AtACBP3 not only binds medium-chain (C12:0- and C14:0-)
but also long-chain (C16:1-, C17:0-, C18:2-, and C18:3-) acyl-
CoA esters (Figures 6, 7 and Supplementary Figure S7). Some of
their FA derivatives (C12:0-, C14:0-, C16:1-, and C18:2-FAs) have
already been identified in Arabidopsis phloem exudate (Guelette
et al., 2012). A recent study using microscale thermophoresis
(MST) has shown that recombinant AtACBP3 binds long-chain
(C18:2- and C20:0-) and very-long-chain (C22:0- and C24:0-)
acyl-CoA esters (Xie et al., 2015). Interestingly, the KD values
from our study and Xie et al. (2015) were both within the
micromolar range.

An attempt to determine the binding affinity between
(His)6-AtACBP3 with MeJA in ITC showed that AtACBP3 is
unlikely to be a MeJA transporter in the phloem (Supplementary
Figure S8). Only recently, did evidence emerge that the
Arabidopsis JASMONATE TRANSPORTER1 (AtJAT1), also
known as Arabidopsis ABC TRANSPORTER G FAMILY
MEMBER16, is a cellular jasmonoyl-isoleucine transporter that
mediates nuclear entry of jasmonoyl-isoleucine (Li et al.,
2017). Although jasmonate has been considered as a long-
distance signal (Li et al., 2002; Thorpe et al., 2007; Sato
et al., 2011), the long-distance transporter(s) of jasmonate
remains elusive.

Some proteins that are involved in JA-mediated plant defence
are also known to be involved in SA-mediated defence pathways.
Noteworthy examples include various fatty-acid desaturases
(FAD) which convert C18:2-FA to C18:3-FA, and C18:3-FA
is the precursor of jasmonic acid (Zimmerman and Feng,
1978). Arabidopsis fad3 fad7 fad8 is deficient in C18:3-FA and
is hypersensitive to insect infection (McConn et al., 1997).
However, a loss-of-function mutation in tomato fad7 enhanced
aphid resistance in a SA-dependent manner (Avila et al., 2012).
Interestingly, AtACBP3 appears to be involved in this complex
network of JA- and SA-mediated plant defence (Figure 8).
AtACBP3 is induced by both JA and SA (Xiao and Chye, 2011b).
Locally, the overexpression of AtACBP3 confers upregulation
of PATHOGEN-RELATED genes and NONEXPRESSOR OF PR
GENES1-dependent resistance to P. syringae (Xiao and Chye,
2011b). In this study, mechanical wounding upregulated the
expression of AtACBP3 and JA marker genes in local leaves.
Distally, AtACBP3 is involved in the transport of wound
signalling, possibly by complexing with C18:2- and C18:3-acyl-
CoA esters, culminating in the upregulation of JA marker genes.

FIGURE 8 | A proposed model of AtACBP3 in plant stress responses was illustrated. Two leaves (labelled Local and Distal) are connected by vascular tissues which
include phloem (blue lines) and xylem (not shown). Black colour scheme represents a JA-related pathway. Red colour scheme represents a SA-related pathway.
ACC, 1-aminocyclopropane-1-carboxylic acid; AtACBP3, Arabidopsis thaliana ACYL-COA-BINDING PROTEIN3; JA, jasmonic acid; JAZ10,
JASMONATE-ZIM-DOMAIN PROTEIN10; LOX2, LIPOXYGENASE2; MeJA, methyl jasmonate; NPR1, NONEXPRESSOR OF PR GENES1; PR genes,
PATHOGENESIS-RELATED genes; SA, salicylic acid; VSP2, VEGETATIVE STORAGE PROTEIN2.
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However, PR genes were not induced in distal tissues when
Arabidopsis rosette leaves were infected distally by P. syringae
(Xiao and Chye, 2011b). Nevertheless, our observations support
AtACBP3 participation in the maintenance of a pool of FA/acyl-
CoA esters in the phloem, similar to the role of AtACBP6 in
the cytosol for jasmonate production (Ye et al., 2016a). Thus,
the existence of two AtACBPs in the phloem now provides new
evidence on the importance of these proteins in phloem lipid
metabolism and plant defence.
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