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Late leaf spot (LLS; Cercosporidium personatum) is a major fungal disease of cultivated
peanut (Arachis hypogaea). A recombinant inbred line population segregating for
quantitative field resistance was used to identify quantitative trait loci (QTL) using QTL-
seq. High rates of false positive SNP calls using established methods in this allotetraploid
crop obscured significant QTLs. To resolve this problem, robust parental SNPs were first
identified using polyploid-specific SNP identification pipelines, leading to discovery of
significant QTLs for LLS resistance. These QTLs were confirmed over 4 years of field
data. Selection with markers linked to these QTLs resulted in a significant increase
in resistance, showing that these markers can be immediately applied in breeding
programs. This study demonstrates that QTL-seq can be used to rapidly identify QTLs
controlling highly quantitative traits in polyploid crops with complex genomes. Markers
identified can then be deployed in breeding programs, increasing the efficiency of
selection using molecular tools.

Key Message: Field resistance to late leaf spot is a quantitative trait controlled by many
QTLs. Using polyploid-specific methods, QTL-seq is faster and more cost effective than
QTL mapping.

Keywords: Arachis, QTL-seq, late leaf spot, polyploidy, resistance

INTRODUCTION

Peanut (Arachis hypogaea) is an important oil crop rich in protein, vitamins and minerals. It
is grown in most temperate to sub-tropical regions of the world reaching a total of 40 million
tons in global production in 20141. Late leaf spot [LLS; caused by Cercosporidium personatum
(Berk. & Curt.) Deighton] is a major fungal disease plaguing peanut production worldwide. In
Georgia-United States, the disease starts around mid-August when the fungal spores germinate
and penetrate peanut leaves through stomata located on the abaxial surface. Round-shaped black
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lesions become visible within 1 week of fungal germination.
Since the spores are deposited in the soil, LLS disease usually
starts from the bottom layer of the plant canopy and moves
upward. As the fungal lesions enlarge, coalescence of lesions often
is observed in highly susceptible lines (Gill, 2013). Sporulation
occurs 20 to 30 days after infection. Secondary infection from
freshly produced spores is common in the long peanut growing
season. Reduction in photosynthesis due to fungal growth and
subsequent defoliation decreases peanut production. Highly
susceptible lines can lose all their leaves one month prior to
maturity. It is estimated that LLS causes 30–70% yield penalty
without spraying susceptible cultivars with fungicide (Singh et al.,
2011). To control the disease, multiple fungicide sprays are
needed throughout the growing season which incurs the highest
cost for peanut disease management (Woodward et al., 2014) in
addition to environmental pollution. Therefore, integrating host
resistance into elite peanut cultivars would be the most effective
solution to this fungal disease.

Breeding peanut for disease resistance is challenging since
peanut germplasm has narrow genetic diversity (Pandey et al.,
2012). Strong resistance to a wide range of diseases is harbored by
wild diploid relatives of peanut; however, introgression of disease
resistance alleles from wild diploids to allotetraploid peanut is
hampered by the barrier of ploidy level differences (Proite et al.,
2007). In spite of this limitation, there are a few examples of
successful introgression of strong host resistance to diseases
into cultivated peanut from wild diploid relatives (Stalker et al.,
2013). As an example, root-knot nematode resistance in peanut
is conferred by a large alien introgression on chromosome A09
from A. cardenasii, a wild A-genome diploid relative to cultivated
peanut (Simpson et al., 1993; Nagy et al., 2010). In terms of host
plant resistance to LLS, cultivated peanut germplasm PI203396
provided resistance alleles to LLS and led to the release of resistant
cultivar Georganic (Holbrook and Culbreath, 2008). Meanwhile,
LLS resistance in wild diploids such as A. cardenasii (Company
et al., 1982), A. diogoi (Kumar and Kirti, 2015), A. batizocoi
(Zhou et al., 2016), and A. stenosperma (Leal-Bertioli et al.,
2009) has been identified. To access this resistance, induced
allotetraploids were established by interspecific hybridization and
used in breeding programs (Company et al., 1982; Stalker and
Beute, 1993; Gowda et al., 2002; Tallury et al., 2014; Zhou et al.,
2016). The most effective and widely deployed LLS resistance
was introgressed from A. cardenasii initially chosen for early
leaf spot resistance (Company et al., 1982). Leaf spot resistant
line CS16 from this interspecific hybrid source was distributed
to India (Stalker, 2017) and selected for LLS resistance resulting
in two ICRISAT germplasm lines ICGV 86855 (CS16) and
ICGV 86687 (CS 16 – B2 – B2) (ICRISAT Annual Report,
1986). CS16 was the progenitor of an Indian germplasm line,
GPBD 4 (Gowda et al., 2002). Population TG24 x GPBD 4
was mapped for LLS resistance by SSR markers and QTL-seq
(Khedikar et al., 2010; Sujay et al., 2012; Pandey et al., 2016), and
LLS resistance QTLs explaining 40–60% of phenotypic variation
were identified. The major QTL located at 131 to 135 Mbp of
chromosome A03 was confirmed by QTL-seq (Pandey et al.,
2016). Direct evidence of A. cardenasii origin for this QTL was
provided by comparing IAC322, another CS16-derived line, and

