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Bud dormancy release is regulated by gibberellins (GAs). DELLA proteins are highly
conserved and act as negative regulators in GA signaling pathway. The present study
established a relationship between PmRGL2 in Japanese apricot and GA4 levels during
dormancy release of floral buds. Overexpression of PmRGL2 in poplar delayed the onset
of bud dormancy and resulted in dwarf plants, relative to wild-type trees. PmRGL2
exhibited higher expression during ecodormancy and relatively lower expression during
endodormancy. The relative level of GA4 exhibited an increasing trend at the transition
from endodormancy to ecodormancy and displayed a similar expression pattern
of genes related to GA metabolism, PmGA20ox2, PmGA3ox1, PmGID1b, in both
Japanese apricot and transgenic poplar. These results suggests that PmRGL2 acts as
an integrator and negative regulator of dormancy via a GA-signaling pathway. Moreover,
an interaction between RGL2 and SLY1 in a yeast two hybrid (Y2H) system further
suggests that SCF E3 ubiquitin ligases, such as SLY1, may be a critical factor in the
regulation of RGL2 through an SCFSLY1-proteasome pathway. Our study demonstrated
that PmRGL2 plays a negative role in bud dormancy release by regulating the GA
biosynthetic enzymes, GA20ox and GA3ox1 and the GA receptor, GID1b.

Keywords: DELLA, RGL2, gibberellins, dormancy, GA4, SLY1, Japanese apricot

INTRODUCTION

Japanese Apricot (Prunus mume Siebold et Zucc.), a member of the Rosaceae family, is culturally
important deciduous fruit tree (C3 plant) in East Asia, including Japan, the Korean peninsula, and
southeast China. The fruit is mainly used for making liqueurs, pickles, and sauces (Chuda et al.,
1999; Mitani et al., 2013). Bud dormancy is a complex process in perennial plants and allows them
to survive seasonal adverse environmental conditions (Baskin and Baskin, 1998) by preventing
budbreak and subsequent growth or flowering even during short periods of favorable ambient
temperatures (Olsen, 2010). Three types of dormancy have been categorized, paradormancy,
endodormancy, and eco-dormancy (Lang et al., 1987), while a fourth stage, dormancy release, has
also been proposed (Horvath et al., 2003). (i) Paradormancy is the suppression of lateral budbreak
and is regulated by hormonal signals from the terminal shoot meristem (apical dominance); (ii)
endodormancy, represents suppression of budbreak by internal bud signals, even under favorable
conditions; (iii) ecodormancy, represents inhibition of growth by unfavorable environmental
conditions and is negated by warm temperatures. Previous studies have demonstrated that the
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induction and release of bud dormancy are regulated by
hormones (Wareing et al., 1971) and processes related to chilling
accumulation (Rinne et al., 2011; Zhuang et al., 2013).

Studies have shown that budbreak in woody angiosperms,
as well as other growth-related processes, are dependent on
sufficient gibberellin (GA) levels (Saure, 1985; Looney, 1997).
Isaia and Bulard (1978) reported that there are significant
quantities of free GA9, and higher levels of bound GA4 in
dormant embryos. GAs are also implicated in regulating the
timing of the onset of bud dormancy, and the chilling-induced
release of bud dormancy. This suggests that while chilling induces
GA accumulation in dormant buds, different responses are
elicited by GA3 and GA4 during dormancy release and that
bud burst only occurs when sufficient levels of GA4 are present
(Hazebroek et al., 1993; Schrader et al., 2004; Rinne et al., 2011).
PcGA2ox deactivates both bioactive GA1/4 and their immediate
precursors (GA20/9) and has a strong dwarfing effect in poplar
(Busov et al., 2003) but PcGA2ox cannot metabolize GA3 (Busov
et al., 2006).

