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The aim of the this study was to identify SNP markers associated with five

important wheat quality traits (grain protein content, Zeleny sedimentation, test weight,

thousand-kernel weight, and falling number), and to investigate the predictive abilities

of GBLUP and Bayesian Power Lasso models for genomic prediction of these traits.

In total, 635 winter wheat lines from two breeding cycles in the Danish plant breeding

company Nordic Seed A/S were phenotyped for the quality traits and genotyped for

10,802 SNPs. GWAS were performed using single marker regression and Bayesian

Power Lasso models. SNPs with large effects on Zeleny sedimentation were found

on chromosome 1B, 1D, and 5D. However, GWAS failed to identify single SNPs

with significant effects on the other traits, indicating that these traits were controlled

by many QTL with small effects. The predictive abilities of the models for genomic

prediction were studied using different cross-validation strategies. Leave-One-Out cross-

validations resulted in correlations between observed phenotypes corrected for fixed

effects and genomic estimated breeding values of 0.50 for grain protein content, 0.66

for thousand-kernel weight, 0.70 for falling number, 0.71 for test weight, and 0.79 for

Zeleny sedimentation. Alternative cross-validations showed that the genetic relationship

between lines in training and validation sets had a bigger impact on predictive abilities

than the number of lines included in the training set. Using Bayesian Power Lasso instead

of GBLUP models, gave similar or slightly higher predictive abilities. Genomic prediction

based on all SNPs was more effective than prediction based on few associated SNPs.

Keywords: wheat quality, Zeleny sedimentation, thousand-kernel weight, falling number, genomic selection,

GBLUP, Bayesian Power Lasso
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INTRODUCTION

Wheat (Triticum aestivum L.) is a major cereal crop that is grown
in most parts of the world. In 2014, more than 700 million tons
of wheat was produced globally (FAOSTAT, 2016). Depending
on quality, wheat can be used as animal feed or for human
consumption in a variety of products, such as bread, biscuits, and
noodles (Shewry, 2009). Wheat quality, therefore, is determined
by many traits, e.g., grain protein content, gluten composition,
and grain hardness. The special viscoelastic properties of wheat
dough are mainly due to the gluten content, which consist
of a network of high- and low-molecular weight (HMW and
LMW) glutenins and monomeric gliadins. The majority of the
grain protein in wheat is gluten protein (approximately 80%),
and a high grain protein content is associated with high wheat
quality. However, the composition of glutenin subunits and
gliadins is also important for the wheat quality (Shewry 2009).
Gluten content and quality can be estimated using the Zeleny
sedimentation test. Here, flour is mixed with lactic acid, causing
the gluten to expand and sediment. Large sedimentation-volumes
indicate high gluten content and strength (Peña, 2002). The
major glutenin loci are the HMW glutenins Glu-A1, Glu-B1,
and Glu-D1 located on the long arm of chromosome 1A, 1B,
and 1D, respectively, whereas the LMW glutenins Glu-A3, Glu-
B3, and Glu-D3 are located on the short arm of 1A, 1B, and
1D, respectively. The Glu-3 loci each consist of several alleles
encoding LMW glutenin subunits, and they are linked to the
gliadin loci Gli-A1, Gli-B1, and Gli-D1 (Liu et al., 2014). Genetic
variation in these complex loci contributes to wheat quality, but
other factors than gluten content also affect the quality (Liu
et al., 2014). Grain hardness is an essential trait for the milling
properties and end-use of wheat. Grain with hard endosperm
texture are preferred for making bread, as flour made from these
have a higher water absorption capacity as a result of increased
starch granule damage during the milling. The lower water
absorption of flour from soft grain is favorable for the production
of cookies and cakes. The puroindoline genes, Pina-D1 and Pinb-
D1, at the Hardness locus on chromosome 5DS account for

most of the genetic variation for grain hardness. However, grain

hardness is also affected by the GSP-1 (Grain Softness Protein)

gene at the same locus and by minor QTL (Quantitative Trait
Loci) on other chromosomes. Deletions or knock-out mutations
in either of the Pin genes lead to increased hardness (Bhave and
Morris, 2008; Pasha et al., 2010).

Test weight (the weight of 100 L of grain) is a grain quality
trait that is important to many end-users (Bordes et al., 2014).
The test weight and the grain yield component thousand-kernel
weight (TKW) are often used as indicators of flour yield, although
these two traits are not always strongly correlated with flour yield
(Hook, 1984). Another factor that influences wheat quality is
falling number. Falling number is an indicator of the activity
of the starch-degrading enzyme α-amylase, and it is measured
as the time it takes a viscometer stirrer to fall through a
heated, gelatinized suspension of flour and water. Low falling
number (high α-amylase activity) is associated with pre-harvest
sprouting of the grain, which has a significant negative impact on
quality. Flour from grain with low falling number generally gives

soft, sticky dough and smaller bread loaves (Mares and Mrva,
2008).

Phenotyping of quality traits is expensive and time-
consuming. Consequently, most wheat breeders prioritize
the yield of new lines over improvement of grain quality.
Furthermore, it is difficult to phenotype most quality traits in
the early stages of a breeding program, because relatively large
quantities of grain are needed for the tests. Thus, reliable genetic
markers for quality traits are useful as indicators of the grain
quality of wheat lines. DNA can be extracted from few grain or
leaf samples, and genotyping of geneticmarkers are inmany cases
economically advantageous compared to phenotyping (Heffner
et al., 2011).

A number of genes/QTL affecting quality traits in wheat
have been found across the genome (for reviews see e.g., Liu
et al., 2014; Varzakas et al., 2014). However, many of these
QTL are population or environment specific and can therefore
not easily be applied in other breeding programs. In traditional
marker-assisted selection, only few markers linked to QTL with
large effects are used. However, for many quantitative traits,
the majority of the QTL have small effects, so marker-assisted
selection might not be very effective (Bernardo, 2008). For
genomic selection, lines are genotyped for thousands of DNA
markers across the genome in order to capture many QTL with
small effects as well (Meuwissen et al., 2001). This can improve
the predictive ability for quantitative traits that are controlled by
many genes. One way to implement genomic selection is to use
a training set with lines, which have both been genotyped and
phenotyped, to develop a model for predicting GEBVs (Genomic
Estimated Breeding Values) of lines in a validation set, where
only the genotypes are known. The genomic information can
also be used to increase the accuracy of estimated breeding
values of phenotyped individuals that are genetically related.
Genomic selection have so far mainly been implemented in
animal breeding programs, especially for cattle breeding (Hayes
et al., 2009), but much research is being devoted to genomic
selection in plant breeding (Heslot et al., 2015), including wheat
and barley (Battenfield et al., 2016; Michel et al., 2016; Nielsen
et al., 2016; Cericola et al., 2017). However, the best strategy of
implementing genomic selection in wheat breeding programs is
not clear (Bassi et al., 2015). The training set has a major impact
on the predictive abilities, but the optimal size and composition
of the training set might vary between traits or populations.
Similarly, the type of model used for genomic predictions can be
optimized for different cases.