A. cardenasii using diagnostic SNPs identified with the IntroMap
pipeline as well as SNP markers from the Arachis 58K SNP
array (Clevenger et al., 2016, 2017). This genetic evidence further
substantiated the origin of this reliable LLS resistance source as
being created in the United States and preserved and selected
further in India. Another disease resistant germplasm, GP-NC
WS 16, was selected for its excellent early leaf spot resistance
from these A. cardenasii introgressed lines (Tallury et al., 2014).
It was one of the eight unique male parents paired with either
Tifrunner (Holbrook and Culbreath, 2007) or Florida-07 (Gorbet
and Tillman, 2009) to establish recombinant inbred populations
as genetic mapping resources (Holbrook et al., 2013). Florida-
07 is susceptible to LLS and the population C1801 = Florida-
07 x GP-NC WS 16, segregating for disease response, was
used to study genetic control of LLS resistance in this research
project.

Bulk segregant analysis, the method of using bulked
individuals that share a phenotype to identify markers tightly
linked to a trait of interest was first pioneered in lettuce and
tomato using amplified fragment length polymorphism (AFLP)
and restriction fragment length polymorphism (RFLP) markers
(Giovannoni et al., 1991; Michelmore et al., 1991). This method
was combined with next generation sequencing (NGS) to map
mutations to functional variant resolution using SHOREmap
(Schneeberger et al., 2009). The SHOREmap methodology was
then extended as mapping-by-sequencing to map functional
variants in non-model organisms (Galvão et al., 2012). Finally,
QTL-seq was proposed as a fast method to identify and fine map
QTL (Takagi et al., 2013). The resolution of QTL-seq relies on the
amount of recombination captured within the population and the
number of individuals available to be bulked. The size of the bulks
are a direct result of the quantitative nature of the trait of interest
combined with resolution of phenotyping.

QTL-seq has been a successful tool to identify QTLs in diploid
crop species (Lu et al., 2014; Illa-Berenguer et al., 2015; Singh
et al., 2016). The duplicated nature of allopolyploid genomes can
cause problems with false-positive SNP calls masking significant
QTLs. Recently, QTL-seq was utilized to map leaf spot and rust
resistance in peanut (Pandey et al., 2016). The region identified
co-localizes with an alien introgression from the diploid
A-genome species, A. cardenasii (Clevenger et al., 2017) that was
introduced through the parent GPBD 4, and so the identification
of this major QTL is less complex. Identification of alien
introgressions from interspecific populations is straightforward
compared to identifying polymorphisms between cultivated
peanut chromosomes. This is because of the divergence of A
or B genome wild progenitors is much greater than between
cultivated genomes. Pandey et al. (2016) identified an alien
introgression that contributed resistance to rust and leaf spot, but
not a QTL originating from cultivated germplasm. As such the
problem of false positive SNP calls within the introgressed region
is mollified. Identification of minor QTL from A. hypogaea ×
A. hypogaea crosses has not previously been reported using QTL-
seq. Identification of these QTL would be beneficial to breeding
programs as a fast and efficient method of identifying markers
strongly linked to traits of interest for use in marker-assisted
breeding programs.
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In this study, QTL-seq was used to identify tightly linked
markers to LLS resistance in peanut. Methods of SNP
identification that work well for diploid species produced too
much false positive noise to identify significant QTLs. However,
use of a polyploid-specific pipeline to identify markers between
parental genotypes allowed sufficient resolution to identify
three QTLs. These QTL were confirmed using marker-assisted
selection within one-half of the recombinant inbred line (RIL)
population not used for QTL-seq and by backwards selection.
Four years of field data showed that these markers are suitable
for marker-assisted selection.