Gibberellin levels also have a major impact on GA-
metabolism, biosynthesis, and signaling pathways (Sun and
Gubler, 2004; Schwechheimer, 2008). GA4 (the main bioactive
form of GAs) binds to one of its receptors GIBBERELLIN
INSENSITIVE DWARF (GID) 1A-c, the GA4–GID1 complex
interacts with DELLA proteins (Middleton et al., 2012), that
are subsequently tagged by the F-box protein, SLEEPY1 (SLY1)-
mediated ubiquitin-26S-proteasome, for destruction (Murase
et al., 2008). DELLAs act as a negative regulator in GA-dependent
growth processes (Nimisha et al., 2013). Arabidopsis (Arabidopsis
thaliana) has five DELLA proteins: GAI (GAIN SENSITIVE),
RGA (REPRESSOR-OF-GA), RGL1 (RGA-LIKE1), RGL2, and
RGL3. All of these proteins possess an N-terminal DELLA
domain containing the conserved amino acid sequence, Asp-
Glu-Leu-Leu-Ala (DELLA), VHYNP motifs, a poly (S/T) region,
and a C-terminal GRAS functional domain (Silverstone et al.,
1998). Inconsistent GA signaling repression has been reported by
high levels of VvDELLA proteins in grape, and grapes exhibit a
higher growth response to GA application (Acheampong et al.,
2017). Previous studies demonstrated that GAI and RGA play a
role – GA-regulation of hypocotyl growth and stem elongation
in Arabidopsis (Peng et al., 1997; Dill et al., 2004). RGL2 plays
an essential role in regulating seed germination (Lee et al.,
2002). The GAI/RGA-like gene, RGL2, is a negative regulator
of GA responses that regulate seed germination rather than
stem elongation. RGL2 is an inducible regulatory factor of GA
synthesis. The RGL mutant, rgl2, represses seed germination
(Tyler et al., 2004). DELLA proteins act as negative regulators
of plant growth. These proteins) can directly regulate the
expression of GA biosynthetic enzymes (GA20ox2 and GA3ox1)
or GA receptors (GID1a and GID1b) in GA responsive pathways
(Zentella et al., 2007).

The transcriptional repressors of DELLA in Arabidopsis
are targets of the SCF complex of F-box proteins SLEEPY
(SLY)-1/SNEEZY (SNE)-1. SLY1 (composed of three main
domains: F-box, GGF, and LSL) encodes the F-box subunit
of SCF E3 ubiquitin ligase. Studies have demonstrated that
SCFSLY1 positively regulates plant growth by GA signaling. For

example, GA-insensitive mutations in Sleepy1 (SLY1) increased
seed dormancy and inhibited seed germination in a GA
biosynthetic mutant. The sly1 mutant exhibit a GA-insensitive
dwarf phenotype that suppresses the activity of DELLA protein
(Steber et al., 1998; Dill et al., 2004; Strader et al., 2004).
Previous reports indicate that SLY1 genes are closely associated
with GA signal transduction via targeted DELLA protein RGA
(Peng et al., 1997; Dill et al., 2001; Fu et al., 2004; Achard
et al., 2009). GID2 is a positive regulator of a GA-signaling
pathway. GID1/GA/DELLA complex targets DELLA proteins for
degradation via the SCFGID2/SLY1 proteasome pathway. SLY1,
GID2 of SCF E3 ligase complexes target RGA and SLR1 via 26S
proteasome (Sasaki et al., 2003; Dill et al., 2004).

The mechanism of dormancy release in Japanese apricot is
still poorly understood. Therefore, it is necessary to explore how
RGL2 gene expression affects the regulation of GA metabolic
pathways. The purpose of the present study was to investigate
identify the RGL2 gene in Japanese apricot and characterize its
expression during different stages of dormancy as a basis for
further study. In addition, information on the interaction of
PmSLY1 interaction with PmRGL2 was examined by yeast two-
hybrid (Y2H) analysis. The overall objective was to determine the
relationship between PmRGL2 and GA4 levels during dormancy
release.

MATERIALS AND METHODS

Plant Materials and Dormancy
Treatments
Floral bud samples were collected from mature trees of Japanese
apricot cv. “Taoxingmei” (a low chilling requirement cultivar)
located at the National Field Gene Bank for Japanese apricot in
Nanjing, Jiangsu Province, China (Gao et al., 2012). Floral buds
were collected during four phases of dormancy: paradormancy,
prior to leaf fall; endodormancy; ecodormancy; and during
the dormancy release (budbreak) period. Samples were
collected on September 28, 2015 (paradormancy) (29◦/21◦C,
day/night temperatures), November 2, 2015 (endodormancy)
(19◦/8◦C, day/night temperatures), November 30, 2015
(ecodormancy) (13◦C/5◦C, day/night temperatures), and
January 12, 2016 (dormancy release) (8◦C/−1◦C, day/night).
The sampling was carried out as described by Wen et al.
(2016). All tissues were immediately frozen in liquid nitrogen
and stored at −70◦C until further use. Three independent
lines of transgenic poplar and wild-type trees (Populus
tremula × Populus alba) were placed in an environmental
chamber set at low temperature conditions for approximately
3 months to observe their growth (8.5◦C/4◦C, 16 h light/8 h
dark).

RNA Extraction and Reverse
Transcription – Quantitative PCR
(RT-qPCR)
Total RNA was isolated from flower buds of Japanese
apricot and frozen leaves of transgenic wild-type poplar, using
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PrimeScriptTM RT reagent Kit with gDNA Eraser (TaKaRa,
China) reagent according to the manufacturer’s protocol. First
strand synthesis of cDNA was carried out using a PrimeScriptTM

II Ist Strand cDNA Synthesis Kit (TaKaRa, China) following
the manufacturer’s protocol. RT-qPCR was carried out using
SYBR Premix Ex TaqTM (TakaRa, China). Expression of
PmRGL2 (KJ667048), Pm20ox2 (XM_008234605.2), Pm3ox1
(XM_008244481.2), PmGID1b (XM_008236735.1) and RNA
polymerase II (RP II) (XM_008238347.2) were examined
in apricot bud samples at different stages of dormancy
(Supplementary Table S1).