SNP-BLUP (Best Linear Unbiased Prediction) models are
commonly used for genomic selection. In these multiple
regression models, a high number of SNP effects are fitted
simultaneously (Meuwissen et al., 2001). GEBVs are calculated
as the sum of additive SNP effects, which are usually assumed
to be from a Normal distribution. The SNP effects are shrunken
equally toward zero to fit with the total genetic variance and to
avoid over-fit in the models due to including a very high number
of markers. GBLUP (Genomic BLUP) models are equivalent to
SNP-BLUP models, but GEBVs are calculated using a variance-
covariance matrix with genetic relationship between lines based
on the SNPs (Meuwissen et al., 2001; VanRaden, 2008). Since
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all SNP effects are shrunken equally in GBLUP, large SNP
effects might be shrunken too much, while small effects are
not shrunken enough. Thus, this might not be the best way to
estimate SNP effects for traits, where most SNPs have no effect
and some SNPs have large effects. To improve the modeling
of the genetic architecture, Bayesian models can be used. Here,
SNP effects can easily be assigned other types of distributions
than the Normal distribution. When using more heavy-tailed
distributions than the Normal distribution, large effects are
shrunken less and small effects more. However, Bayesian models
require longer computation times than BLUP models, and often
do not perform considerably better, if the genetic relationship
between lines is high (Meuwissen et al., 2001; VanRaden, 2008).

The objectives of the present study were to identify genetic loci
associated with the quality traits grain protein content, Zeleny
sedimentation value, test weight, falling number, and TKW,
and to develop models for genomic prediction of these quality
traits using GBLUP and Bayesian Power Lasso models. Genomic
predictions based on all SNPs were compared with predictions
based on few SNPs with most significant effects.

MATERIALS AND METHODS

Plant Material
A total of 635 F6 winter wheat lines from two breeding cycles
(set2014 and set2015) of the Danish plant breeding company
Nordic Seed A/S were used for the analyses. The lines of the first
breeding cycle, set2014, consisted of 321 lines and were harvested
in 2014, and the lines of the second breeding cycle, set2015,
consisted of 314 lines that were harvested in 2015. In total, 96
different lines were used as crossing parents in the two sets, and
6 of these lines were used as parents in both sets. The number
of different full-sib families from the crosses was 159, and the
number of lines in each full-sib family ranged from 1 to 33 with
an average of 10 lines (Table 1). Each line was grown in a single
plot of 9.9 m2 at Lolland in Denmark following standard Danish
agricultural practices. During the growth season, approximately
180 kg of nitrogen were applied per hectare, and no irrigation was
used.

Phenotyping
The wheat lines were phenotyped for grain protein content,
Zeleny sedimentation value, test weight, falling number, and
TKW (Supplementary Material). Grain protein content was
determined using Near Infrared Transmission (InfratecTM 1241
Grain Analyser with Test Weight Module, FOSS, Denmark), so
that test weight was also measured. TKW was determined by
image analysis using the Seed Analyzer MARVIN (GAT Sensorik
GmbH, Germany) and SeedCount SC5000 (Next Instruments,
Australia). Grain was milled using a Quadrumat Junior mill

(Brabender GmbH & Co. KG, Germany) to obtain flour for
Zeleny sedimentation, and using a Lab Mill 3100 (Perten,
Sweden) for falling number. Zeleny sedimentation tests for
indication of gluten content and gluten strength were done using
the international standard method ISO 5529, and falling number
was measured using a Falling Number 1900 System (Perten,
Sweden), method ISO/DIS 3093.

Genotyping
DNA was extracted from leaves of three bulked, 2-week old
seedlings for each line using a modified CTAB method (Rogers
and Bendich, 1985). The lines were genotyped by TraitGenetics
(Germany) using the 15K Illumina Infinium iSelect HD Custom
Genotyping BeadChip technology. A total number of 13,006 SNP
markers were called, and 10,802 of these were selected for the
analyses after editing for minor allele frequency (MAF) lower
than 1% and for more than 10% missing values (Supplementary
Material). For all lines, more than 90% of the SNPs were
successfully genotyped. The number of SNPs mapped to each
chromosome is shown in Table 2.

Statistical Analyses
Genome-wide association analyses were conducted by single
marker regression using the following model that was run for
each of the 10,802 SNPs:

y = Xb+ wiai + Z1u+ e (1)

where y is a vector of observed phenotypes, X and Z1 are design
matrices, b is a vector of fixed effects (mean and year/set), wi is
the vector of genotypes of the ith SNP coded as 1, 0, −1, ai is
the additive genetic effect of the ith SNP, u is a vector of additive
genetic effects of the lines [u ∼ N(0,Gσ 2

g ), where G is a G-matrix

and σ 2
g is additive genetic variance], and e is a vector of random

residual effects (e ∼ N(0,Iσ e
2), where I is an identity matrix

and σ e
2 is the residual variance). The effects of year and set

(breeding cycle) could not be separated, since each line was only

TABLE 2 | Number of SNPs mapped to each of the 21 chromosomes.

Chromosome 1A 2A 3A 4A 5A 6A 7A Total, A

No. of SNPs 474 474 489 319 559 557 657 3529

Chromosome 1B 2B 3B 4B 5B 6B 7B Total, B

No. of SNPs 736 713 692 355 797 685 565 4543

Chromosome 1D 2D 3D 4D 5D 6D 7D Total, D

No. of SNPs 269 217 123 49 133 128 114 1033

Total number of SNPs: 10,802. Unmapped: 1697.

TABLE 1 | Distribution of lines in full-sib families.