MATERIALS AND METHODS

Plant Materials and LLS Phenotyping
The C1801 (Florida-07 x GP-NC WS 16) population was
advanced using small plots of bulked seed to minimize attrition
(Holbrook et al., 2013). A random individual plant was harvested
from each F6 to provide seed for line increases. F6:8 RILs were
used to initiate phenotyping. At the F2 stage, the population was
divided so that half of the population was advanced in Tifton,
GA, United States and the other half was advanced in Raleigh,
NC, United States. Subsequently, a total of 192 and 191 RILs were
independently increased at these two locations.

Field phenotyping for LLS severity was performed with the
192 RILs advanced in Georgia according to a randomized block
design with three field replications. The RILs were planted in
twin-row plots (1.5 m × 1.8 m = 2.7 m2) at a seeding rate
of six seeds per 0.3 m in Georgia in 2012, 2013, 2014, and
2015. Tests for years 2012 and 2013 were conducted at the
University of Georgia College of Agricultural and Environmental
Sciences Gibbs Farm, Tifton, GA, United States and for years
2014 and 2015 at the CAES Bowen Farm, Tifton, GA, United
States. Marker-selected NC advanced lines along with resistant
checks Georganic (Holbrook and Culbreath, 2008) IAC322, and
GP-NC WS 16 and susceptible checks Florida-07 and IAC886
were tested at the Gibbs Farm, Tifton, GA, United States in
summer 2016. No fungicide was applied during the growing
season and LLS disease progression was evaluated according
to the Florida 1 to 10 scale (Chiteka et al., 1988). Disease
ratings started once LLS disease symptoms were identified in
the population. Four ratings at an interval of 10 to 14 days
were taken each year. Area under the disease progression
curve (AUDPC) was calculated for each line. Year 2013 data
was excluded from genetic mapping due to insufficient disease
pressure.

Statistical Analysis of Phenotype Data
Univariate variance analyses with GLM method was performed
and the variance components were determined by restricted
maximum likelihood (REML). The broad sense heritability was
estimated according to the formula: H2

= σg
2/(σg

2
+ σ2

gxe/n+
σ2

e/nr), where σg
2 was the genetic variance component among

the RILs, σ2
gxe was the RIL x environment interaction variance

component and σ2
e was the residual component, n was the

number of environments and r was the number of replications

(Hallauer and Miranda, 1988). Statistical analysis of phenotypic
data was performed with SAS software version 9.4 (SAS Institute
Inc., Cary, NC, United States). Normality of data distribution was
tested by the Shapiro test.

Re-sequencing
DNA was extracted from leaves of each individual to be bulked
using Qiagen DNAeasy Plant mini kit R©. Equal amounts of
DNA were pooled to form each bulk. Whole genome shotgun
sequencing libraries were constructed using the Illumina TruSeq
PCR-free kit starting with 2 µg of total DNA isolated from
single plants using Qiagen DNAeasy Plant mini kit R© and and
paired-end 150 sequencing was performed on the Illumina HiSeq
2500 V4 R© sequencer at HudsonAlpha Institute for Biotechnology
(Huntsville, AL, United States). Florida-07 and GP-NC WS 16
had been integrated in a group of 20 genotypes for whole
genome re-sequencing, including 10 parents of RIL populations
(Holbrook et al., 2013) and 10 other genotypes with different
traits of interest for breeding purposes (Clevenger et al.,
2016).