Transgenic poplar was also subjected to RT-qPCR. RNA
samples were isolated from tissue culture plants. Expression
levels of PmRGL2 (KJ667048), PpGA20ox2 (XM_011043353.1),
PpGA3ox1 (XM_011041681.1), PpGID1b (XM_011011170.1),
and EFIα (GQ253565.1) were examined by RT-qPCR.
All RT-qPCR analyses were repeated three times. RPII
(XM_008238347.2) and EFIα (GQ253565.1) were used as
internal controls for Japanese apricot and poplar samples,
respectively (Tong et al., 2009; Su et al., 2013). PCR amplification
reactions were performed using Power SYBR Green PCR Master
Mix (TaKaRa, Japan) in a Step OneTM Real-Time PCR System.
The reaction mixture (20 µl) included 1 µl of diluted cDNA
(equivalent to 100 pg of total RNA), 4 pmol of each primer, and
10 µl of Power 2×SYBR Green PCR master mix (SYBR Green
RT-qPCR Master Mix; TaKaRa, Japan). The PCR protocol was
as follows: 95◦C for 3 min; 40 cycles at 95◦C for 20 s, 60◦C
for 20 s, and 72◦C for 40 s. The 2−11CT method was used
to estimate relative expression level (Livak and Schmittgen,
2001).

Gene Isolation and Bioinformatic
Analysis
Total RNA extraction from mixed floral and vegetative buds
and subsequent cDNA synthesis were carried out from samples
collected at the four different dormancy stages previously
described. RT-PCR was performed with primers designed
using Primer 5 software, based on the sequence of Pm014329
(XM_008230973) (Supplementary Table S1). A total volume
of 25 µl, containing 100 ng of cDNA, 5 mM dNTP mixture,
100 µ mM of each primer, 0.625 U of PrimeSTAR GXL DNA
polymerase (TaKaRa Biotechnology, Dalian, China), and 5 µl
5X PrimeSTAR GXL buffer (Mg2+ plus) was used in PCR
amplification. The PCR reaction consisted of 35 cycles (30 s
at 94◦C, 40 s at 59.6◦C, 2 min at 72◦C). A 1,794-bp product
was purified and cloned into pEASY–Blunt Cloning vector
using a pEASY–Blunt Cloning Kit (TransGen Biotech, Beijing,
China). The obtained sequence was blasted and its homology
with RGL2 sequences in other plant species was confirmed.
This Japanese apricot sequence was designated as PmRGL2
(KJ667048) (Supplementary Table S1). A multiple alignment of
the deduced amino acid sequence was performed with sequences
from different species using ClustalW and GeneDoc software,
and a phylogenetic tree was constructed using the neighbor-
joining method in MEGA 5.0. The statistical reliability of the
phylogenetic tree was determined by bootstrap analysis with

1,000 replicates. The basic physical and chemical properties of
the proteins were predicted by Expert Protein Analysis System1.
NCBI2 was used to detect conserved domains using default
parameters.

Liquid Chromatography–Tandem Mass
Spectrometry (LC–MS/MS)
Frozen tissues (flower buds 100 mg, transgenic leaves 1 g) were
extracted in dark conditions at 4◦C, filtered, and mixed with
5 ml 80% methanol and containing an internal standard (10 µg)
and sonicated for 10 min (Fernández et al., 2003; Durgbanshi
et al., 2005). The extract was purified using a C18 Sep-pack
column (6 ml/500 mg, United States) to remove the pigments
and eluted with 5 ml 60% methanol and then freeze-dried. The
dried samples were then dissolved in 1 ml methanol and stored
at −20◦C until further use. The samples were injected into a
chromatogram column (4.6 mm × 100 mm, 18 µm) at 40◦C
at a flow rate of 0.4 ml/min. Mobile phase A, consisting of
0.1% methanoic acid, and mobile phase B, consisting of 100%
acetonitrile, were used for chromatographic separation. Initial
conditions were 60% A and 40% B which was maintained for
4 min, changing linearly to 5% A, 95% B over 16 min, 0%
A, 100% B for 15 min, and finally maintained at 60% A, 40%
B for 18 min. The conditions of mass spectrometry were as
follows: ESI spray voltage, 4 kV; sheath gas flow-rate, 70 arb;
auxiliary gas flow-rate, 20 arb; capillary temperature, 350◦C
and tube lens, 95 V. GA4 was monitored at m/z transitions
of 331→213. The optimized collision energy for GA4 was
20 eV.