Full-sibs per family 1 2 3 4 5 6 7 8 9 10 11 12 13 15 18 33

Number of families 39 27 21 29 9 10 5 5 3 2 3 2 1 1 1 1

Total number of lines 39 54 63 116 45 60 35 40 27 20 33 24 13 15 18 33
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tested 1 year. Software package DMU was used for estimation of
model effects and variance components by restricted maximum
likelihood (Madsen and Jensen, 2013).

G-matrices with genomic relationship between the lines were
used to correct for family structure in order to avoid spurious
associations (Price et al., 2010). For each chromosome, a G-
matrix was calculated based only on the markers that were
mapped to the remaining chromosomes. This G-matrix was
then used for the structure-correction of the SNPs mapped to
the excluded chromosome, in order to ensure that effect of the
SNP was not included in the model twice. The G-matrices were
calculated using method one proposed by VanRaden (2008):

G =
Z2Z

′
2

2
∑

pi(1− pi)
(2)

where pi is MAF of ithmarker, Z2 =M – P,M is a matrix with the
alleles of the markers coded as 1, 0, −1 (missing genotypes were
set to 0), and P is a matrix with MAF calculated as 2(pi – 0.5).

Population structure was studied by performing a principal
component analysis on the G-matrix computed from all 10,802
SNPs using the built-in R function “prcomp” (R Development
Core Team, 2016). A heatmap and dendrogramwere constructed
based on the G-matrix using the R function “heatmap” (R
Development Core Team, 2016).

Average genetic distances were calculated from the 10,802
SNPs using the R function “dist” (R Development Core Team,
2016) and dividing the obtained Euclidean distances with√
2∗10, 802 to get themodified Rogers’ distance (Reif et al., 2005).
Genomic inflation factors, λIF, were calculated for each trait

and used to correct the p-values for inflation (Hinrichs et al.,
2009). The inflation factor λIF was calculated by dividing the
observed median value of the chi-squared statistic for the SNPs
with the expected median value. The expected value is based on
the assumption that there are no associations between the SNPs
and the trait. Inflated p-values can be caused by e.g., population
structure, which gives λIF values of more than 1. If λIF were
above 1, the chi-squared statistics were divided by λIF and then
used to calculate the p-values. To reduce the risk of false-positive
SNP-trait associations, a Bonferroni correction was used to set
the significance threshold at 5% divided by number of SNPs
(0.05/10,802= 4.6∗10−6).

GWAS were also performed by fitting all SNPs at the same
time with a Bayesian Power Lasso model using the Bayz software
(Janss, 2011):

y = Xb+ Z3u+e (3)

where y is a vector of observed phenotypes, b is a vector of the
mean + year/set effect with design matrix X, Z3 is a matrix of
the alleles of the SNPs coded as 0, 1, 2, u is a vector of additive
genetic SNP effects, and e is a vector of residual effects. Residuals
were assigned a Normal prior distribution. The residual variance,
the mean, year/set effect, and rate parameter, λRP, were assigned
flat prior distributions. The prior distribution of SNP effects was
assigned to be an exponential power distribution:

p (u) =
∏m

i=1

1

2
λRPe

−λRP|ui|β (4)

where m is number of markers and β is shape parameter to
control the sparsity, which affects the shrinkage of the SNP
effects. When β is set to 1, the model is equivalent to the
standard Bayesian Lasso, where the absolute SNP effects, |ui|,
are assumed to follow an exponential distribution. In this
case, large effects are shrunken a bit less and small effects are
shrunken a bit more than in the Normal distribution. Setting
β to less than 1, increases the difference between markers with
large and small effects even further, as it is |ui|

β that follow
an exponential distribution (Gao et al., 2013). In the analyses
performed here, models were tested with β set to 0.2, 0.4, 0.8, and
1.0. Deviance Information Criterion was calculated for each of
the models and used to choose the optimal β for each of the traits
(Spiegelhalter et al., 2002). Model parameters were estimated
using Markov Chain Monte Carlo (MCMC) with a length of
100,000 of which 30,000 cycles were the burn-in. Posterior means
were computed using the tool pbayz supplied with Bayz, and
convergence was checked using the R package CODA (Plummer
et al., 2006).

Genomic predictions using all SNPs were performed using the
Bayesian Power Lasso model (3) and using a GBLUP model:

y = Xb+ Z4u+ e (5)

where y is a vector of observed phenotypes, X and Z4 are design
matrices, b is a vector of fixed effect (mean and year/set), u is a
vector of additive genetic effects (u ∼ N(0,Gσ 2

g ), where G is a G-

matrix computed as above (2) using all 10,802 SNPs and σ 2
g is

additive genetic variance), and e is a vector of random residual
effects (e∼ N(0,Iσ e

2)).
Estimation of model effects and variance components for the

GBLUP and Bayesian Power Lassomodels were done using DMU
and Bayz, respectively. For the GBLUP models, the narrow sense
genomic heritability (de los Campos et al., 2013) based on records
of single plots was calculated as:

h2 =
d(G)σ 2

g

d(G)σ 2
g + σ 2

e

(6)

where d(G) is the average diagonal element of the G-matrix
(calculated using all SNPs), σ 2

g is additive genetic variance and

σ 2
e is residual variance.
For the Bayesian Power Lasso models, h2 was calculated by

dividing the additive genetic variance (variance of GEBVs) with
the phenotypic variance.

Predictive abilities of the models were determined as the
correlations between observed phenotypes corrected for fixed
effects and GEBVs. These correlations were compared with the
square root of the narrow sense genomic heritability, which is the
maximum correlation that can be achieved. Bias in the genomic
predictions was calculated as the slope of the regression line of
the corrected phenotypes on the GEBVs. The expectation of this
slope is 1.0, and the bias is the deviation from this expectation.

Several types of cross-validation strategies were tested to study
the effectiveness of different approaches for implementation of
genomic selection in breeding programs:
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- LOO (Leave-One-Out), where the GEBV of each line was
predicted based on the rest of the lines. The LOO strategy
was used to study the predictive ability when using the
largest training set available and the highest possible genetic
relationship between lines in the training and validation set.

- LFO (Leave-Family-Out), where the GEBVs of lines in each
half-sib family were predicted based on lines from other
half-sib families, so that they had no parents in common. The
LFO cross-validation strategy was used to study the effect
of the genetic relationship between the lines in training and
validation sets.