The raw sequences were filtered and trimmed using Cutadapt
v1.2.1. for adaptor trimming and TrimGalore v0.3.7. for quality
trimming. About 88% of high quality reads mapped over the two
diploid genomes (A and B genomes represented by A. duranensis
and A. ipaensis2) with Bowtie2 using default parameters for
sensitive local alignment reporting best alignment and zero
mismatch in the 20 bp seed. Consequently, very similar overall
alignment rate was obtained for both genomes, being 96.7%
on average over the A. duranensis genome and 96.9% over the
A. ipaensis genome. The SNP calling between all the genotypes
based on the reference genomes, and filtering of homeologous
SNPs was developed following the SWEEP Prime version
program (Clevenger and Ozias-Akins, 2015), which includes
Samtools v0.1.9 and Bcftools v0.1.9, using default parameters
with – ultimate option and minimum depth of 5x.

A total of 98,966,134 2× 125 paired-end reads for the resistant
bulk and 140,618,299 paired-end reads for the susceptible bulk
were mapped to a concatenated in silico synthetic tetraploid
genome comprised of the A. duranensis and A. ipaensis
pseudomolecules (Bertioli et al., 20162) using Bowtie 2 v. 2.2.3
(Langmead and Salzberg, 2012) and default parameters. All SNPs
were called using Samtools mpileup (Li et al., 2009).

The sequence from both bulks are available at The National
Center for Biotechnology Information (NCBI) under the
BioProject ID PRJNA419937 and can be accessed at the link
http://www.ncbi.nlm.nih.gov/bioproject/419937.

Analysis without Parental SNPs
An initial analysis was done without knowledge of parental
SNPs. First, the resistant and susceptible bulk SNPs were
filtered for ‘polymorphic’ loci using mpileup-generated genotypic
probabilities using custom scripts and filtered for at least 10 reads
per bulk covering a SNP. The SNP Index was calculated for each
bulk by counting the number of reads with the SNP and dividing
by the total reads mapped to the locus for each bulk. Then the

2https://peanutbase.org/
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susceptible bulk index was subtracted from the resistant bulk
index to get the 1SNP for each SNP.

Analysis Using Parental SNPs and
SWEEP
To clean up noise in the data from false-positive SNP calls, a
new strategy was employed using parental SNPs identified with
the polyploid-specific SNP filtering tool, SWEEP (Clevenger and
Ozias-Akins, 2015). SNPs were identified between Florida-07
and GP-NC WS 16 using the re-sequencing data and SWEEP
with the following parameters: ‘-s 1 -d 5 -r 0 –ultimate’. Using
custom scripts the GP-NC WS 16 allele was designated the
‘resistant’ allele and the Florida-07 allele the ‘susceptible’ allele.
The SNP indexes were recalculated for the two bulks using only
the SNPs in common between the parental SNPs and the SNPs
present in the bulks. A smoothing function to reduce noise in the
data was carried out by using a sliding window average across
each chromosome of 1SNP with a window size of 2 Mb and
interval of 500 kb (Supplementary File S2).

Permutation Test for Significance
To generate a null model assuming no QTLs, a permutation
test was carried out as in Takagi et al. (2013). Briefly, for each
marker, 1,000 simulations were carried out by sampling alleles
from a population of 200 RIL lines for two bulks by sampling
a binomial distribution assuming 1:1 marker segregation. Then
the alleles sampled from the bulks were simulated at the given
depth at the marker of interest and 1SNP was calculated. Two
separate simulations were carried out to generate marker-specific
thresholds for p < 0.05 and p < 0.01. The simulation python
script is available in Supplementary File S1.

Calculation of the G Statistic
The G statistic was calculated for each SNP as described in
Magwene et al. (2011) using a custom python script. The script
used is available in Supplementary File S1.

Bootstrapping Simulation
The LLS rating data from all 4 years were shuffled 10,000
times and the top 16 individuals were selected to represent the
‘resistant’ lines and the bottom sixteen individuals were selected
to represent the ‘susceptible’ lines. Sixteen was used because that
is the number of individuals represented in the RIL population
with resistant or susceptible alleles at each marker. For each
iteration, the number of groups of shuffled individuals that had
an average disease score below the empirical group of ‘resistant’

lines and an average disease score above the empirical group of
‘susceptible’ lines was recorded.