The LC–MS/MS conditions used for the Japanese apricot
floral bud samples were as follows: ESI spray voltage, 4 kV;
sheath gas flow-rate, 70 arb; auxiliary gas flow-rate, 20 arb;
capillary temperature, 350◦C and tube lens, 95 V. GA4 were
monitored at m/z transitions of 331→213. The optimized
collision energy for GA4 was 20 eV. The LC–MS/MS conditions
for the transgenic poplar chromatography and mass spectrometry
procedures were as described above with a slight modification.
The transitions monitored were m/z 331.5 for GA4 and m/z
121.02 for benzoic acid (internal standard). A minor peak
occurred at 8.889 min and 4.782 min for the GA4 and benzoic
acid standard, respectively.

Construction of PmRGL2 Overexpression
Vector and Plant Transformation
The full-length coding sequence of RGL2 was amplified by PCR.
The PmRGL2 CDS fragment was fused to a β-glucuronidase
(GUS) gene, replacing the 35S CaMV (Cauliflower mosaic
virus) promoter in the pYH4215 vector. Overexpression
vectors were introduced into poplar using a leaf disk
transformation method (Horsch et al., 1985). In vitro
transgenic and non-transgenic plantlets were transferred to
pots filled containing potting soil with nutrients and moved
to an environmental chamber (24◦C, 16 h light/8 h dark)

1http://expasy.org/proteomics
2http://blast.ncbi.nlm.nih.gov/Blast.cgi
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to adapt external environmental. After 2 weeks, transgenic
and non-transgenic plants were put the chamber room for
dormancy. PmRGL2 positive transgenic plants were determined
by RT-PCR. Three independent transgenic poplar lines (T1, T2,
T3) were used in subsequent RT-qPCR experiments. The
three PmRGL2-overexpression transgenic poplar lines were
also used for phenotypic analysis during different stages of
dormancy. Transgenic trees were compared to wild-type
trees.

Yeast Two-Hybrid Assay
A yeast two-hybrid assay was used to determine if PmRGL2 could
interact with PmSLY1 (Genbank accession no. XM_008237725,

gene data not shown). The full-length CDs of PmRGL2
and PmSLY1 were amplified by PCR with gene-specific
primers and a bait vector (pGBKT7-PmRGL2) and prey
vector (pGADT7-PmSLY1) were constructed (Supplementary
Table S1). These constructs were transformed into Y2H Gold
cells following the manufacturer’s protocol (Clontech). Self-
activation and toxicity detection of the recombinant plasmid
and control vectors (pGADT7-T, pGBKT7-53, and pGBKT7-
Lam) were carried out as described in the MatchmakerTM

Gold Y2H manual. Cultured yeast cells re-suspended in
YPDA were plated on selective DDO media and incubated
at 30◦C for 4 days. Yeast cultures containing either the
interactor vector (pGADT7-PmSLY1+pGBKT7-PmRGL2),

FIGURE 1 | Amino acid sequence alignment of PmRGL2 and DELLA proteins from other plant species, including: Malus domestica, ACL68360.1; Malus
hupehensis, ABS50250.1; Vitis vinifera, AAM19210.1; Rosa lucieae, AFC88482.1; Pyrus × bretschneideri, AFJ23220.1; Arabidopsis thaliana, NP_186995.1; Prunus
mume, XP_008229195.1; and Prunus persica, XP_007214956.1; PmRGL2, KJ667048.

FIGURE 2 | Prediction secondary structure of PmRGL2. Blue: random coil, purple: α-helix, red: extended strand.

Frontiers in Plant Science | www.frontiersin.org 4 January 2018 | Volume 9 | Article 27

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00027 January 25, 2018 Time: 10:38 # 5

Lv et al. RGL2 Is a Negative Regulator

FIGURE 3 | A phylogenetic tree of PmRGL2 from Japanese apricot and DELLA proteins from other plant species, including: Malus domestica, ACL68360.1; Malus
hupehensis, ABS50250.1; Vitis vinifera, AAM19210.1; Rosa lucieae, AFC88482.1; Pyrus × bretschneideri, AFJ23220.1; Arabidopsis thaliana, NP_186995.1; Prunus
mume, XP_008229195.1; and Prunus persica, XP_007214956.1; PmRGL2, KJ667048.

positive vector (pGADT7-T+pGBKT7-53), or negative
vector (pGADT7-T+pGBKT7-Lam) were all placed on
DDO, DDO/A, QDO, QDO/A/X. In order to check for
any false or positive interactions, yeast cells containing an
empty “prey” vector and an empty “bait” vector were co-
transformed with interactor clones and plated as above.
Single colonies were selected and patched on DDO, DDO/A,
QDO, and QDO/X/A media while interactions were selected
at 30◦C for 3 days. Positive colonies were confirmed by
PCR.