- LSO (Leave-Set-Out), where the GEBVs of lines in each set
were predicted based on lines only from the other set. The
LSO cross-validation strategy was used to study the predictive
ability when predicting GEBVs of lines from one breeding
cycle based on lines from another breeding cycle.

- k-fold, where the lines were randomly divided into k folds (2,
5, or 10) of equal size and the GEBVs of lines in each fold were
predicted based on lines only in the other folds. The size of the
training sets in the 2-, 5-, and 10-fold cross-validations were
approximately 318 lines, 508 lines, and 572 lines, respectively.
The k-fold cross-validation strategy was used to study the
effect of the size of the training set.

Predictions of breeding values were also performed using the
three and the ten best SNPs for each trait according to the single
marker GWAS or the Bayesian Power Lasso (model 1 or 3). Here,
the 635 lines were randomly divided into 5-folds of equal size.
The best SNPs and their effects were estimated based on the
lines in four of the folds and used for predictions of breeding
values in the fifth fold. This was done to avoid unrealistically
high predictive abilities that would be the result of using the
same lines for estimation and prediction. The best SNPs were
defined as the SNPs most significantly associated with the studied
trait for the single marker regressions, and as the SNPs with
the largest additive genetic effects for the Bayesian Power Lasso.
When selecting SNPs using model 1, maximum one SNP was
selected from each chromosome to avoid selecting several SNPs
linked to the same QTL. Predictions were made using the SNP
effects estimated in model 1. SNP effects were also re-estimated
as random effects by fitting the selected SNPs simultaneously
in either model 3 or in a SNP-BLUP model (equivalent to
GBLUP model 5). Predictions were evaluated by calculating the
correlation between observed phenotypes corrected for fixed
effects and estimated breeding values.

RESULTS

Phenotyping
Grain from 635 winter wheat lines were phenotyped for the
quality traits grain protein content, Zeleny sedimentation value,
test weight, falling number, and TKW. The lines were from
two different breeding cycles (set2014 and set2015). Phenotypic
variation was observed for all traits, especially for Zeleny
sedimentation and falling number, which had a coefficient
of variation of 26.9 and 23.4%, respectively (Table 3). The
phenotypes appeared to be approximately normally distributed
for all traits (Figure 1).

TABLE 3 | Mean, range, and coefficient of variation (CV) for phenotypic data.

Phenotype Mean Range CV (%)

Grain protein content (%) 8.7 7.5–10.9 6.4

Zeleny sedimentation (mL) 18.3 8.0–36.0 26.9

Test weight (kg/hL) 78.7 73.4–83.7 2.2

Falling number (s) 254.7 79.0–391.0 23.4

Thousand-kernel weight (g) 53.7 40.8–63.0 6.0

Genotyping
The 635 lines were genotyped for 13,006 SNP markers, and
10,802 of these were selected for the analyses (Table 2). The
genotype for 141 of the 13,006 SNPs were missing for more than
10% of the lines, and 2,063 SNPs had a MAF lower than 1%,
so they were excluded from the analyses. The MAF distribution
of the selected SNPs are shown in Figure 2A. The average
degree of heterozygosity of the lines was 2.5%, and the majority
of the lines were heterozygous for less than 5% of the SNPs
(Figure 2B).

The genomic relationship between the lines was determined
by computing a G-matrix based on the 10,802 SNPs. The
lines were genetically related both within and between the
two sets. The lines of set2014 were not clearly separated
from the lines of set2015 in the principal component analysis
of the G-matrix (Figure 3A). Furthermore, several groups
of lines with close genetic relationships were revealed in
the heat map of the G-matrix, but no lines were clearly
genetically different from the rest of the lines (Figure 3B).
The average genetic distance calculated as modified Rogers’
distance was 0.74 both within set2014 and within set2015.
The average genetic distance between set2014 and set2015 was
0.76.

Narrow sense genomic heritabilities (based on single plots)
and variance components based on the GBLUP and Bayesian
Power Lasso models are shown in Table 4. Heritabilities ranged
from 0.56 for protein to 0.81 for test weight and TKW based on
the GBLUP models.

GWAS: Single Marker Regression
GWAS were carried out using single marker regression of each
marker on the phenotypes. Family structure was taken into
account using G-matrices based on all chromosomes, except
the one for the selected marker. Q-Q plots of observed against
expected –log10(p-values) showed that the observed p-values
were inflated, i.e., most of the p-values were lower than the
p-values expected for SNPs that were not associated with the
studied trait. The genomic inflation factor (λIF) (Hinrichs et al.,
2009), which ranged from 1.29 to 1.78, were therefore used to
correct the p-values, so that they were closer to the expectation
(example in Figure 4).

Manhattan plots of the corrected –log10(p) are shown
in Figure 5. For Zeleny sedimentation, three regions
with significant SNPs were found on chromosomes 1B
(p-value = 2.5∗10−6), 1D (p-value = 1.6∗10−9), and 5D (p-
value = 6.1∗10−17) (Figure 5B). Based on the most significant
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FIGURE 1 | Distribution of the phenotypes. (A) Grain protein content, (B) Zeleny sedimentation, (C) test weight, (D) falling number, (E) thousand-kernel weight.

FIGURE 2 | Minor allele frequency (MAF) of SNPs and heterozygosity of lines. (A) MAF after selection of SNPs. (B) Heterozygosity of the 635 wheat lines.

SNPs, these regions explained 3.2, 6.5, and 9.2% of the genetic
variance for Zeleny sedimentation, respectively. The frequencies
of the alleles associated with higher Zeleny sedimentation were
64% (1B), 14% (1D), and 28% (5D).

For falling number, a nearly significant region was found on
chromosome 7B (p-value = 4.3∗10−5) with an allele frequency

of 89% for the advantageous allele (Figure 5D). No significant
SNPs were found for falling number when analyzing all 635
lines, but using only lines from set2014 (321 lines) revealed
one significant SNP on chromosome 4DS (p-value = 1.1∗10−6)
with an advantageous allele frequency of 77% (results not
shown).
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FIGURE 3 | Genomic relationship between lines. (A) Principal component analysis of the G-matrix for the 635 lines. Plot of principal components 1 and 2, which

explain 26.9 and 14.6% of the variance, respectively. Lines from set2014 are displayed in red, while lines from set2015 are displayed in blue. (B) Heat map and

dendrogram of G-matrix showing the relationship between the 635 lines based on the genotyped SNP markers. The bar on top of the heat map shows, which set the

lines, are from: Red: Lines from set2014, blue: Lines from set2015.