RESULTS

Phenotypic Variation of LLS Resistance
Late leaf spot ratings (AUDPC) were significantly different
between Florida-07 and GP-NC WS 16 in 2012 and 2015 but
the difference was not significant in 2014 (Table 1). The RIL
population demonstrated large continuous phenotypic variation
across all three years (Figure 1) and transgressive segregation
for leaf spot resistance was observed (Table 1). Both RIL and
environment (year) significantly affected LLS resistance in the
analysis of variance test whereas the effect of RIL× environment
(year) was not significant (Table 2). The year to year variation in
phenotype data is caused by the fluctuation of disease pressure
in the natural field environment; however, the lack of RIL x
environment effect indicates that the RILs performed consistently
in response to varied levels of disease pressure. The broad
sense heritability was 0.88 supporting high genetic influence on
the phenotypic variation. Since the RIL data deviated from a
normal distribution detected by the Shapiro test, square-root
transformation was applied to normalize the data set.

Identification of LLS Resistant and
Susceptible Bulks
Selection of individuals to include in sequencing bulks was done
by ranking each line for every year and selecting the top five
and bottom five lines according to average rank (Table 3) The
median bulk ranking for the “Resistant” bulk (R bulk) was 7.75
and the median ranking for the “Susceptible” bulk (S bulk) was
177.5. These bulks were subjected to whole genome shotgun
sequencing.

False Positives Result in Too Much Noise
in 4× Peanut
Calling SNPs in peanut, like other polyploids, is difficult because
of highly similar homeologous sequences between subgenomes.
A hypothesis is that any homeologous false positive SNP can
be ignored because they would appear neutral between bulks
and would not affect the identification of significant SNPs. An
analysis was first carried out using methods similar to those
applied to inbred diploid species such as rice, cucumber, or
tomato (Takagi et al., 2013; Lu et al., 2014; Illa-Berenguer
et al., 2015). As expected, an extraordinary number of putative
‘SNPs’ were called between bulks; 2,245,504 after filtering for

TABLE 1 | Area under disease progress curve (AUDPC) of Florida-scale rating for late leaf spot (LLS) disease in the recombinant inbred line (RIL) population and parents.

Environment Florida-07 GP-NC WS 16 RIL range Mean SD Skew Kurt w (sig.)

Year 2012 4.9 3.8 3.1–6.9 4.7 0.6 0.34 0.46 0.99 (0.003)

Year 2014 3.6 4.2 2.3–8.8 4.6 1.2 0.40 −0.48 0.98 (0.0001)

Year 2015 5.8 3.9 2.8–7.9 5.1 1.0 0.37 −0.07 0.99 (0.0001)

SD, standard deviation; Skew, Skewness; Kurt, Kurtosis; w, Shapiro–wilk statistic value; sig., significance.
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FIGURE 1 | Phenotype distribution of Area under disease progress curve (AUDPC) for late leaf spot (LLS) disease. The normal distribution curve in the graph
represented the expected percentage of recombinant inbred line (RILs) with respect to disease score range.

depth, indicating a large number of false positive SNP calls.
After calculating 1SNP and using a sliding window smoothing
approach, the high number of false-positive SNP calls created
too much noise to identify significant regions (Supplementary
Figure S1). A different approach was needed to analyze these data
appropriately.

SWEEP Filtering Identifies Significant
QTL
A total of 5,513 parental SNPs (2,489 A; 3,024 B) were detected
in the bulks, using pipeline specifically designed to deal with the
particular issues in polyploid genomes, SWEEP (Clevenger and
Ozias-Akins, 2015). Significant candidate QTLs were identified
on three chromosomes, A05, B03, and B05 (Figure 2) with
most significant sliding window 1SNP values of 0.6, 0.78, and –
0.74, respectively (p < 0.05). The estimated regions for each
QTL are 4.7 Mb (A05), 1.2 Mb (B03), and 3.4 Mb (B05).

TABLE 2 | Analysis of variance and broad sense heritability for LLS in the RIL
population across three environments.