Statistical Analysis
Analysis of variance (ANOVA) was used to compare statistical
differences in dormancy treatments and levels of gene expression
at different dormancy stage between Japanese apricot and
transgenic plants. Differences between test samples were
determined using a Duncan’s multiple range test at a significance
level of P ≤ 0.05. Three technical replicates were used for
each biological replicate, and the data shown represent the
mean ± standard errors (SE; n = 3). Three biological replicates
were used for each of the genotypes, the wild type, Y2H.
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FIGURE 4 | Expression of GA20ox2, GA3ox1, and GID1b in Japanese apricot is influenced by the expression of PmRGL2 during the different stages of dormancy.
(A) Series of lateral flower buds sampled during the different stages of dormancy. (A) Paradormancy before leaf fall, (B) endodormancy, (C) ecodormancy, (D)
dormancy release. (B) GA4 levels in Japanese apricot determined by LC-MS/MS and the expression level of PmRGL2, GA20ox2, GA3ox1, and GID1b in floral buds
of Japanese apricot during of the four stages of dormancy as determined by RT-qPCR. Small letters over a column indicate significant differences at P ≤ 0.05
(Duncan’s multiple range test). Data represent the mean of three biological replicates where each biological replicate consisted of three technical replicates.

FIGURE 5 | The PmRGL2 overexpression construct. The PmRGL2 gene was cloned and inserted in the pYH4215 vector. PmRGL2 expression was driven by the
35S CaMV promoter.

RESULTS

Isolation and Characterization of
PmRGL2
Sequence analysis demonstrated that PmRGL2 clone obtained
was a full-length sequence with a complete open reading
frame (ORF). PmRGL2 encodes an RGL2 protein of 1,794 bp
amino acid residues with a putative molecular mass of 64
kDa, and an isoelectric point (IP) of 5.05. Further analysis

indicated that PmRGL2 displays its highest identity with a
DELLA protein in Prunus persica (XM_007214894) by BLAST
(Figure 1). Therefore, the obtained clone was designated
PmRGL2 (Prunus mume RGL2). The secondary structure of
PmRGL2 was predicted using Prabi3 (Figure 2). The analysis
predicted that 39.2% of the amino acids were in α-helix, 47.4%
in random coil, and 13.4% in an extended strand. Analysis of
conserved motifs revealed that PmRGL2 protein possesses two

3https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_hnn.html
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FIGURE 6 | Confirmation of PmRGL2 in three, independent lines of transgenic
poplar (T1, T2, T3), and its absence in wild-type poplar lines. WT, wild-type.

signature DELLA and TVHYNP motifs, that define the DELLA
protein subfamily. The relationship between PmRGL2 and other
DELLA proteins was assessed by constructing a phylogenetic
tree (Figure 3) using the complete amino acid sequences of
PmRGL2 and DELLA proteins sequence from other species.
The DELLA proteins clustered into three groups, designated I,
II, and III. Only the DELLA protein from Fragaria vesca fell
into group III. The DELLA protein from Arabidopsis thaliana
clustered into group I. PmRGL2 and PmDELLA2 clustered
in the group I. In addition, the same species in DELLA
proteins consistent of the same group-II, such as AtGAI and
AtRGA.

GA4 Levels and PmRGL2 Expression in
Floral Buds
The relationship between the pattern of expression of PmRGL2
(as determined by RT-qPCR) and GA4 levels (as determined
by LC–MS/MS) were analyzed to better understand the role of
PmRGL2 in dormancy release (Figure 4 and Supplementary
Figure S1, respectively). During the sample collection,
morphological changes in flower buds during different
dormancy stages were evaluated by observing dissected bud
under a stereomicroscope.

Flower buds were relative thin during paradormancy and
stamens were produced during this time period. The lowest
GA4 levels were also recorded during paradormancy. Maximum
GA4 levels and low levels of PmRGL2 expression were
observed when flower buds began to swell (Figures 4A,B).
Expression of PmRGL2 was highest during ecodormancy.
The concentration of GA4 in flower buds increased slightly
during endodormancy, relative to the level observed during
paradormancy, while a trend of elevated GA4 levels was observed
during ecodormancy and dormancy release. The expression
of PmGA20ox2, PmGA3ox1, PmGID1b were up regulated
during ecodormancy, relative to para- and endodormancy. The
expression of PmRGL2 decreased during dormancy release

(Figure 4B). Therefore, it was concluded that the expression of
PmRGL2 is negatively correlated with changes in GA4 levels,
suggesting that PmRGL2 may have an inhibiting effect on
dormancy release.