TABLE 4 | Variance components, their standard errors, and narrow sense genomic heritabilities estimated from the GBLUP and from the Bayesian Power Lasso models.

Phenotype GBLUP Bayesian Power Lasso

Additive genetic variance Residual variance h2 Additive genetic variance Residual variance h2

Grain protein content 0.16 ± 0.015 0.12 ± 0.011 0.56 0.13 ± 0.015 0.13 ± 0.013 0.51

Zeleny sedimentation 15.4 ± 1.01 4.2 ± 0.49 0.78 20.3 ± 0.85 4.1 ± 0.46 0.83

Test weight 2.2 ± 0.14 0.51 ± 0.064 0.81 2.0 ± 0.11 0.51 ± 0.070 0.79

Falling number 2,555 ± 184 825 ± 95 0.75 2,575 ± 151 815 ± 107 0.76

Thousand-kernel weight 10.3 ± 0.69 2.4 ± 0.31 0.81 7.4 ± 0.49 2.3 ± 0.36 0.76

FIGURE 4 | Q-Q plots. Plots of observed –log10(p-values) against expected given no associations between SNPs and the trait (in this example falling number).

(A) Before the correction with the genomic inflation factor, (B) after the correction with the genomic inflation factor.

For TKW, a region on chromosome 1B was nearly significant
(p-value = 3.4∗10−5) and explained 1.7% of the genetic variance
(Figure 5E). The advantageous allele frequencies of the SNPs in
this region were 97%. No significant regions were identified for
grain protein content and test weight (Figures 5A,C).

GWAS: Bayesian Power Lasso
Another approach for GWAS was also used, where all SNPs
were fitted at the same time using a Bayesian Power Lasso
model, where SNP effects were assumed to be from an
exponential power distribution (Gao et al., 2013). The optimal
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FIGURE 5 | Manhattanplots of –log10 (p-values). (A) Grain protein content, (B) Zeleny, (C) test weight, (D) falling number, (E) thousand-kernel weight. Last bin is

unmapped SNPs.

value for the shape parameter, β, of the Bayesian Power
Lasso models was determined by comparing the Deviance
Information Criterion of models with shape parameter 0.2,
0.4, 0.6, 0.8, and 1. For each of the studied traits, the shape
parameter giving the lowest Deviance Information Criterion
was chosen: 0.2 for grain protein content, 0.4 for TKW
and falling number, and 0.6 for Zeleny sedimentation and
test weight. Plots of the additive genetic variance explained
by the SNPs according to these models are shown in
Figure 6.

The SNPs that explain most variance according to the
Bayesian analyses were located in the same genetic regions as the
most significant SNPs identified by single marker regression for
Zeleny sedimentation, TKW, and falling number. However, the
explained variance was lower compared with the single marker
regressions. For the Bayesian analyses, only one SNP explaining
more than 1.5% of the additive genetic variance was found
(SNP on chromosome 5D associated with Zeleny sedimentation).
Sorting the lines based on their genotypes for the associated
SNPs for Zeleny sedimentation on chromosome 5D, 1D, and
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FIGURE 6 | Percentage of additive genetic variance explained by the SNPs according to the Bayesian Power Lasso analyses. (A) Grain protein content, (B) Zeleny,

(C) test weight, (D) falling number, (E) thousand-kernel weight. Last bin is unmapped SNPs.

1B, and looking at the mean of the phenotypic data, showed
that these SNPs had a clear effect on Zeleny sedimentation
(Table 5).

For test weight, the SNP with the largest effect were
located on chromosome 7A, but the SNP only explained
0.13% of the genetic variance. For grain protein content,
one SNP on chromosome 2A and five unmapped SNPs
were identified to have the largest effects. However, together
these SNPs explained less than 5 % of the total genetic
variance.

Genomic Prediction
Genomic predictions were conducted based on all 10,802 SNPs,
and the predictive ability was evaluated using different kinds of
cross-validations. The correlations between observed phenotypes
corrected for fixed effects and GEBVs using GBLUP models are
shown in Figure 7. The highest correlations were for Zeleny,
where the correlation for LOO (0.79) was quite close to the
maximum (the square root of the narrow sense heritability). The
lowest correlations were for protein content, where the prediction
of GEBVs across sets did not work (LSO, correlation: −0.01).
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TABLE 5 | Mean values for Zeleny sedimentation and number of lines with the different alleles of the top SNPs on chromosome 5D, 1D, and 1B.

A Genotype Zeleny mean No. of lines B SNP 5D SNP 1D SNP 1B Zeleny mean No. of lines

SNP 5D T 22.1 166 T G A 28.4 28

C 16.8 442 G 21.7 7

SNP 1D G 23.7 82 A A 21.5 101

A 17.4 538 G 16.9 21

SNP 1B A 19.3 389 C G A 21.7 11

G 16.5 215 G 19.7 11

A A 16.8 214

G 15.9 164

Green color indicates positive alleles. Zeleny sedimentation mean for all 635 lines was 18.3mL.

(A) Values based only on one of the SNPs. (B) Values based on the different combinations of the three SNPs.

FIGURE 7 | Correlations between observed phenotypes corrected for fixed

effects and GEBVs based on the GBLUP models. Maximum correlation, h, is

the square root of the narrow sense genomic heritability and is shown as blue

bars over the correlations. Correlations are based on different kinds of

cross-validations. (A) Leave-One-Out, Leave-Family-Out, Leave-Set-Out, and

(B) k-fold cross-validations.

For all traits, the correlations based on the LOO cross-validation
was higher than those based on the LFO and LSO (Figure 7A).
The k-fold cross-validation strategy showed that smaller training
sets resulted in slightly lower correlations (Figure 7B). The
predictive abilities based on the LFO ranged from 0.2 for grain
protein content to 0.68 for Zeleny sedimentation. The LSO cross-
validations resulted in the lowest predictive abilities for all traits.