Variables Mean square df F-value P-value h2

RIL 3.63 192 7.3 <0.001 0.88

Environment 33.61 2 67.4 <0.002

RIL × Environment 0.48 384 1.0 0.6607

Error 0.33 1136

The candidate QTL on chromosomes A05 and B03 represented
alleles from the resistant parent (GP-NC WS 16) as expected.
The QTL on B05 represented alleles from the susceptible
parent Florida-07. Three Kompetitive Allele Specific PCR (KASP)
markers were developed representing significant SNPs within
each QTL region (Supplementary Table S1). These markers were
used to genotype the population and retroactively select for
putative resistance and susceptibility alleles. Linear regression
of each marker over the 4 years of data revealed the markers
explained 10, 5, and 2% of the variance (B05, B03, and A05,
respectively). All three markers explained 15% of the observed
variance.

Validation of Identified Regions
To validate the identified regions, the three KASP markers
with 1SNP values for each SNP of 0.6 for A05, 0.78 for B03,
and –0.8 for B05, were first used to genotype the entire population
(Supplementary Table S1). Then lines were selected for combined
putative ‘resistant’ and ‘susceptible’ alleles with all three markers.
The null hypothesis of no effect of the marker on resistance
to LLS in the field, tested with a Kruskal Wallis test, revealed
significant effect of each marker on leaf spot field resistance across
all 4 years of data (Figure 3, top). As a confirmation of these
results, the data were subjected to a bootstrapping algorithm.
After 100 simulations across all 4 years of data, more than 95%
of randomly selected pools of individuals had an average disease
score greater than the ‘resistant’ group selected with the three
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TABLE 3 | Ranks of individuals making up ‘Resistant’ and ‘Susceptible’ bulks.

Line Mean Rank 2012 2013 2014 2015

LLS

“Resistant” Bulk

1028 4 5 8 1 2

952 5.5 18 1 2 1

1036 7.75 8 11 8 4

980 21.25 15 2 13 55

954 9.25 21 4 7 5

GP-NC WS 16 39.75 8 1 149 1

Bulk median 7.75 15 4 7 4

“Susceptible” Bulk

1012 177.5 171 181 179 179

1042 180.25 180 178 173 190

924 177.25 179 180 176 174

1075 177.25 184 175 184 166

917 188 189 189 182 192

Florida-07 114.5 126 72 102 158

Bulk median 177.5 180 180 179 179

Ranks for each line are indicated for each year of data considered with the median
rank for the bulk for each year at bottom.

markers (p < 0.05). Additionally, more than 95% of randomly
selected pools of individuals had an average disease score less
than the ‘susceptible’ group selected with the three markers
(p < 0.05).

A blind validation test was conducted to further validate
the identified markers. First, lines were selected among the
RILs advanced in North Carolina that were not tested for
LLS severity previously. The lines were selected only with the
KASP markers to select for ‘resistant’ and ‘susceptible’ alleles
for each marker. The selected lines were tested in an unsprayed
field test with three replicates following the randomized block
design. In addition, the lines used in each bulk for sequencing
and resistant and susceptible checks were included in the test
(Figure 3, bottom). The selected lines were significantly different
in response to LLS.

DISCUSSION

QTL-seq is a powerful tool to rapidly identify and deploy
markers linked to traits of interest. The method, developed
by Takagi et al. (2013), is an extension of bulk segregant
analysis (Giovannoni et al., 1991; Michelmore et al., 1991).
In contrast to bulk segregant analysis, which was applied to
F2 individuals to saturate genetic maps in regions of interest
with PCR-based markers, QTL-seq utilizes high-throughput
sequencing for access to all polymorphisms available. In
addition, QTL-seq identifies new regions of interest and
depending on the population used, can fine-map the candidate
region in a single step. QTL-seq has been used effectively
in many diploid crops to identify regions controlling traits
of interest, including rice, cucumber, tomato, and chickpea

FIGURE 2 | Quantitative trait loci (QTL)-seq identifies significant QTL for
controlling LLS resistance. Scatter plots for chromosomes A05 (top), B05
(middle), and B03 (bottom). Each graph is a scatter plot of each 1SNP
(R-Bulk SNP Index–S-Bulk SNP Index) plotted against the physical position
based on the A. duranensis (A) and A. ipaensis (B) pseudomolecules. The
dark red line represents a sliding window of 2 Mb moving 500 kb intervals.
Statistical confidence intervals under the null hypothesis of no QTL are plotted
for each marker (blue – p < 0.05 and red – p < 0.01). Gray shaded boxes
indicate significant QTL.