Over Expression of PmRGL2 in Poplar
Inhibits Plant Growth
Transgenic poplar plants constitutively overexpressing PmRGL2
were to evaluate the role of PmRGL2 gene in GA responsiveness,
A 35S CaMV:PmRGL2 construct (Figure 5), was used to
transform in poplar leaves. Three independent transgenic
lines (T1, T2, T3) were obtained and PmRGL2 expression
levels were examined in each of the transgenic poplar lines
by RT-qPCR using PmRGL2 gene-specific primers. All three
transgenic lines exhibited high levels of PmRGL2 expression
and were used in subsequent analyses. PmRGL2 transcripts
were not detected in the non-transformed wild type poplar
trees (Figure 6). While the transgenic and non-transgenic
trees were in the environmental chamber it was observed that
all of the lines of the transgenic poplar plants grew slowly
(Figures 7A–C), relative to wild-type trees. When plants entered
into dormancy, the expression level of PmRGL2 decreased
in the buds of the transgenic plants. During the dormancy
release stage, budbreak in the wild-type trees occurred earlier
than in the transgenic plants (Figures 7D–G). These data and
the observed phenotypes suggest that PmRGL2 may function
as an integrator in the regulation of GA biosynthesis and
metabolism. The expression levels of GA-related genes and
PmRGL2 were analyzed in transgenic and non-transgenic plants
to confirm if GA receptor expression is associated with PmRGL2
regulation of GA biosynthesis. Total RNA was extracted from
PmRGL2 transgenic and wild-type plantlets grown on a tissue
culture medium at 24◦C (16 h light/8 h dark) and analyzed
by RT-qPCR. Results indicated that expression of PpGID1b,
PpGA20ox2, and PpGA3ox were more highly transgenic plants,
relative to expression levels in non-transgenic plants (Figure 8).
GA4 levels in leaves of PmRGL2 transgenic and wild-type
plantlets were also assessed. LC-MS/MS analysis indicated
that the concentration of GA4 was slightly lower in plantlets
overexpressing PmRGL2 relative to the GA4 level in wild-type
plantlets (Figure 9). These data indicate that overexpression of
PmRGL2 results in a lower level of GA in transgenic poplar
plants.

Yeast Two-Hybrid Analysis of the
Interaction between PmRGL2 and
PmSLY1
The interaction between RGL2 and SLY1 was assessed using
a yeast two-hybrid assay, where SLY1 was fused to a binding
domain (DB), and RGL2 was fused to an activation domain
(AD). Results demonstrated that RGL2 has a protein-protein
interaction with SLY1 (Figure 10). Thus, SCF E3 ubiquitin
ligase may regulate the RGL2 DELLA protein in Japanese
apricot where\SLY1 regulates GA signaling during dormancy
stages.
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FIGURE 7 | Phenotypic characterization of transgenic poplar plants constitutively expressing PmRGL2 in comparison with non-transgenic, wild-type, poplar plants.
A, B, C are different transgenic lines. WT, wild-type. Plant height (measured from soil line to tip of flag leaf): WT: 90 cm, T1: 88 cm, T2: 81 cm, T3: 78 cm. Wild-type
on the left and transgenic lines on the right in each figure. In the four pictures of each group, photos were taken after 0, 52, 70, and 83 days after entering into
dormancy. The WT is on the left in each picture (A–F), and the transgenic tree is on the right. T1 (A,D), T2 (B,E), T3 (C,G). (G), close-up of buds in WT (left) and
transgenic poplar (right) during dormancy release.

DISCUSSION

Silverstone et al. (1998) reported five DELLA genes (RGA, GAI,
RGL1, RGL2, and RGL) in Arabidopsis thaliana. These genes
have also been reported in other plant species, and designated
as d8 in maize (Zea mays), SLN1 in barley (Hordeum vulgare),
VvGAI in grape (Vitis vinifera), SLR1 in rice (Oryza sativa),
and AhDELLA in peanut (Arachis hypogaea) (Boss and Thomas,
2002; Muangprom et al., 2005; Foster et al., 2007; Lawit et al.,
2010; An et al., 2015). Previous reports have indicated that
DELLA proteins play an important role in dormancy release
and other processes, such as stem elongation, plant height,
dormancy, seed germination, and floral and root development

(Koornneef et al., 1984; Peng and Harberd, 1993; Silverstone
et al., 1998; Peng et al., 1999; Dill and Sun, 2001; Dill
et al., 2001; Nakajima et al., 2001; Lee et al., 2002). Although
RGL2 studies have been conducted, their regulatory role in
GA signaling is poorly understood, especially in non-model
organisms. Therefore, the function of the RGL2 DELLA protein
was investigated in Japanese apricot in regard to its role in
dormancy.

Multiple sequences alignment of DELLA proteins from several
species, including PmRGL2 from Japanese apricot, indicated that
they are highly conserved. Proteins within the DELLA subgroup
sharing these conserved motifs are likely to have similar functions
in the GA-signaling pathway (Hussain and Peng, 2003; Sato
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FIGURE 8 | Relative expression levels of PmRGL2, GID1b, GA20ox2, and
GA3ox1 in poplars and as measured by RT-qPCR. Different letters over the
columns indicate a significant difference at P ≤ 0.05 (Duncan’s multiple range
test). Data are the mean ± SD (n = 3).