Genomic predictions were also performed using the Bayesian
Power Lasso model. The predictive abilities were very close to
or slightly better than the predictions based on the GBLUP

model (Table 6). The largest improvement was for the LSO cross-
validations for Zeleny sedimentation, where the predictive ability
increased from 0.64 to 0.70, when using the Bayesian model
instead of the GBLUP model.

The GEBVs predicted based on the LOO cross-validations
were either not or only slightly biased (regressions from 0.93
for falling number to 0.98 for Zeleny sedimentation, Table 7).
However, for the LFO and LSO, there was some bias for all traits
except Zeleny sedimentation, so the scale of the predicted and
observed phenotypes did not completely match. For the k-fold
cross-validations, most regressions were close to 1. The most
biased of the k-folds was the 2-fold cross-validation for protein
with a regression of 0.89, and the remaining regressions were all
higher than 0.9. The biases for the 5- and 2-folds were in most
cases slightly worse than for the 10-folds.

In total, 128 of the 635 lines were selected (mainly based
on yield) to continue to F7 in the breeding program. The
selected lines were phenotyped for Zeleny sedimentation, TKW,
and falling number again in the F7 generation. The correlation
between the phenotypic F7 data and GEBVs estimated from
the F6 data using LSO cross-validations was 0.68 for Zeleny
sedimentation, 0.35 for TKW, and 0.41 for falling number.

Predictions Based on Most Significant
SNPs
The three and ten best SNPs were identified for each trait using
the single marker regression models and the Bayesian Power
Lasso models. The correlation between observed phenotypes
corrected for fixed effects and GEBVs based on these SNPs were
calculated to compare the models.

The correlations based on the best SNPs according to the
single marker regression were higher than the correlations
based on the Bayesian Power Lasso for grain protein content,
test weight, falling number, and TKW (Table 8). For Zeleny
sedimentation, the correlations were very similar for both
models. In most cases, predictions improved a bit when using
the SNP effects re-estimated in a SNP-BLUP model rather than
using SNP effects estimated from the single marker regression
or Bayesian Power Lasso model. For all traits, the predictions
improved when using the ten best SNPs instead of the three best.
Correlations were higher for all traits when using all 10,802 SNPs
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TABLE 6 | Comparison of predictive abilities based on GBLUP and Bayesian

Power Lasso models.

h LSO 2-fold 5-fold 10-fold

Grain protein content GBLUP 0.75 −0.01 0.43 0.49 0.50

Bayesian 0.71 −0.02 0.44 0.48 0.50

Zeleny sedimentation GBLUP 0.88 0.64 0.76 0.77 0.78

Bayesian 0.92 0.70 0.80 0.81 0.82

Test weight GBLUP 0.90 0.40 0.66 0.68 0.71

Bayesian 0.89 0.40 0.66 0.69 0.71

Falling number GBLUP 0.87 0.51 0.67 0.67 0.69

Bayesian 0.87 0.51 0.68 0.68 0.69

Thousand-kernel

weight

GBLUP 0.90 0.37 0.59 0.63 0.65

Bayesian 0.87 0.38 0.59 0.63 0.66

Predictive abilities are presented as correlations between phenotypes corrected for fixed

effects and GEBVs. Maximum correlation, h, is the square root of the narrow sense

genomic heritability. Cross-validations: LSO: Leave-Set-Out, and k-fold.

for predictions compared to using the three or ten best SNPs
(Figure 8).

DISCUSSION

Elite breeding material was used in the present study, so the
number of significant SNPs (and their effects) were low compared
with other studies, where the plant material had high diversity
and larger phenotypic differences between lines (Sun et al.,
2008; Bordes et al., 2014; Zanke et al., 2015). Furthermore, QTL
with large effects on the traits may be fixed in the breeding
lines, and will therefore not be detectable. However, there was
considerable phenotypic and genetic variation for all the studied
traits, indicating that several unfixed QTL were present in the
material. Wheat quality traits can be significantly influenced by
environmental effects and GxE interactions. Previous studies that
have used multi-environment field trials showed that many QTL
were only identified in certain locations, years or populations
(Deng et al., 2015; Jin et al., 2016; Krystkowiak et al., 2017).
Thus, QTL identified in the present study are not necessarily
effective in all environments. Heritabilities for wheat quality
traits reported in other studies are generally intermediate or
high, but varies depending on populations, environments, and
experimental setups (Mohler et al., 2014; Battenfield et al., 2016;
Michel et al., 2016). Here, the heritability was lowest for grain
protein content (0.56 according to GBLUP model) and highest
for test weight and TKW (0.81 for both). The high heritabilities
indicate that major parts of the phenotypic variation are caused
by genetic variation. Thus, SNPs associated with the traits may
be identified, and genomic selection could potentially be used
for improvement of the traits at this stage of the breeding
program.

The wheat lines have been grown with low nitrogen
fertilization (to follow the Danish agricultural practice), so the
grain protein content was quite low. No SNPs were significantly
associated with grain protein content, suggesting that this trait
is controlled by many QTL with small effects. Furthermore, the
relatively low heritability indicate that protein content is strongly

affected by environmental effects and GxE interactions (Shewry,
2009;Michel et al., 2016). The wheat lines would have to be grown
in several locations to account for these effects. The Bonferroni
corrected significance threshold might be too conservative, since
many of the SNPs were in linkage disequilibrium (but were
regarded as individual tests), so non-significant SNPs were not
necessarily without effect on the traits. However, using false
discovery rate instead only resulted in a higher number of
significant SNPs for Zeleny sedimentation, and these SNPs were
located in the same regions as the SNPs already identified using
the Bonferroni correction (results not shown).

The SNPs most significantly associated with grain protein
content were located on chromosome 2A, 4D, and 7A. In
agreement with the present study, Groos et al. (2003) identified
QTL associated with grain protein content on these three
chromosomes, but also on chromosome 3A and 7D. QTL on
chromosome 3B, 5A, and 6A were identified by Sun et al. (2008).
Hence, grain protein content seems to be controlled by many
QTL across the genome. Other studies indicate that this may
also be the case for other quality traits. Zanke et al. (2015)
found QTL associated with TKW on all chromosomes, while
Bordes et al. (2014) found QTL associated with test weight on all
chromosomes, exept chromosome 5D. In contrast, Krystkowiak
et al. (2017) and Liu et al. (2016) each identified only one QTL
significantly associated with test weight (located on chromosome
3B and 2B, respectively). Liu et al. (2016) also identified a QTL
with large effect on TKW on chromosome 3B, but did not find
major QTL for six other quality traits. Most significant QTL for
TKW were identified on chromosome 1A, 4A, and 7A, and for
protein content on chromosome 1D and 5D by Krystkowiak et al.
(2017).