(Takagi et al., 2013; Lu et al., 2014; Illa-Berenguer et al., 2015;
Singh et al., 2016). Recently, QTL-seq was used effectively in
combination with differential expression analysis to identify
candidate genes related to response to boron deficiency in
allotetraploid Brassica napus (Hua et al., 2016). Mapping-by-
sequencing was used to map an early flowering mutant and
yellow rust resistance in wheat (Gardiner et al., 2014, 2016),
showing that this method can be useful in large polyploid
genomes. The current study extends these findings, by showing
that by using robust parental SNPs, more than one smaller effect
QTL can be identified and deployed immediately using marker-
assisted selection even in polyploid crops with large, complex
genomes.

For cultivated peanut, the rate-limiting step for performing
QTL-seq analysis is having access to high-quality polymorphisms.
New pipelines such as SWEEP, developed specifically for
allopolyploids, allow more precision for the analysis of QTL-
seq data. Without knowledge of robust polymorphisms between
parental genotypes in this study, the collective noise of the false
positive SNP calls did not allow identification of significant loci
(Supplementary Figure S1). After identifying polymorphisms in
parents using SWEEP, analysis of those SNPs elucidated three
clear candidate QTLs which were then validated in a follow
up experiment to provide an increase in field resistance to LLS

Frontiers in Plant Science | www.frontiersin.org 6 February 2018 | Volume 9 | Article 83

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00083 February 1, 2018 Time: 17:57 # 7

Clevenger et al. Polyploid-Specific QTL-seq

FIGURE 3 | Validation of identified resistance QTL. (Top) Lines with putative ‘resistant’ alleles and ‘susceptible’ alleles were selected in the RIL population and tested
against each other across years with a Kruskal Wallis test. From left to right selected only with marker on A05, B03, or B05, and with all three markers (Top right).
(Bottom) Validation test in 2016. Lines selected for bulks, resistant and susceptible check varieties, and lines blindly selected with the three identified markers were
grown in an unsprayed test in a completely randomized design with three replicates each of two-row/1.524 m plots. Within each category, asterisks indicate
significance by a Kruskal–Wallis test (∗∗∗p < 0.001; ∗∗p < 0.01). (Bottom right) Plots of two lines selected for resistance alleles and two lines selected for
susceptibility alleles with three markers.

(Figures 2, 3). There is an exception to this and that is when
the trait of interest is localized within an alien introgression
segment that was introduced using interspecific hybridization
methods. In this case, when a segment from a foreign genome
is controlling the trait of interest, it is routine to identify
these introgressions easily (Clevenger et al., 2017). Given a
population that is segregating for this introgression segment
and the trait such as in Pandey et al. (2016), the underlying

QTL identified is the alien introgression segment itself and so
is easily identified. In peanut, and possibly other allopolyploids,
in the absence of an alien genome segment, high quality SNPs
cannot be detected between two bulked sequences. This is simply
because the allele frequencies between polymorphisms that do
not control the trait of interest are not known and will be
centered around 0.5 with some level of variance associated.
The large number of homeologous polymorphisms (between
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subgenomes) will also appear as neutral polymorphisms with
a level of variance. In cultivated peanut, there are more
polymorphisms between subgenomes than between genotypes
and so the true signal will be drowned out by the false signal.
In the situation with an alien introgression, however, all the
polymorphisms between the alien genome and the cultivate
genome will segregate almost completely allowing for a strong
signal to be detected.