FIGURE 9 | GA4 levels in transgenic and wild-type poplar as measured by
LC-MS/MS. Small letters over a column indicate significant differences
between the WT and transgenic lines at P ≤ 0.05 (Duncan’s multiple range
test). Data are the mean ± SD (n = 3).

et al., 2014). DELLA subfamily proteins interact with the GA-
binding receptor, GID1, thus playing a critical role in perceiving
GA signals to regulate plant development (Murase et al.,
2008). Deletion of 108 residues in the N-domain, encompassing
the conserved DELLA and TVHYNP motifs, inhibits RGA
degradation (Fuentes et al., 2012). Sequence differences between
PmRGL2 and other DELLA proteins may reflect functional
adaption or functional differentiation that occurred over the
course of species evolution. GA binding to GID1 results in
the formation of a GA-GID1-DELLA complex that weakens
the inhibitory effect of DELLA proteins on plant growth. And
DELLA proteins also form a DELLA ubiquitin E3 ligase complex
(SCFSLY1/GID2) which targets DELLA protein for degradation by
the 26S proteasome (Ariizumi et al., 2011; Hauvermale et al.,
2014). DELLA proteins, such as RGL2, negatively regulate GA
response (Ikeda et al., 2001; Hussain and Peng, 2003). Recently,
Middleton et al. (2012) also used molecular modeling to study
feedback loops in GA signaling. In the present study, an RGL2
gene was isolated from Japanese apricot. PmRGL2 possesses both

DELLA and GRAS domains with a comparison of PmRGL2
with other DELLA proteins (Figures 2, 3) revealed that the
DELLA protein domains in PmRGL2 are similar to the DELLA
domains in other species, possessing DELLA, TVHYNP, VHIID,
RKVATYFAEALARR, RVER, and SAW domains. The presence
of these structural domains in PmRGL2 protein confirms that it
is a member of the DELLA family of proteins. Some of the amino
acid sequences in PmRGL2 were different than other DELLA
proteins (NP_178266 and NP_172945) suggesting that functional
differences may be present.

Transcript levels of the GA biosynthetic genes GA20ox and
GA3ox are upregulated when the GA catabolic gene, GA2ox,
is down regulated (Sun and Gubler, 2004). In our study, GA4
content increased in Japanese apricot buds over the course
of the dormant period and reached a peak during dormancy
release. Flower buds were observed to be thin and stamens
appeared during paradormancy, while the level of GA4 during
the same time period was low and expression of PmRGL2,
PmGA20ox2, PmGA3ox1, and PmGID1b expression was high.
Swelling of the floral buds and GA4 content gradually increased
during endodormancy, while expression of PmRGL2 decreased
of the downregulation of PmRGL2 was co-incident with the
downregulation of GA20ox2, GA3ox1, and GID1b (Figure 4B).
These findings are consistent with a previous study conducted
by Middleton et al. (2012). During ecodormancy, GA4 binds
to the GID1 receptor, and this complex binds to DELLA
proteins, and there is an accumulation of the GA4–GID1-
DELLA (RGL2) complex which induces the biosynthesis of
GA4. GA4 subsequently mediates the expression of GA20ox2,
GA3ox1, and GID1b. During dormancy release GA4 levels are
high and RGL2 is downregulated (Middleton et al., 2012). DELLA
proteins mediate the transcription of GA20ox2, GA3ox1, and
GID1b and at the same time repress the transcription of DELLA
genes. Dormancy-induced growth suppression decreases with the
decrease in the expression of RGL2 and GA20ox2, GA3ox1, and
GID1b expression increases during dormancy release. Transgenic
poplar plants constitutively expressing PmRGL2 exhibited lower
levels of native, poplar GID1b, GA20ox2 and GA3ox1, relative
to non-transgenic wild-type poplar plants (Figure 8). Previous
studies have reported that GA catabolism by GA2ox2 decreases
over the course of the dormant period while GA synthesis,
such as GA3ox1, increase (Footitt et al., 2011). Xiao et al.
(2010) reported that overexpression of GhGA20ox1 in transgenic
plants enhanced GA production and promoted elongation of
fiber cells. The current study provides evidence that PmRGL2
regulates the expression of GID1b, GA20ox2, and GA3ox1, as
well as GA4 levels. The GID1b, GA20ox2 and GA3ox1 were
all upregulated in transgenic poplar plants expressing PmRGL2,
relative to wild-type plants, and GA4 levels were lower. Middleton
et al. (2012) reported that GA20ox2, GA3ox1, and GID1a
expression is downregulated by a GA4 treatment. DELLAs are
involved in maintaining GA homeostasis through feedback that
upregulates the expression of GA biosynthesis and receptor
genes (Zhang et al., 2010). All DELLA-regulated genes, including
GA biosynthetic enzyme genes and GA receptor genes, are
repressed by GA and activated by DELLAs (Zentella et al.,
2007).
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FIGURE 10 | Interaction of RGL2 with SLY1 in a yeast two-hybrid assay. Three dilutions (0, 1/5, 1/50, and 1/500) of yeast cultures adjusted to an OD600 of 0.4 were
spotted on synthetic medium to maintain proper growth. Photos were taken after 4 days of culture. Experiments were performed three times, and each experiment
contained at least three replicates.