Few SNPs were mapped to the D-genome chromosomes
compared with the chromosomes of the A- and B-genome both
in Bordes et al. (2014) and in the present study (Table 2). The
hybridization event(s) that introduced the D-genome into wheat
is thought to have happened a long time after the hybridization
of the A and B genomes (maybe more than 100,000 years later)
(Marcussen et al., 2014), and therefore the diversity of the D-
genome is lower (Marcussen et al., 2014; Nielsen et al., 2014).
This is most likely why the region located on chromosome 5D,
which was significantly associated with Zeleny sedimentation,
only contained two genotyped SNPs, whereas associated regions
on other chromosomes contained several linked SNPs. The
puroindoline genes Pina-D1 or Pinb-D1, which control grain
hardness, are located on 5D and have been shown to be associated
with several wheat quality traits including Zeleny sedimentation
(Bhave and Morris, 2008; Mohler et al., 2012), so the SNPs
identified on chromosome 5D in the present study could likely
be located in or linked to one of these genes.

Regions associated with Zeleny sedimentation were also found
on chromosomes 1B and 1D. Known loci that can affect gluten
quality on these two chromosomes are the glutenin loci Glu-
B1 and Glu-B3, Glu-D1 and Glu-D3, the gliadin loci Gli-B1
and Gli-D1 (Liu et al., 2014), and the transcription factor SPA
(Storage Protein Activator) (Guillaumie et al., 2004). Several
studies have identified QTL for Zeleny or SDS (sodium dodecyl
sulfate) sedimentation on chromosome 1A, 1B, and 1D (Deng
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TABLE 7 | Regressions of corrected phenotypes on GEBVs and their standard errors based on different cross-validations strategies using the GBLUP models.

LOO LFO LSO 2-fold 5-fold 10-fold

Grain protein content 0.96 ± 0.06 0.53 ± 0.10 −0.02 ± 0.11 0.89 ± 0.07 0.94 ± 0.06 0.97 ± 0.06

Zeleny sedimentation 0.98 ± 0.03 1.02 ± 0.04 1.05 ± 0.05 0.99 ± 0.03 0.98 ± 0.03 0.97 ± 0.03

Test weight 0.95 ± 0.04 0.71 ± 0.05 0.70 ± 0.06 0.91 ± 0.04 0.93 ± 0.04 0.95 ± 0.04

Falling number 0.93 ± 0.04 0.88 ± 0.05 0.83 ± 0.05 0.92 ± 0.04 0.91 ± 0.04 0.92 ± 0.04

Thousand-kernel weight 0.96 ± 0.04 0.73 ± 0.06 0.66 ± 0.06 1.01 ± 0.05 0.95 ± 0.05 0.97 ± 0.04

Cross-validations: LOO, Leave-One-Out; LFO, Leave-Family-Out; LSO, Leave-Set-Out; and k-fold.

TABLE 8 | Correlations between observed phenotypes corrected for fixed effects and breeding values predicted based on the best three or ten SNPs according to the

single marker regression and to the Bayesian Power Lasso.

Top 3 SNPs Top 10 SNPs

SNP selection Single marker regression Bayesian Power Lasso Single marker regression Bayesian Power Lasso

Effect re-estimation Single marker

regression

SNP-BLUP Bayesian

Power Lasso

SNP-BLUP Single marker

regression

SNP-BLUP Bayesian

Power Lasso

SNP-BLUP

Grain protein content 0.21 0.27 0.11 0.14 0.34 0.38 0.25 0.28

Zeleny sedimentation 0.61 0.61 0.59 0.59 0.62 0.66 0.68 0.69

Test weight 0.26 0.22 0.16 0.18 0.42 0.46 0.19 0.29

Falling number 0.17 0.28 0.17 0.14 0.41 0.36 0.34 0.17

Thousand-kernel weight 0.24 0.21 0.09 0.24 0.31 0.43 0.18 0.43

et al., 2015; Liu et al., 2016; Würschum et al., 2016; Krystkowiak
et al., 2017). The QTL most significantly associated with Zeleny
sedimentation identified by Krystkowiak et al. (2017) was located
on chromosome 5D like in the present study. Sedimentation and
other quality traits can also be affected by epistatic interactions
between alleles of different loci, but to a smaller extent than
by additive genetic effects (Würschum et al., 2016; Krystkowiak
et al., 2017). The 1BL.1RS wheat-rye translocation, which
has been widely used in European wheat breeding programs
(Graybosch, 2001), influences wheat quality negatively, since
lines with this translocation lose the Glu-B3 and Gli-B1 loci
among others. However, none of the 635 lines used in this study
contain this translocation (results not shown).

In accordance with the present study, QTL associated with
falling number have previously been found on chromosomes
4D and 7B. Mohler et al. (2014) showed that the b-allele
of the dwarfing gene Rht-D1 on chromosome 4D increased
falling number. In addition, they found a QTL on chromosome
7B, which harbors the α-amylase gene α-Amy-B2 and a QTL
associated with late maturity α-amylase content (Mrva and
Mares, 2001). Falling number can be considerably affected by
environmental effects, such as the temperature or amount of
rain before and during the harvest period. The QTL identified
in the present study on chromosome 4D was only significantly
associated with falling number, when analyzing only the lines
from set2014. This might indicate that this QTL is environment
specific, since it was polymorphic in both sets.

The allele frequencies of the SNPs positively associated with
Zeleny sedimentation on chromosome 1B, 1D, and 5D were
64 %, 14 %, and 28 %, respectively. Hence, selection of lines

based on these three SNPs can significantly improve the Zeleny
sedimentation in the breeding material. For TKW, the frequency
of the positive allele was 97% for the most significant SNP on 1B,
so the allele is almost fixed in thematerial. Most of the wheat lines
had the positive alleles of the SNPs on chromosome 4D and 7B
associated with falling number, as the allele frequencies of these
two SNPs were 77 and 89%, respectively. Thus, if only marker-
assisted selection is used, there is mainly potential for improving
Zeleny sedimentation in the studied population. This was also
confirmed by the predictions using few associated SNPs, where
the difference between using few or all SNPs were smaller for
Zeleny sedimentation than for the other traits.