For a quantitative trait, such as LLS resistance, bulking
individuals based on a single year of data would give spurious
results. For example, in this study, bulking after 2012 would
give much different results than using any of the other years.
Bulking using just the data in 2015 would have yielded the
same results, but knowledge a priori of the best year is not
possible. So, QTL-seq for quantitative traits still requires multiple
experiments. However, in QTL mapping the entire population
needs to be genotyped with genome-wide markers. This expense
increases as the size of the population increases. For example, in
the C1801 population, 191 lines needed to be genotyped with
a SNP array. If this array costs (for example) $50 per sample,
then the genotyping cost is $9,550 plus labor and reagent costs
for DNA extraction. Using QTL-seq, only two samples need to
be sequenced. The genome size and genome complexity drives
the sequence coverage needed, but as an example for peanut,
sufficient data could be generated by sequencing each bulk to
10× coverage (used in this study). Using the Illumina coverage
calculator3 two bulks could be sequenced on one NEXTSeq
high output run or over two lanes of HiSeq 2500 high output
(with 2× extra coverage). The cost of the library construction
($30 per library) and sequencing (about $5,000) will be less
than genotyping the entire population. More cost savings can
be recovered by combining many bulks that target multiple
traits of interest. Further, because sequencing gives access to
genotype-specific markers, the marker most tightly linked to
the QTL can be identified and converted to a marker for
marker-assisted selection. Using sets of SSR markers or a SNP
array designed with markers of more broad applicability, there
is less chance to identify markers as strongly linked to the
trait.

Statistical Considerations
Magwene et al. (2011) proposed statistical models for the analysis
of QTL-seq data in yeast using the G-statistic. In plants, Takagi
et al. (2013) used 1SNP and a permutation test to derive a
null model to define significant candidate QTL regions. The
latter is the method of choice among plant QTL-seq studies
and has been shown to work effectively. Delta G (G statistic
normalized by a smoothing function) values were calculated
using the data presented in this study. The top 0.1% of Delta G
values were from SNPs located within the identified and validated
QTL (Supplementary Table S2) highlighting the congruity of the
two methods. One drawback of the G statistic is its inability to
provide information on which parental allele is contributing to
the trait. Using 1SNP the researcher can easily tell which parent
is contributing the beneficial allele.

3http://support.illumina.com/downloads/sequencing_coverage_calculator.html

FIGURE 4 | Read depth affects null distribution estimation. A null distribution
was generated for each read depth by taking the average and standard
deviation of 1,000 runs of the top and bottom 5% (p < 0.05) and 1%
(p < 0.01) of 1,000 simulations for each run.

It is important to note that the probability of the null
distribution will change according to the specific read depth
at each SNP position. By simulating mapping-by-sequencing
datasets, the number of candidate mutations decreased according
to increased read coverage and number of pooled individuals
(James et al., 2013). Additionally, it was observed that random
sampling affected the ability to accurately estimate marker-
wise allele frequencies in bulks (Galvão et al., 2012). Random
sampling effects increase as read coverage decreases. Although
Takagi et al. (2013) generated their permutation test with
depth in mind, the null distribution is dataset specific and
should be generated for each experiment. To illustrate this, null
distributions were simulated for different read depths assuming
a biparental RIL population (Figure 4). The thresholds for
significance varied across read depths. Read depth will vary
greatly between different experiments based on experimental
design. Variation also is due to sequencer sampling. Random
sampling of sequenced reads aligning to each marker, a unique
estimation of the null distribution should be established for
each marker in a dataset-specific manner. This will control for
experiments with high variability of sequencing depth between
markers.
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CONCLUSION

In this study, QTL-seq was used to identify multiple QTLs
for LLS resistance in peanut. These QTLs were validated
by QTL mapping, backward selection, and blind selection.
Markers were designed using the most significant SNPs and
it was shown that selection with these markers alone could
lead to a significant increase in resistance in the field. The
power of this method is its speed and low cost relative
to QTL mapping. Further, markers can be designed straight
from identified QTLs that are strongly linked to the trait
and can be deployed immediately in breeding programs.
One caveat is that these QTsL are background specific, as
statistical power must be increased substantially to attain
perfect linkage to the functional variation. That being said,
QTL-seq provides the resolution necessary to find strong linkage
in populations where the donor parents of the identified
alleles are in the pedigree. QTL-seq can be used for marker-
assisted selection even with highly quantitative traits where
multiple experiments are used to identify bulks. In many
breeding programs, historical data can be leveraged to advise
bulk creation, further increasing the efficiency of marker
identification.
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