FIGURE 11 | A simple model representing the role of RGL2 and GA4 in the regulation of bud dormancy by regulating the expression of GA-related genes. Under
dormant conditions, RGL2–SCFSLY1 complex regulate its expression and thereby inhibits dormancy in buds. Degradation of RGL2 and expressionist repression of
GA related-genes results in dormancy release.

The expression pattern of PmSLY1 was similar to PmRGL2
during the different stages of dormancy (Supplementary
Figure S2). Acheampong et al. (2017) reported that decreased
expression of VvSLY1b may be responsible for inducing a massive
accumulation of VvDELLA proteins, which then led to elevated
VvGID1 levels. The SLY1 homolog, SLY2 (SNE), directly binds to
RGA proteins, suggesting that it negatively regulates a subset of
DELLA proteins regulated by SLY1. Overexpression of SLY2 can
rescue dwarfism and infertility in sly1–10 mutants by reducing
the accumulation of DELLA proteins, RGA, and GA (Fu et al.,
2004; Strader et al., 2004; Ariizumi et al., 2011). Previous studies
demonstrated that RGL1 and RGL3 exhibit a weak interaction

with SLY1 and that in contrast sly1-d interacts more strongly with
RGL1, RGL2, and RGL3 than does SLY1. RGA (DELLA protein)
and GAI directly interact with SLY1 in Y2H assays and sly1-d has
an influence on the C-terminal region of SLY1 that enhances the
interaction between RGA and GAI (Dill et al., 2004; Tyler et al.,
2004). The loss-of-function sly1 mutant and GID2 mutant are
GA-insensitive dwarfs (Sasaki et al., 2003). High levels of RGL2
expression are observed in sly1 mutants after GA treatment and
its repression of seed germination is inactivated after-ripening
in sly1 mutant seeds (Ariizumi and Steber, 2007). In the present
study, lower levels of PmRGL2 expression were reflected by lower
SLY1 levels, and constitutive expression of PmRGL2 in transgenic
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poplar plants resulted in a dwarf phenotype over (Figure 7).
These results further indicate that RGL2 acts as a regulator of GA
homeostasis and transcript levels of GA biosynthetic genes.

The SLY1 gene is closely associated with GA signal
transduction by targeted DELLA protein RGA (Peng et al., 1997;
Dill et al., 2001; Fu et al., 2004; Achard et al., 2009). PmRGL2
interacted with PmSLY1 in the Y2H assay (Figure 10), which
supports the premise that SLY1 targets RGL2 for degradation
in response to GA (Dill et al., 2004). Our collective data
demonstrate that PmRGL2 is a DELLA protein gene that is
upregulated during endodormancy in Japanese apricot. RGL2
isolated from Japanese apricot acted as a negative regulator of
the GA signaling pathway. Constitutive expression of RGL2 in
transgenic poplar plants delayed budbreak but did not slow
down the rate of leaf senescence in the fall, and resulted in
a dwarf, GA-deficient phenotype. The Y2H assay provided
evidence supporting a specific interaction between PmRGL2 and
PmSLY1, thus indicating that SLY1 targets the DELLA protein,
RGL2, for degradation. Our results indicate that RGL2 acts as a
repressor of GA responses and also acts as a negative regulator
of GA-promoted budbreak (Figure 11). RGL2 plays a pivotal role
in the regulation of GA responses. The GA/DELLA interaction
is critical to the regulatory network controlling plant growth.
Additional studies will be required to elucidate the function
of other PmDELLA proteins in dormancy and other growth
processes regulated by GA.

CONCLUSION

Our study provided insight into the role of PmRGL2, GID1b,
GA20ox2, and GA3ox1 in GA signal transduction during
dormancy release of floral buds in Japanese apricot. Constitutive
expression of PmRGL2 in transgenic poplar plants exhibited
delayed budbreak. GA levels increased when the GA biosynthetic
genes, GA20ox2 and GA3ox1, were upregulated and the
expression of the gibberellin receptor gene, GID1b, was

downregulated. Further studies will help to determine all of the
mechanisms underlying GA-mediated bud dormancy and allow
for the identification of additional dormancy proteins that are
targeted by SLY1.
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