The additive genetic variance explained by the best SNPs
were considerably lower when estimated using the Bayesian
Power Lasso than when using single marker regression. SNP
effects are shrunken to fit with the overall genetic variance,
when fitting all SNPs simultaneously in the Bayesian Power
Lasso. Conversely, the SNP effects might be overestimated when
performing single marker regression because of the Beavis effect
(Beavis, 1998; Xu, 2003). The predictive abilities based on the
three or ten best SNPs were in most cases highest when selecting
the SNPs with single marker regression and then re-estimating
the effects of the selected SNPs using a SNP-BLUP model. An
explanation for this could be that the standard errors of the
SNP effects are taken into account, when selecting based on the
significance of the SNP-trait associations. In addition, the effects
might be more accurately estimated, when the SNPs are fitted
simultaneously rather than separately. For Zeleny sedimentation,
the predictions were slightly better, when selecting SNPs using
the Bayesian Power Lasso model, indicating that this model
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FIGURE 8 | Correlations between observed phenotypes corrected for fixed effects and GEBVs based on 5-fold cross-validations. GEBVS were predicted from the

three or ten best SNPs based on single marker regression (effects re-estimated with SNP-BLUP) and from all 10,802 SNPs based on the GBLUP model.

might work better for traits controlled by QTL with large
effects.

Since the variance explained by single SNPs was quite low for
most of the studied traits, genomic selection seems to be a more
promising strategy than selection based on few markers. For all
traits, the predictive ability increased when using all markers
compared to using the three or ten best markers. Other recent
studies have reached the same conclusion. Würschum et al.
(2016) reported similar predictive abilities as in the present study
for protein content and SDS sedimentation when using only
significantly associated markers and when using all markers. For
test weight, TKW and protein content, using all markers rather
than one or fiveQTL resulted in large improvements in predictive
abilities (Norman et al., 2017). Similar results were observed in
hybrid wheat, where predictive abilities for seven quality traits
generally improved when lowering the significance threshold for
markers included in the prediction models (Liu et al., 2016).

One way to implement genomic selection in breeding
programs is to select the best lines from a new set (breeding cycle)
based on phenotyped lines of previous sets. Only six lines (of a
total of 96 different parents) were used as crossing parents for
both sets used in the present study. Nevertheless, the principal
component analysis and G-matrix showed that the lines of the
two sets were genetically related. The average genetic distance
between the sets (0.76) was only slightly higher than within sets
(0.74). This indicates that the crossing parents used for each
set were genetically related. The genetic distance calculated as
modified Rogers’ distance can range from 0 to 1 (Reif et al., 2005).
Here, the maximum distance between two lines was 0.91, and the
average distance between lines in the largest groups of full-sibs
(33 lines) was 0.51.

The LSO cross-validations resemble how the predictions
would perform most realistically, when predicting lines of a new
set before phenotypic information is available for those lines.
However, the correlations based on the LSO were not as high as

for the other types of cross-validations, because of a combination
of a smaller training set size, lower genetic relationship between
lines of the training and validation sets, and GxE interactions.
The k-fold cross-validations showed that lowering the number
of lines in the training set had a small negative impact on the
correlations. Thus, the main reasons for the lower correlations
of the LSO compared with the LOO and LFO were the decrease
in genetic relationship between lines and GxE interactions.
However, the effect of the genetic relationship may partly be
confounded with the GxE interactions. Including data frommore
years, would most probably improve the results, which is the case
in a recent study with spring wheat, where the predictive abilities
for several quality traits increased as lines from more years were
included in the training set (Battenfield et al., 2016). The cross-
validations of the present study indicate that predicting GEBVs
of lines from a new breeding cycle based only on lines from a
previous cycle might not be the most effective implementation
strategy if the predicted traits are strongly affected by GxE
interactions. Additional data from lines replicated across
locations and/or years would be beneficial in order to account for
GxE interactions. Furthermore, the predictive abilities increases
if lines from the same breeding cycle, preferably sister lines,
are included in the training set. Another way to increase the
predictive abilities could be to include pedigree information in
the models, although the increase is largest if few markers have
been used to estimate the genetic relationship between lines
(Cericola et al., 2017).

Bayesian models often perform better than GBLUP models
when the genetic relationship between training and validation
sets are low, because they are better at capturing LD between
markers and QTL (Gao et al., 2013). This improvement is
most pronounced for traits that are controlled by QTL with
large effects, since Bayesian models allow stronger shrinkage of
small effects and weaker shrinkage of large effects compared to
GBLUP.
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Here, the largest improvement was for the LSO
cross-validations for Zeleny sedimentation, when using the
Bayesian Power Lasso model instead of the GBLUP model. Thus,
the Bayesian Power Lasso model is mainly advantageous to use,
if the genetic relationships between lines are low and for traits,
where some QTL have large effects.

CONCLUSION

SNPs significantly associated with Zeleny sedimentation were
identified on chromosome 1B, 1D, and 5D, where genes that are
known to affect baking quality of wheat are located. These three
SNPs together explain 18.9% of the additive genetic variance
according to the single marker regression analysis. The same
genetic regions were identified using the Bayesian Power Lasso.
However, the explained variance estimated in this model was
considerably lower. The prediction of phenotypes based on
the best three or best ten SNPs found using the two different
methods revealed that the SNPs found using the single marker
regression could more accurately predict the phenotypes in most
cases. Predictions improved for all traits when using ten SNPs
instead of three. The GWAS and predictions using few SNPs
indicated that there was a couple of QTL with large effect on
Zeleny sedimentation, while the other quality traits seemed to be
controlled by many QTL with small effects. Genomic predictions
based on all SNPs further improved the predictions and worked
quite well for most traits. The predictive abilities were highest
for Zeleny sedimentation, while grain protein content was the
most difficult trait to predict, especially across breeding cycles.
The different types of cross-validations indicated that the genetic
relationship between lines and GxE interactions were more
important for the predictive abilities and for the bias than the
size of the training set. However, the predictions are based
on single replication of lines, so additional replications across

years and locations would be useful to study the effects of the
GxE interactions.Using Bayesian Power Lasso models resulted
in similar or slightly higher predictive abilities than when using
GBLUP models.
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